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PHYSICS-BASED MULTI-TIME STEPPING ALGORITHM FOR
THREE-DIMENSIONAL QUASI-STATIC
ELECTROPOROELASTICITY EQUATIONS

XUAN LIU, YONGKUI ZOU*, AND AMNON JACOB MEIR

Abstract. Electroporoelasticity equations comprise of Maxwell’s equations and Biot’s equations,
playing an important role in geophysical areas such as oil-gas exploration and earthquake early
warning. The development of electromagnetic waves and elastic waves presents distinct time
scales due to the multi-physics nature. In this paper, we propose a multi-time stepping numerical
algorithm to approximate electroporoelasticity equations, in which we use a smaller time step to
compute Maxwell’s equations and a larger time step to calculate Biot’s equations. We prove the
stability of this algorithm and derive its error estimates. Numerical experiments are conducted to
demonstrate the theoretical analysis.
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1. Introduction

Natural resource reservoirs such as water, oil and gas are predominantly poroe-
lastic media, comprising of solid skeletons and pore fluids [7]. The seismoelectric
coupling phenomenon emerges from the relative motion between the solid matrix
and fluid in fluid-saturated porous media, induced by the presence of an electric
double layer consisting of an adsorbed layer and a diffuse layer. This phenomenon
includes both the seismoelectric effect and the electroseismic effect and leads to
seismoelectric coupling waves [25]. In the absence of fluid flow, the porous medi-
um is electrically neutral overall. However, when seismic waves propagate through
the porous medium, fluid flow occurs within the pores, causing charges in the dif-
fuse layer to move relatively to those in the adsorbed layer and thereby forming a
streaming current, which is the seismoelectric effect. And vice versa, the electro-
seismic effect occurs when the electric field in the porous medium changes, charges
in the diffuse layer move within the electric field to generate a conduction current,
which simultaneously drags the fluid in the diffuse layer into motion.

Seismoelectric coupling is modeled by electroporoelasticity equations which con-
sist of Maxwell’s equations [2] and Biot’s equations via an electrokinetic coupling
coefficient. Seismoelectric coupling waves integrate the spatial resolution of elastic
waves with the reservoir identification capability of electromagnetic waves, enabling
the seismoelectric coupling effect to find applications in diverse fields such as oil-gas
exploration [35], earthquake early warning [26, 27], environmental protection [20],
water conservancy exploration [15], and other areas of geophysics [3, 34]. Due to its
importance in applications, much attention has already been paid to electroporoe-
lasticity equations, cf. [11, 12, 13, 16, 18, 19, 29, 30].

Numerical methods are important tools to explore the multi-physics nature of
electroporoelasticity equations. Hu and Meir [12] proposed a numerical scheme
using the standard finite element method (FEM) and analyzed its error estimates.
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Liu et al. [16] investigated the well-posedness and applied splitting technique to
set up a finite element approximation to improve the computational efficiency. In
recent years, a multi-time stepping technique has been developed to accelerate
the numerical computations for solving partial differential equations. Shan et al.
[31] constructed a decoupled scheme with different time steps for a nonstationary
Stokes-Darcy model and verified its stability and convergence. Rybak and Magiera
[28] developed a mass conservative multi-time stepping method for solving coupled
free flow and porous medium flow problems, proved its long time stability and
performed error eatimates. Shevchenko et al. [32] presented a multi-time stepping
integration method for the ultrasound heating problem and showed its efficiency and
robustness. Zhang et al. [38] studied a finite element approximation to the Stokes-
Darcy-Transport system with different time steps on different physical variables. In
these studies, the large discrepancy in time scales of partial differential equations
leads to that the equations can be solved with different time scales. The key idea
is to use a small time step to discretize the temporal variable in the equation that
changes rapidly, while using a large time step to solve the equation that changes
slowly. For more references, we refer to [8, 14, 24, 33, 39] and the literature therein.

Electroporoelasticity equations form a complex system of coupled, multiphysics,
multi-component, and multiscale models. It is common knowledge that electromag-
netic waves propagate much faster than seismic waves. In this paper, we investigate
a multi-time stepping algorithm to improve the efficiency of numerical approxima-
tions to three-dimensional quasi-static electroporoelasticity equations. The main
idea consists of two steps. First, we decouple the electroporoelasticity equations
into Maxwell’s equations and Biot’s equations. Then, we discretize Maxwell’s equa-
tions with a smaller time step-size and approximate Biot’s equations with a larger
time step-size. We prove the stability and first-order convergence in temporal and
spatial variables, respectively, of the multi-time stepping algorithm.

The rest of this paper is organized as follows. Section 2 introduces the quasi-
static electroporoelasticity equations along with the finite element spaces. In Sec-
tion 3, we propose a physics-based multi-time stepping algorithm and establish its
stability. Error estimates for the numerical approximation are derived in Section
4. Section 5 presents numerical experiments that validate the theoretical analysis.

2. Preliminaries

In this section, we describe quasi-static electroporoelasticity equations and in-
troduce finite element spaces used in this paper.

2.1. Electroporoelasticity equations. Let [0,7] with 7" > 0 be an interval and
2 C R3 be an open bounded polyhedron with n the unit outward normal vec-
tor to boundary 02. Consider three-dimensional quasi-static electroporoelasticity
equations for (¢,x) € [0,T] x Z

e%E—l—aE—VxH—LVp:j,

0

il E—

(1) ,uatH +V x 0,
—(A+G)V(V-u)—GAu+aVp={,

%(cop+aV~u) —kAp+ LV -E =g,

with initial value conditions for x € &

(2) E(O’ X) = EO(X)7 H(07 X) = HO<X)7 u(07 X) = uO(X)7 p(O, X) = po(X),
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and boundary value conditions for (¢,x) € [0,T] x 02
(3) E(t,x) xn=0, p(t,x)=0, utx)=0.
Here, E is the electric field, H is the magnetic field, u is the displacement of solid
matrix and p is the pressure in the fluid. The parameter € is the electric permittivity,
o denotes the electrical conductivity, p represents the magnetic permeability of
the material, L is the frequency-dependent electrokinetic coupling coefficient, o €
(0, 1] represents the Biot-Willis coefficient [5], A denotes the Lamé constant, G is
the shear modulus of porous media, ¢y = ﬁ represents the constrained specific
storage coefficient with M the Biot modulus [4] and £ = ] denotes the hydraulic
conductivity with v the permeability of porous media and 7 the shear viscosity
of fluid. For simplifying analysis of error estimates, we assume that f = 0 and
parameters €, o, u, L, a, A\, G, ¢y and & are all fixed positive constants. Throughout
this paper, we also denote E(t, x) by either E(¢) or E, etc. when no confusion occurs.
For any integer 8 > 0, denote by H® := H?(2) the standard Sobolev space
with norm || - || and HS = {v € HP : Dw|sy = 0, |o| < B} [6, 36, 37]. Here,
H® = L?(2) is the square integrable function space with inner product (-,-) and
norm ||-||. Throughout this paper, we will use bold italic letters to represent spaces
of three-dimensional vector fields (H? = (H?)3, etc.) and also utilize || - |5 to
denote the norm in H” when no confusion occurs. Let C(2) be a space consisting
of continuous functions on . Define three subspaces of L?(2)

H(div) ={v:veL*2), V-vel*2))}
H(curl) = {v:vec L*(2), VxvelL*2),
Hy(curl) ={v:v € H(curl), vxn=0on 0%}
For simplifying notations, denote by
S := Hy(curl) x H(curl) x H} x Hy,
H:= L*(2) x L*(2) x L*(2) x L*(2).
The variational form of (1)—(3) is to seek (E,H,u,p) € L?(0,7;S)NH (0, T;H)

satisfying initial value condition (2) and

(G%E@‘)»D) + (0E(t),D) — (H(t),V x D) — (LVp(t), D) = (j(t), D),
(“at ),B) + (V x E(t),B) =0,

(( /\+G V-u ),v.v) (GVu(t), Vv) — (p(t),aV -v) =0,

(

8tp ),q) + (aV - au(t) q) + (kVp(t), Vq) — (LE(t), Vq) = (9(t),q),

for allt € [0,7] and (D,B,v,q) €S.
Now, we introduce some assumptions used in this paper.

(H1) 0 < L < +/ok.

(H2) The functions Eq, Hy, ug, po, j and g are sufficiently smooth.

(4)

Co

Under these two assumptions, (4) has a unique solution (E, H, u, p) € L*(0, T; S)N
H(0,T;H), cf. [16].

Define a symmetric bilinear form
a(w,v) = (A +G)V-w,V-v) + (GVw,Vv), Vw,veH].

This leads to an equivalent norm | - ||, = v/a(-,-) in Hg, i.e., there exist two
constants 0 < ¢; < ¢z such that 1] - |1 < || - [|la < e2]| - |1
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2.2. Finite element spaces. Let 7, be a regular tetrahedral partition of 2. For
each element K € 7T;, with faces Fx and edges £k, let hx be its diameter and
h = maxgeT, hx be the mesh size of 7;,. For any integer [ > 0, denote by P(K)
and P;(K) the spaces of polynomials with degree no more than ! and homogeneous
polynomials with degree of [, respectively. For any | > 1, define two spaces
S)(K)={LeP(K):L(x)-x=0, Vx € K},
R|(K)=P_1(K)® S|(K).
Now, we construct four finite element spaces
E, = {Eh € Ho(CllI‘l) : Eh'K S Rl(K), VK € 771}7
Hy, = {H), € L*(2) : Hy|x € Po(K), VK € Tp},
U, = {uh c C(_@) : uh‘(‘)@ =0, uth < Pl(K)7 VK € 771},

Py, = {pn € C(2) : puloz =0, pr|lk € Pi(K), VK € Tp}.

Notice that Ey, is the space consisting of Nédélec elements [23].

Let Y’Bh : LQ(.@) — Eh, P : LQ(.@) — H}“ e@h : LQ(@) — Uy and Py : LQ(.@) —
P, be L2-orthogonal projection operators, respectively. The next lemma collects
some approximation estimates of these operators.

Lemma 2.1. ([9, Lemma 11.18]) There exists a constant C > 0 independent of h
such that for any (E,H,u,p) € H> x H' x H? x H?,

1B — BBl < Ch?||El|2,
IH —PpH|| < Ch|H||1,
[u— Znul| + hllu = Zyuli < Ch*|ulls,
lp = Pupll + hllp — Puplls < CR?|[pll2-
Define three sets of moments for w € H? on K € Ty, [21, 22, 23]

MGK(W): {/ (W'Tek)xdeKv VXEB—l(eK)aeKESK}7

€K

My, (w) = {/ (wxn)-xdfk, Vx € (P—2(fk))% fx € ]:K} ,

Mic(w) = {/wadfc Vx e Pl_g(m},

where 7., denotes a unit vector parallel to edge ex. Let Zj : H? — Ej be
an interpolation operator such that (Z,E)|x is the unique polynomial in R;(K)
having the same moments as E|g, cf. [10, 21, 23].

Let 9y : H& — Uy and Ry, : H& — Pp, be a pair of Ritz projection operators
such that for any u € H} and p € H},

(5) a(Qpu,vp) — (Rup, aV - vp) = a(u,vp) — (p,aV - vy), Vvp € Uy,
(6) (kVRup, Van) = (kVp, Van), Van € Pp.

Lemma 2.2. ([16, Lemma 14]) There exists a constant C > 0 independent of h
such that for any E € H>, ue H*>* N H} and p € H> N HY,

|ZWE — || + |V x (Z,E — E)| < Ch|[E]]>
|Quu—ully < Chljulls + CH2[p)l2,
IRup = pll + AIV (Rap = p)ll < CH2lpll2-
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3. Physics-based multi-time stepping algorithm

Due to the multi-physics nature of electroporoelasticity equations, one may i-
dentify two distinct time scales which are for the electromagnetic waves and elastic
waves. In this section, we propose a multi-time stepping numerical algorithm re-
flecting these two different time scales for Maxwell’s equations and Biot’s equations.

For any integers Ny, N > 0, let 7py = T/Nys and 7 = T/Nk be two different
step-sizes. Denote by t2 = mry (0 < m < Ny) and tf = krg (0 < k < Ng)
the corresponding time partition nodes. In this paper, we always choose these two
step-sizes such that the ratio r = 7x /75 is a fixed positive integer. Let my = kr,
then t3 =t

We will apply backward Euler method and FEM to construct a multi-time step-
ping scheme to approximate (4). In order to make the idea clear, assume we already
have a numerical solution (Ej"™*~" H;"* " u,"* ™', p,"* ') at t} | we will find the
next approximate solution (Ej™ , H)™ up'*, pi™) at ¢} via two steps. First, we re-
peatedly solve Maxwell’s equations r times to determine (E;"*, H}""): successively

seeking (EZI,HZ‘) € E, x Hy, for m =myg_1+1,mp_1 +2,...,my such that
(0 E, Dy)+(cER, Dy)— (HP, V x Dy,)=(LVp, 1, D)+ (), Dy),
(/LgtMHZlvBh) + (V X Ehm7 Bh) =0,
for all (Dy,By) € Ej, x Hj,, where O,uE" = (EP* —E;L"_l)/TM, etc. Then, we solve
Biot’s equations to find (u}"*, p;**): searching (u,"*,p,"*) € Uy x P}, such that

my

a(up™®,vy) — (pp'*,aV - vy) =0,

(codix P qn) + (aV - Oy )™ qp) + (KVPI™, Van)
1 &
= (L >0 EjVan)+(glt,) o),
i=mp_1+1

for all (v, qn) € Uy, x Py, where Oixpj™ = (pj* — p, ")/ Tk, ete.
The concrete computational procedure can be described as in Algorithm 1.

Algorithm 1 Multi-time stepping Algorithm

Take
(9) (Ep, H),up, p)) = (BrEo, PnHo, Py, Pypo).

for k=1,2,...,Ng do

for m =mp_1 +1,mp_1 +2,...,my do

Solve (7).

end for

Solve (8).
end for

Now, we investigate the stability of Algorithm 1.

Theorem 3.1. Assume (H1) and (H2). Suppose (Ej*,H}*) (1 < m < Ny) and
(u;™,pp™*) (1 < k < Ng) are obtained from Algorithm 1. Then there exists a
constant C' > 0 independent of Tas, T and h such that

1% 4 )2+ a1+ o™ |1* < €.
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Proof. Taking (Dy,Bp) = 2rmER, 2ryH}?) in (7) and summing up, we get
(€O E, 270 B7) + (u0pn HI 27 HIT) + 2070 || BT |
= (LVpy™* " 21 E) + (§(tn ), 270 ERY).
Obviously, we have
(O ERY 2m0ER) =|E|1° — || ERH1* + |E} — Ep )12

(10)

(11) >|[E ) — By
Similarly, we get
(12) (O B, 270 HIY) > (L2 — (|E )12

From (10)—(12), it follows that
el B2 + pl HG 1 < el B2 + pl 1P = 207 | B2
H(LVp, 7 2mn ERY) + (), 2 ERY).

Inductively for m =myg_1 +1,...,my in (13), and then applying Cauchy—Schwarz
and Young’s inequalities, we obtain

el 117 + pol H |2

(13)

mpg
< B A plHY P = 20m Y |ES
i=mpg_1+1
mp mg
o LVt BN+ Y (), 2rE])
i=mpg_1+1 i=mpg_1+1
my
< By P+ plHY P =200 > B

i=mp_1+1
i m 2 L2 P12
k—
Y (VR B

i=mg_1+1

my
1 . )
S (o DI + 20m B} )
i=mp_1+1
= el B2+ pl P+ wi [V
L? L : 1 L
=D DI | A L S I
i=mpg_1+1 i=mpg_1+1
Inductively for £ > 1 in above inequality, we have
k
|17 + plHE |* < e BRI® + plHR 1P + 7 > Vo |
=1

L2 k my 1 k my
LY Y R Y Y e
=1i=my_1+1 (=1i=my_1+1
k
= | BRI + ulHY P + w7 Y 1VD P
{=1
L2 - i 112 1 o My 12
B SO+ o D )
1 =1

1=



2568 X. LIU, Y. ZOU, AND A.J. MEIR

For any 1 < s < r — 1, in a similar way as proving (14), inductively for m =
mg—1 +1,...,mg_1 + s in (13), and then utilizing (15) with k replaced by k — 1
we get

;2 4 P

el BRI 4 pl P+ w12

IN

L2 mg—1+s 1 mg—1+s
DD DI - (R S 1T
i=mpg_1+1 i=mpg_1+1
k
e[ ERI1* + wl R |1* + 7 > VDR
=1

mpg—1+s mg—1+s

1
+*TM Z LI + 5o Z 1311

(16)

IN

Taking (vi,qn) = (27 Oyxuj™, 27k p)™*) in (8) and summing up lead to

a(ul™, 275 By u™) + (codyre pl™* | 2™ ) + 2 | V|2

1 — 3 m m
= (L; Z Ej,, 27 Vpi™ ) + (9(th,, ), 27k D).

i=mp_1+1

(17)

In a similar way as proving (11), we have

a(ufs, 2B ) > s |2 — = |2,
Qo™ 21y 2 g 12 = o™ 1%
These together with (17), Cauchy—Schwarz and Young’s inequalities yield

[y (15 + collph ™ II* + 267 [V, ||

o e e

L2 1 &
+ T Z 1B, + mrrc VD17 + mcllg(ti )P + Txcllpp™ |12,

i=mp_1+1
Inductively for £ > 1 in above inequality, we get

k

iy 12 + collph™ I + w7ee Y IV 1
{=1

L2 k me
S||u2||3+60||p2||2+;TMZ > IELP

{=1i=mp_1+1

(18)
+TKZ gt +TKZ oy 12
£=1
= [lup |7 + collph|I* + 7x Z lg(tm )% + *TM Z IELI* + 75 Z Ipi 117

{=1
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By virtue of (15) and (18), we obtain estimates at nodes t3/ =t (1 <k < Ng),

el BRI + sl 12 + g 12 + collph™ 1* + £l Vo™ |1
< BRIP4 pl R + ui ]G + COIIIJ;LH2 + w7 || Vs |12

(19) + *TMZ 1 +TKZ g (tm, I

mE

212 .
e Lk +TKZ I 2

In order to set up the boundedness of numerical solutions at nodes ¢3! . for
1<k < Ngandl < s <r—1, wesupplement the definition of the approximation to
u and p at nodes t¥ | by uy"*" Lt =u, """ and p;"*~ vt = p, 7', respectively.

Then, form (16) and (18) w1th k replaced by k — 1, it follows that

el B A pl R R ol

el A pl B a2 collpy

< €l ER1* + ulHp 2 + [lup |17 + Co||Ph||2 + w7V |12
(20) mg—1+s
+ *TM Z ()11 +TKZ lg(tm,)II”
2L2 me—1+s
VY Ee +n<2 I .
=1

According to (19) and (20), we obtain for all 1 <m < Nj; and 1 < k < Nk,
e[[E7 1 + pl B + [lug 12 + collpi|I?
< €| BRl1® + plH 1 + [up |12 + Collph||2 + k7 | Vo2

(21) + *TM Z 5D + 75 Z gt )II?

2I2 &
+*TKZIIE H2+TKZthH2

By virtue of (9), we get
IER N1 = 1BnEol® < [[Eol,
[HY ||* = [|PxHol|* < |[Ho|?,
lap 7 = | Znuoll? < Il Pruoll < 3lluollf,
a2 = 1 Papoll® < [lpoll?,
IVoRlIP = IV Pupoll? < [|Papoll? < llpoll?.
Applying discrete Gronwall’s lemma to (21), we obtain that for all 1 < m < Ny,
17+ R+ ([ag |2 + [lpi > < Ce® 2= < 0e™ T < C,

where C' > 0 is a constant independent of 757, 7 and h. ([
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4. Error estimates

In order to investigate the convergence order of numerical approximation, we
need additional regularity of the exact solution to (4). Thus, we assume
(H3) E € HY(0,T; H?) N H?(0,T; L*(2)),
He HY0,T; HY) N H?(0,T; L*(2)),
ue HY(0,T; H*) N H*(0,T; H),
p € HY(0,T; H*)N H?(0,T; L*(2)).
Note, the errors can be decomposed as follows: for all 1 < m < Nj; and 1 <
k < Nk,

E(ty,) — B = (B(t})) — ThE(ty,) + (TaE(ty) — Em) = E(tM) + o5
H(ty) — Hj' = (H(t,)) — PoH(ty)) + (PuH(ty) — HY) = U(t,) + O],
u(ty,) —up™ = (uty,) — Quu(ty,)) + (Quu(ty),) *uh") = ¢(tn,) + o™,
plta,) =0 = (p(tn,) = Rup(ty,)) + (Rup(ty,) — ™) =: €t ) + i

The error estimates for the projections and interpolatlon in the above equalities
are easily obtained from (H3), Lemmas 2.1 and 2.2. In particular, there exists a
constant C' > 0 independent of 737, T and h such that for all 1 < m < Nj; and

IEED = B — TuE(t)] < ChlE(t,)ll2 < Ch,

1wt = () — PuH(E)| < ChIH(t,)]1 < Ch,
(22) lp(tm)lls = lulty,) — Quulty )l

< Chllu(ty, )2+ Ch?p(ty,)ll2 < Ch,
€l = llp(tm,) = Rup(ty ) < CR? [ty )2 < CR.

Now, we are ready to derive the error estimates between the exact and numerical
solutions to (4).

Theorem 4.1. Assume (H1)-(H3). Let (E,H,u,p) be the exact solution to (4)
and (Ep*, H}") (1 < m < Ny) and (up™*,pp™*) (1 < k < Ng) be obtained from
Algorithm 1. Then there exist three positive constants C; = C’l(‘?;%, %2%), Cy =

Co(22 %p 0%u 98 and C' independent of Tar, Tx and h such that

9t ot2> 92 ot
IE(tn) — ERI° + [H () — H |2+ la(ty,) — o[ + lp(t),) — i )12

< Cy73; + Cot + Ch2.
Proof. Taking D = D), € E;, in the first equation of (4) and noticing the first
equation of (7), we get

(0 @', Dy) + (0@}, D) — (O], V x Dy)
— (Do (TUE(Y) ~E}), Dy) + (o (T B(EY) ~ Ej), Dy) — (PyH(EY) ~H, ¥ x Dy)
= (e(ZTn0mE(ty,) — Oy E(ty))), Dn) + (D E(t)), ), Dp) — (€0, E}', Dy)

— (0Z(tY), Dy) + (0E(tM), Dy) — (0Bf, Dy) + (B(t4), ¥ x D)

— (H(ty,),V x D) + (H}?, V x Dy)
= (e(ZnIpmE(ty ) — O E(t))), Dp) + (cOpmE(ty, ), Dn) — (0=(ty, ), Da)

+ (0E(ty)), Dn) — (H(t;)), V x Dy) = (j(t)), Di) — (LVp;* ", Dy)
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9 B(#M)), Dy )~(oZ(t), D)

= (G(IhétME(tM)—5tME(tnj\{)),Dh)—l-(G(gtME(t%)—at
1)+ (LVyy," ', Dy)

+(LV(p(ty) = p(ty,_,)), Dn) + (LVE(t,, ), D
=: (ewnr1(ty, ), D) + (€pfin, Dn) — (0=(t};), Dn)
+ (LY (p(tn) = p(tm,_,)), D) + (LVE(ty, ), Da) + (LYY, Dy),

where we have used the fact that (¥ (t}), V x Dy,) = 0, which is due to Vx Dy|x €

Hp|x. Similarly, by virtue of the second equations in (4) and in (7), we obtain for
all By, € Hy,

(10 OF, B,) + (V x @}, By,)

= (uOp (PR HL(E))) — HRY), By) + (V x (TLE(t))) — ER'), B)

= (W(PrOp H(t)) = Opnr H(8))), Br) + (udp H(t) ), By) — (u0pn Hy', Bp)
— (VX E(tn), Bn) + (V x E(t))), By) — (V x Ej*, By)

= (W(PrOuH(ty,) — dpr H(ty))), Br) + (n(0p H(ty,) — QH(t%))»Bh)

ot
—(V x E(t}))), Bn)
=: (uwarz(tht ), Br) + (1phie, Br) — (V x E(t))), By).

Taking Dy, = 27y, P} and By, = 27,0} in above two equations, respectively, and
then summing up, we get an error equation

(€D @ 270 @) + (O OF, 270,0O7) + 207ms || BT
= (ewnr1(tm ), 270 ®7) + (ephiy, 2rn @) — (0=t ), 270r @F)
(23) + (LY (pltn) = p(th, ), 2mar®f) + (LVE(E], ), 270 B
+ (LYY, 2 @) + (pwara (b, ), 27 OF) + (PR, 2700 OF)
—(V x Z2(tM), 27 07).
In a similar way as proving (11), we have
" (G B3, 2007 = 07| = [ P
(O OF, 2 07") = |07 |17 — |07~ ]1%.

Inductively for m = mg_1 + 1,...,my in (23), and then applying (24), Cauchy—
Schwarz and Young’s inequalities, we obtain

(25)
el @)1 + pll O™ |12
my mi
<O Pl e 3 o) Freny 30 92
i=mg_1+1 i=mpg_1+1
mi me Mg
ter Y el Her Yo P Hor DY IEEMIP
i=mpr_1+1 i=mp_1+1 i=mpr_1+1
mp mi
toru Y GIP L Y V) = el )P
i=mp_1+1 i=mp_1+1

my

mip M
L Y NRLPHLrae Y Ve, DIP L Y 9P

i=mg_1+1 i=mg_1+1 i=mpg_1+1
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my L2 mg
MEk—112 = 2
AT S IV P+ M > Ikl
i=mg_1+1 i=mpyg_1+1
my
tumn Y w1+ prar Z 104117+ 17 Z 102l
i=mpg_1+1 i=mp_1+1 i=mpg_1+1
my my mi
pre Y O+ D IV EEDIP+e Y €51
i=mp_1+1 t=mg_1+1 i=mp_1+1

my
< el @y P H plOy P+ mrk IV P+ er D [lean (811

t=mpg_1+1

mi mi
tern Y onlP+orn D IEEDI?
i=mp_1+1 i=mpr_1+1
mp
+Lry Y V) = pthl DI+ L[ VEEY, )I1?
i=mpg_1+1
my mp )
toure Y lws2@DIP+pmr D 1Pl
i=mpg_1+1 i=mpg_1+1
mg L mg
My |2 L7 2
+ 7 S IVXEEIP+ (2e+o+2L+ H)TM‘ > @l
i=mpg_1+1 i=mpg_1+1
my
S C/TE VYRR SO [CHY
i=mp_1+1

Inductively for £ > 1 in above inequality, we have

el @y + ey |2

< el @RI + pllORI® + rric Z VR I + erar Z leonrs (87112

=1 i=1
mpg mp
+emar ) lphnll® +omar D IEE)
i=1 =1

26 oo
P Y S e 1>>H2+LTKZ|W5 v P

(=1i=my_1+1 =

MTMZHwMz &I + MTMZHPM2||2+TMZ||VX I
i=1 =1 =1
2

L
(2e+a+2L+—TMZ||q> 12 + (2u+1TMZ||@ I12.
=1 i=1

For any 1 < s < r — 1, in a similar way as proving (25), inductively for m =
mir—1+1,...,mr_1 + s in (23), and then utilizing (26) with k replaced by k — 1,



TIME-STEPPING ALGORITHM FOR ELECTROPOROELASTICITY 263

we get
(27)
el 2 ¢ P
mg—1+s
< el @y P pll O P+ R |V T P erar Y wan ()]

i=mp_1+1

myg_1+s mg—1+s

fery > IehalProny S =M
i=mp_1+1 i=mpr_1+1
mg—1+$

+Lmr Y V@) = et D)+ L [ VEE, )P

i=mpg_1+1

mg—1+s mg—1+s

tpme Y eI e D 16l
i=mp_1+1 i=mp_1+1
mp—1+S$

tor Y, IV EED)?

i=mpr_1+1

L2 mr—1+s mp—1+s

L 24 2

+ (2 4+ 0 4 2L + K)TMV > @l (2u—|-1)7'M' > el
i=mp—1+1 i=mp_1+1

< el @h)* + ullop H2+MKZHV¢Z”’ "
(=1

mg—1+s mg—1+8 mg—1+8

tetm Z ||le(tM + €T Z ”p]VIlH t oM Z tM H2

i=1

k—1 mye
Ly >, IV — ), D))

{=11i=my_1+1

mr—1+$
+Lrv Y IV = pth, 1))II2+LTKZIIV£ me_ I
i=mp_1+1 =1
mg—1+s mpg—1+s mg—1+s
toum Y lesaEOIP +umn D lohell® +ma D IIVXEED)?
i=1 i=1 i=1
12 mp—1+s mr—1+s
2 2L + — L2+ (2u+1 o!|1?
+(2e+o+2L+ —)mu ; [R5 + (21 + 1)7ar ; 1O

According to (5), the third equation in (4) and the first equation in (8), we get for
all vy, € Uy,

a(ep™,vi) — (Y, aV - vy)
a(Qpu(ty, ) —wp™,vi) = (Rup(ty,) — o, aV - Vi)

a(u(ty,),va) = (p(ty,,), aV - vi) = (a(uy™, vi) = ()", aV - vi))
0.
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By (6), the last equation in (4) and the second equation in (8), we obtain for all
qn € Ith

(coderc '™ qn) + (aV - Dy ™ qn) + (KV Y™, Van)
= (coOp< (Rup(ty,) = i) an) + (@V - yxe (Quulty,, ) — up™), qn)
+ (kY (Rip(tn,) = Ph*), Van)
Rhath( ) 5th(t7]\r/L[k))? qn) + (CogtKP(t%k)a qn) — (CoéthZlk,‘Ih)
aV (QhatKu(tM ) = dpcu(ty) ), an) + (aV - Oyeu(th ), qn)

= (co
(
—(aV - Opeu)™, ) + (KVp(th), ), Van) — (kVpp™, Van)
(
(

+
= (co RhatKP( ) ath(t%k))th) (CoatKP( )Qh)
+(aV - (Qudpxulty, ) — Oiculty, ), an) + (@V - Sy ulty, ), qn)

(V). V) — (@) a) — (12 S EjVa)

i=mp—1+1
= (co(Raucp(t3h) — Buxp(t3 ))oan) + (colBusplt) — Sop(th, ). 1)

@V - (@™ ) — Feu(t™)), ) + (aV - Feu(t™ ) — L)), )

ot
1 S M M 1 T =/ M
+(L= Y (B —EW), Va) + (L= Y E(), Van)
" i=mp—1+1 " i=mg_1+1
1 & ,
+(L= > @},.Va)
ri:mkflJrl

=: (cowrs(ty ), an) + (coplics, an) + (aV - wra(ty ), an) + (aV - ply, an)

my mp

S ®e) B Ve (LY =), Va)

i=mpr_1+1 i=mpr_1+1
1 & :
+ (L; > 8, Van).
i=mp_1+1
Taking v, = 2750« et and g, = 27" in above two equations, respectively,
and then summing up, we get an error equation

a(@p™, 21K O ™) + (oD by, 2T ) + 2675 || Vb ||
= (cowrs(ty ), 2™ ) + (coplics, 2™ + (aV - wirea(tf ), 27 Pp™)

(28) +(aV - Pl 2Ty ") + (L; Z (E(t%k) - E(tf”)), 27V, k)
i=mg_1+1
1 -~ = M mp 1 .~ 1 mp
+ (L; > B, 2rk V) + (L; > B2 V).
i=mp_1+1 i=mp_1+1

In a similar way as proving (11), we have

k— 1||

a(e™, 2k ™) = |l |12 = llep,
e I [ el (e [
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These together with (28), Cauchy—Schwarz and Young’s inequalities lead to
lph™ 112 + collog™ I* + 2k7x [ Vo™ ||
< o™ Mz 4 colln™ 1 + corre lwra (GO + corre [ (1P + comrc | sl
+corr [ 1 + ark ||V - wK4(tK)||2 +arg|[Yp 12+ ar |V - plall?

3021 H

2
+ arclVp | + == 5 (B(t),) ~E@)|

1=mp_ 1+1

3L% 1 H

+ TK||V¢;”k||2+——rK EtM)H + n<||vw"“‘||2

i=mp_1+1

3L% 1 — 2R o
+77TQTKH Z @), JrgTKHVi/’anH

i=mpr_1+1

< llon™ Iz + collwn™ 1P + coriclwres (BN + corxc | olcs |

+ a7k ||V - wia (GO + ok IV - pley |

3L < M ayy2 , 3L - =My (|2
T D DI - AU ER v SR
t=mp_1+1 i=mp_1+1
3L2 . 2 my (|2 my [|2
+——Tu o IRLIP + (2c0 + 2a) e[| 1P + rric [ Ve ||,
i=mp_1+1

Inductively for £ > 1 in above inequality, we get

k

i 12 + coll g™ |1 + wree S 11V 12
/=1
k k

< @RlI2 + coll¥hll® + corie Y llwrea(t)1” + comre Y llpfesll®
=1 =1
k k

(29) +arg Y |V -wra(tf)|P +ami Y IV - plall?
(=1 (=1

3L2 M M 2 3L2 - M 2
+——Tu E E IEm,) — BN+ =7 E 12
l=1i=my_1+1

mg

3L?
D @’L 2 2 2 ™mye (|2
+ TMZH a2+ (2c0 + OZTKZH?/J [
According to (26) and (29), we obtain error estimates at nodes ¢} =t (1 <k <
NK)7
el @R 12 + ullO™ 1% + llep™ 17 + collwy™ I1* + w7 [ Ve ||
< el|@h )1 + ORI + llehllz + Co||¢h||2 + w7 [V ®

mp 2 mip
3L -
(30) + €Tm E lwart (8DI7 + emar E 105 11% + (0 + T)TM E :”:(tfw)HQ
=1 =1 =1

k mye
Ly, o IV -, 1))||2+LTKZHV€ Al

(=1i=my_1+1 =1
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+WMZ lwnr2(£)]1? +WMZ [r3ve +TMZ IV < 2P

=1 =1 i=1
k k k

+eorr Y wrstOI® + comre Y Io%esll® + amie > IV - wrea ()]
/=1 /=1 =1

+cm<ZIIV pK4||2+7TMZ Z () — B

{=1i=my_1+1

412
+ Qe +o+2L+ ) TMZH@ I?+ (2M+1TMZ||® I
=1 i=1
k
+ (2c0 + 20) 7 Y [l
=1

In order to analyze error estimates for numerical solutions at nodes tmk L+s for 1 <

k< Ny and 1 <s<r—1, weassume ¢, "~ Lt =@, " and ¢, "~ e = poE
respectively. Then, from (27) and (29) with k replaced by k — 1, it follows that
(31)

el @5 P+ O R+ e G + collwy P

= el @RI+ wllOF R A+ o™ T + colly™
<el| @R 1I* + pllO3 % + llhllz + collwhll® + wrcl[Vep |

)

mrg—1+$ mg—1+$
ter Y NoanEIP+err > lphnl®
=1 i=1
3L2 e M2 M 2
+(o+ =) > IEE)] +LTMZ Z IV (") = plth, )
1=1 =1i=my_1+1
me—1+s
+Lrv Y IV = o, ) ||2+LTKZ||V§ me DI
i=mr_1+1 =1
mg—1+s mg—1+s mp_1+s
turn Y s +umn D ol +ma D IIVXEED))?
i=1 =1 =1
k—1 k—1 k—1
+eotr Y llwra(B)” + comre Y Ikl + ame D IV - wrea ()]
=1 =1 =1

+OWKZ:HV pK4||2+7TMZ Z IE(t,,) — E@)]?
l=11i1=my_1+1

2 myg_1+8 mr—1+s

4L
2 2L + — PiI%+ (2u+1 o2
+@eto+2L+ =) D @7+ @u+ D D (165l

=1 i=1

k—1
+ (200 + 20)7ic Y |||
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According to (30) and (31), we get for all 1 <m < Nj; and 1 < k < Nk,

el @311 + ullOF 1 + lleh 12 + collwilI?

<e||®} [+ ull©f H2+||90h||2+60||¢h\|2+%TKIIV%IIZJrETMZHle Gl
=1
m

. 3L2 m _
err Y bl + (0 + 2y S IEED)?
=1

i=1

k mye
SIS S IV - gl )+ L 3 Ve,

(=1 i=mg_1+1 =1
m m m
+pm Y waa (GO + prar Y oar2 ) + 7 D IV x S
(32) =1 =1 i=1
k k k
+eori Y wrs(tOI” + comre Y 1p%kesll® + ame > IV - wrea ()1
(=1 (=1 =1

+OéTKZ||V pK4||2+7TMZ Z IE(tn,) — E@)I?
(=1i=my_1+1

412
+(2e+ 0+ 2L+ —=) TKZH‘I) 12+ (21 +1) TKZ”@ 12

i=1 i=1

+ (200 + 20) 75 > [l 1%
=1

From Lemmas 2.1 and 2.2, it follows that

193]l = [ZhEo — Ej || < | ZhEo — Eol| + [|Eo — BrEoll
< Ch|[Eo||2 + Ch?||Eol|2 < Chl|Eo]l2,
1071 = IPnHy — H || = 0,
l@lla = [[Qnuo — ujla < c2]|Qnug — o1 + c2llup — Prug ||y
(33) < Chlluglls + CP?||poll2 + Chllug|l2 < Chlluglls + Ch?(|po|l2,

[onll = IRrpo — Pill < [|IRApo — poll + llpo — Pupol
< CR?|Ipoll2 + Ch[|poll2 < Ch?|poll2,

IVl = IV (Rupo — o)l < IV (Rupo = po)ll + IV (po — Prpo) |
< Chlpoll2 + Chllpoll2 < Chl|pol|2,
where C' > 0 is a constant independent of 1), Tk and h. Direct computation yields

le( ) IhatME( ) (iME(th[)

Lo 9
_TM/% (T, B(0) — . B(6)) do.
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Utilizing Cauchy—Schwarz inequality and Lemma 2.2, we have

fean I (o [ 15580 — gm)la0)’

T™
1 o CN )
34 < = 1246 I, —E
(34) < [, 10 [, 1IgEO) - SRR
<ol /tiM 12 B(0)|2 a0
T T™ M ot 2=
Noticing Lemma 2.1 and in a similar way, we get
lwaa ()2 < / P4 S H(0) ~ T H(0) 0
¢ T T™ 8t

<ol / 1 2 w100) 1 a0,
Jeores (HI> < Z ’ ||Rh6 p(6) — p(60)]* 0
(3) < c;h‘* / I5:p(0)13 6.
IV s (t)IP < - K IV (Qugru®) — 5 u(®)]as
< K 11 2 u(0) ~ Su(o) 2 a0

IN

TK

1o, [0 ’ d
C—h | ;u® >|\2de+cfh ||&p<e>||2de.
738} tE

Applying Taylor expansion yields

o O Lo 0
Phus = O B(E!) = SB(E) = — [ (0, —0) S 0) o
i—1

t ' T™

By virtue of Cauchyfschwarz inequality, we obtain

t
7 2< < 2
(36)  lohnl? < ( / 125 B0)a8)” < 7 /g | 22RO do.

Similarly, we get

tIVI
lebal” <t [ g HO 00
2
(37) Iofiall? < 7 / | 5p(0)I a0,
e
K
V- pbeall? < |lp%all? < t€8—292d9
| Prall” < llpkalli < 7K ”(‘%QU( )7 do.
tK
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From Lemma 2.2, it follows that
IEENN? = 1B — TE@)|? < CR(IE®)3,
(38) V€, )I? = IV (p(ti) = Rup(tio))|1? < Ch?[[p(ti 1) |13,
IV x EEI? = [V x (E#) = ThEE))? < CREE]5-

For any my_1 + 1 <1i < my, applying Cauchnychwarz inequality, we get

96 el =1 [ 7 2000
(39) me—1

tf a tz a
< ([, Igp®lias) <o [ 5 o
K ot K 61‘,
ty_q ty_y
Similarly, we have for my_1 +1 < i < my,
t

(40) B~ B < [ 15800,

K
tl—l

According to (32)—(40) and (H3), we obtain that for all 1 <m < Nj; and 1 <k <
NK,

el @ 11* + ullOF 117 + lehllz + coll i (I
< €Ch?|[Eo||3 + Ch?|[uoll3 + Ch*|lpol3 + COCh4\|po||§ +KCh?||poll3

tIW
"o
weon [ ||f<>||2d9+erM/ IR

0

(O] a0

i
(a+— ChQZTMHE st)||2+LTK/0 12

i=1

k M
m a
+LOW D nlptE I e [ |0 as

s / I O) 8-+ CH Y B

i=1

t t
k0
+ ¢ Ch4/ —p(0)]|2d6 + ¢ T2/ p(0)*deo
0 0 ||8t ( )H2 0K 0 ||at2 ( )”

te

ty
a2 [ | Zu@l3ao+acnt [ 1500
0 Ot o Ot
g2 312 , [ 9
2 2 2 2
+art | ||@u<9>||1d9+—n( | 1B R
(2e+a+2L+— ZTK”(I) 1P+ @+ 1)) |03
i=1

+ (200 +20) Y 7xc||v |2

i=1

< Cimip + Cotie + CR2 + C Y i (124117 + 104,117 + [[47,117),

i=1
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2 2 p 2 2 L.
where C = Cl(%%, %TEI), Cy = CQ(%, %, %TE‘, %—?) and C are positive constants

independent of 1y;, T and h. Applying discrete Gronwall’s lemma to above in-
equality, we get for all 1 < m < Ny,

IR+ 131 + Nl 17 + il
< (C173 4 Cotd + Ch?)eC 2™ < Cy72, 4 Cord + Ch?.
This leads that for all 1 <m < Nj; and 1 < k < Nk,
IR + 131 + llop™ 15+l I* < Ca7iy + Cori + CH2,

which together with (22) completes the proof. O

Remark 4.1. We would mention that the electromagnetic waves (E, H) vary much
rapidly than the elastic waves (u,p) in physical world. Therefore, the constant Cq
is reasonably larger than Cy. In order to construct a fast numerical algorithm and
keep the accuracy, we will choose the step-sizes such that C173; = CoTs which
indicates to choose rTy; = T for some fixed integer r > 0.

TABLE 1. Errors and convergence orders of Algorithm 1 (r = 4).

ho | |E(T) —E)™| Order | |H(T)—H,| Order
1/4 | 0.09156409 - 0.18640165 -
1/8 | 0.05003390  0.8719 |  0.09339199  0.9970
1/12 | 0.03339432 09972 |  0.06224391  1.0007
1/16 | 0.02507113  0.9965 |  0.04671507  0.9976

ho | |u(T) - u |, Order | ||p(T)— oM | Order
1/4 | 1.44226916 - 0.08017291 -
1/8 | 0.75396900  0.9358 | 0.02233873  1.8436
1/12|  0.50650102  0.9812 |  0.01012946  1.9505
1/16 | 0.38087188  0.9909 |  0.00573148  1.9795

TABLE 2. Errors and convergence orders of Algorithm 1 (r = 3).

ho | ||E(T) —EhNMH Order | ||H(T) —HhNMH Order
1/4 0.09154328 - 0.18640474 -
1/8 0.05002734 0.8717 0.09339180 0.9971
1/12 0.03339072 0.9971 0.06224386 1.0007
1/16 0.02506857 0.9965 0.04671505 0.9976

ho | |a(T) - u ||1 Order | ||p(T) — M | Order
1/4 1.44226894 - 0.08019893 -
1/8 0.75396866 0.9358 0.02235443 1.8430
1/12 0.50650076 0.9812 0.01013972 1.9498
1/16 0.38087167 0.9909 0.00573940 1.9782
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TABLE 3. Errors and convergence orders of Algorithm 1 (r = 2).

ho | |E(T) —E™|  Order | |H(T)—H*|| Order
1/4 0.09152293 - 0.18640783 -
1/8 0.05002099 0.8716 0.09339160 0.9971
1/12 0.03338728 0.9970 0.06224381 1.0007
1/16 0.02506616 0.9964 0.04671503 0.9976
ho | |Ja(T) - uhNM H1 Order | ||p(T) — piLVM | Order
1/4 1.44226872 - 0.08022432 -
1/8 0.75396833 0.9358 0.02236992 1.8425
1/12 0.50650050 0.9812 0.01014992 1.9490

1/16 0.38087146 0.9909 0.00574732 1.9769

TABLE 4. Errors and convergence orders of splitting FEM.

ho | ||B(T) —E;™| Order | |H(T)— Hy| Order
1/4 | 0.09150305 - 0.18641093 -
1/8 | 0.05001483  0.8715 | 0.09339140  0.9971
1/12'|  0.03338399  0.9970 |  0.06224376  1.0007
1/16 | 0.02506390  0.9964 | 0.04671501  0.9976

ho | |u(T) - u H1 Order | ||p(T) —pM | Order
1/4 1.44226849 - 0.08024908 -

1/8 0.75396800 0.9358 0.02238519 1.8419
1/12 0.50650023 0.9812 0.01016005 1.9482
1/16 0.38087126 0.9909 0.00575525 1.9756

5. Numerical experiments

Let T = 0.1, 2 = [0,1]® and set physical parameters ¢ = 1, ¢ = 2, L = 1,
p=1A=1,G=1,a=1, cg=1and k = 2. Take uniform tetrahedral partition
for 2 with mesh size h. The numerical experiments are conducted on the FEniCS
computing platform [1, 17].

Example 5.1. The initial value (Eg, Ho,up,po) and right-hand side functions j,
f, g are chosen such that the exact solution to (1)—(3) reads
sin(t) sin(rz) sin(7y) sin(7z)
E = | sin(nt)sin(nz)sin(ny) sin(wz) |,
sin(7t) sin(7z) sin(7y) sin(mrz)

cos(mt) (sin(mx) cos(my) sin(mz) — sin(nzx) sin(my) cos(mz))
cos(mt) (sin(mz) sin(my) cos(mz) — cos(wz) sin(ny) sin(nz)) |,
cos(mt)(cos(mx) sin(my) sin(mz) — sin(wx) cos(ny) sin(rz))

o
[

sin(my) si
sin(my) si
sin(my) si

(y) st

sin(7y
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TABLE 5. Errors and convergence orders of standard FEM.

ho | |E(T) —E)™| Order | |H(T)—H,|| Order
1/4 0.09148317 - 0.18641405 -
1/8 0.05000852 0.8713 0.09339119 0.9972
1/12 0.03338053 0.9969 0.06224371 1.0007
1/16 0.02506151 0.9964 0.04671499 0.9976
h Hu(T) —u H1 Order Hp( M H Order
1/4 1.44226850 - 0.08026594 -
1/8 0.75396801 0.9358 0.02239562 1.8416
1/12 0.50650024 0.9812 0.01016832 1.9474

1/16 0.38087126 0.9909 0.00576269 1.9740

TABLE 6. CPU running time.

h
Time(9) 14 | 1/8 | 1/12 | 1/16
Algorithm 1 (r=4) 23 164 691 | 2669
Algorithm 1 (r=3) 27 174 790 | 3416
Algorithm 1 (r=2) 36 239 941 3602

Splitting FEM 40 | 306 | 1255 | 6121

Standard FEM 43 435 3948 | 23906

We take 7ay = 1/1800 and 7 = rrps (r = 4,3, 2) respectlvely, and then car-
ry out Algorithm 1 with different mesh sizes h = 4, s’ 112, 116, respectively. The
corresponding errors and convergence orders are shown in Tables 1-3. Meanwhile,
we also perform numerical computations using splitting FEM [16] and standard
FEM [12] with time step-size 7 = 1/1800 and present the corresponding errors and
convergence orders in Tables 4 and 5, respectively. All the numerical experiments
indicate that the three methods possess the same accuracy. We also record the

CPU running time in Table 6 to show the efficiency of our method.
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