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PHYSICS-BASED MULTI-TIME STEPPING ALGORITHM FOR

THREE-DIMENSIONAL QUASI-STATIC

ELECTROPOROELASTICITY EQUATIONS

XUAN LIU, YONGKUI ZOU*, AND AMNON JACOB MEIR

Abstract. Electroporoelasticity equations comprise of Maxwell’s equations and Biot’s equations,

playing an important role in geophysical areas such as oil-gas exploration and earthquake early
warning. The development of electromagnetic waves and elastic waves presents distinct time
scales due to the multi-physics nature. In this paper, we propose a multi-time stepping numerical
algorithm to approximate electroporoelasticity equations, in which we use a smaller time step to

compute Maxwell’s equations and a larger time step to calculate Biot’s equations. We prove the
stability of this algorithm and derive its error estimates. Numerical experiments are conducted to
demonstrate the theoretical analysis.

Key words. Electroporoelasticity equations, multi-time stepping algorithm, finite element method,
error estimates.

1. Introduction

Natural resource reservoirs such as water, oil and gas are predominantly poroe-
lastic media, comprising of solid skeletons and pore fluids [7]. The seismoelectric
coupling phenomenon emerges from the relative motion between the solid matrix
and fluid in fluid-saturated porous media, induced by the presence of an electric
double layer consisting of an adsorbed layer and a diffuse layer. This phenomenon
includes both the seismoelectric effect and the electroseismic effect and leads to
seismoelectric coupling waves [25]. In the absence of fluid flow, the porous medi-
um is electrically neutral overall. However, when seismic waves propagate through
the porous medium, fluid flow occurs within the pores, causing charges in the dif-
fuse layer to move relatively to those in the adsorbed layer and thereby forming a
streaming current, which is the seismoelectric effect. And vice versa, the electro-
seismic effect occurs when the electric field in the porous medium changes, charges
in the diffuse layer move within the electric field to generate a conduction current,
which simultaneously drags the fluid in the diffuse layer into motion.

Seismoelectric coupling is modeled by electroporoelasticity equations which con-
sist of Maxwell’s equations [2] and Biot’s equations via an electrokinetic coupling
coefficient. Seismoelectric coupling waves integrate the spatial resolution of elastic
waves with the reservoir identification capability of electromagnetic waves, enabling
the seismoelectric coupling effect to find applications in diverse fields such as oil-gas
exploration [35], earthquake early warning [26, 27], environmental protection [20],
water conservancy exploration [15], and other areas of geophysics [3, 34]. Due to its
importance in applications, much attention has already been paid to electroporoe-
lasticity equations, cf. [11, 12, 13, 16, 18, 19, 29, 30].

Numerical methods are important tools to explore the multi-physics nature of
electroporoelasticity equations. Hu and Meir [12] proposed a numerical scheme
using the standard finite element method (FEM) and analyzed its error estimates.
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Liu et al. [16] investigated the well-posedness and applied splitting technique to
set up a finite element approximation to improve the computational efficiency. In
recent years, a multi-time stepping technique has been developed to accelerate
the numerical computations for solving partial differential equations. Shan et al.
[31] constructed a decoupled scheme with different time steps for a nonstationary
Stokes-Darcy model and verified its stability and convergence. Rybak and Magiera
[28] developed a mass conservative multi-time stepping method for solving coupled
free flow and porous medium flow problems, proved its long time stability and
performed error eatimates. Shevchenko et al. [32] presented a multi-time stepping
integration method for the ultrasound heating problem and showed its efficiency and
robustness. Zhang et al. [38] studied a finite element approximation to the Stokes-
Darcy-Transport system with different time steps on different physical variables. In
these studies, the large discrepancy in time scales of partial differential equations
leads to that the equations can be solved with different time scales. The key idea
is to use a small time step to discretize the temporal variable in the equation that
changes rapidly, while using a large time step to solve the equation that changes
slowly. For more references, we refer to [8, 14, 24, 33, 39] and the literature therein.

Electroporoelasticity equations form a complex system of coupled, multiphysics,
multi-component, and multiscale models. It is common knowledge that electromag-
netic waves propagate much faster than seismic waves. In this paper, we investigate
a multi-time stepping algorithm to improve the efficiency of numerical approxima-
tions to three-dimensional quasi-static electroporoelasticity equations. The main
idea consists of two steps. First, we decouple the electroporoelasticity equations
into Maxwell’s equations and Biot’s equations. Then, we discretize Maxwell’s equa-
tions with a smaller time step-size and approximate Biot’s equations with a larger
time step-size. We prove the stability and first-order convergence in temporal and
spatial variables, respectively, of the multi-time stepping algorithm.

The rest of this paper is organized as follows. Section 2 introduces the quasi-
static electroporoelasticity equations along with the finite element spaces. In Sec-
tion 3, we propose a physics-based multi-time stepping algorithm and establish its
stability. Error estimates for the numerical approximation are derived in Section
4. Section 5 presents numerical experiments that validate the theoretical analysis.

2. Preliminaries

In this section, we describe quasi-static electroporoelasticity equations and in-
troduce finite element spaces used in this paper.

2.1. Electroporoelasticity equations. Let [0, T ] with T > 0 be an interval and
D ⊂ R3 be an open bounded polyhedron with n the unit outward normal vec-
tor to boundary ∂D . Consider three-dimensional quasi-static electroporoelasticity
equations for (t,x) ∈ [0, T ]× D

(1)

ϵ
∂

∂t
E+ σE−∇×H− L∇p = j,

µ
∂

∂t
H+∇×E = 0,

− (λ+G)∇(∇ · u)−G∆u+ α∇p = f ,

∂

∂t
(c0p+ α∇ · u)− κ∆p+ L∇ ·E = g,

with initial value conditions for x ∈ D

(2) E(0,x) = E0(x), H(0,x) = H0(x), u(0,x) = u0(x), p(0,x) = p0(x),
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and boundary value conditions for (t,x) ∈ [0, T ]× ∂D

(3) E(t,x)× n = 0, p(t,x) = 0, u(t,x) = 0.

Here, E is the electric field, H is the magnetic field, u is the displacement of solid
matrix and p is the pressure in the fluid. The parameter ϵ is the electric permittivity,
σ denotes the electrical conductivity, µ represents the magnetic permeability of
the material, L is the frequency-dependent electrokinetic coupling coefficient, α ∈
(0, 1] represents the Biot-Willis coefficient [5], λ denotes the Lamé constant, G is
the shear modulus of porous media, c0 = 1

M represents the constrained specific
storage coefficient with M the Biot modulus [4] and κ = γ

η denotes the hydraulic

conductivity with γ the permeability of porous media and η the shear viscosity
of fluid. For simplifying analysis of error estimates, we assume that f = 0 and
parameters ϵ, σ, µ, L, α, λ, G, c0 and κ are all fixed positive constants. Throughout
this paper, we also denote E(t,x) by either E(t) or E, etc. when no confusion occurs.

For any integer β ≥ 0, denote by Hβ := Hβ(D) the standard Sobolev space

with norm ∥ · ∥β and Hβ
0 = {v ∈ Hβ : Dιv|∂D = 0, |ι| < β} [6, 36, 37]. Here,

H0 = L2(D) is the square integrable function space with inner product (·, ·) and
norm ∥ ·∥. Throughout this paper, we will use bold italic letters to represent spaces
of three-dimensional vector fields (Hβ = (Hβ)3, etc.) and also utilize ∥ · ∥β to
denote the norm in Hβ when no confusion occurs. Let C(D̄) be a space consisting
of continuous functions on D̄ . Define three subspaces of L2(D)

H(div) = {v : v ∈ L2(D), ∇ · v ∈ L2(D)},
H(curl) = {v : v ∈ L2(D), ∇× v ∈ L2(D)},
H0(curl) = {v : v ∈ H(curl), v × n = 0 on ∂D}.

For simplifying notations, denote by

S := H0(curl)×H(curl)×H1
0 ×H1

0 ,

H := L2(D)×L2(D)×L2(D)× L2(D).

The variational form of (1)–(3) is to seek (E,H,u, p) ∈ L2(0, T ; S)∩H1(0, T ;H)
satisfying initial value condition (2) and

(4)

(
ϵ
∂

∂t
E(t),D

)
+

(
σE(t),D

)
−
(
H(t),∇×D

)
−
(
L∇p(t),D

)
=

(
j(t),D

)
,(

µ
∂

∂t
H(t),B

)
+
(
∇×E(t),B

)
= 0,(

(λ+G)∇ · u(t),∇ · v
)
+
(
G∇u(t),∇v

)
−
(
p(t), α∇ · v

)
= 0,(

c0
∂

∂t
p(t), q

)
+

(
α∇ · ∂

∂t
u(t), q

)
+
(
κ∇p(t),∇q

)
−
(
LE(t),∇q

)
=

(
g(t), q

)
,

for all t ∈ [0, T ] and (D,B,v, q) ∈ S.
Now, we introduce some assumptions used in this paper.

(H1) 0 < L <
√
σκ.

(H2) The functions E0, H0, u0, p0, j and g are sufficiently smooth.

Under these two assumptions, (4) has a unique solution (E,H,u, p)∈L2(0, T ; S)∩
H1(0, T ;H), cf. [16].

Define a symmetric bilinear form

a(w,v) = ((λ+G)∇ ·w,∇ · v) + (G∇w,∇v), ∀w,v ∈ H1
0 .

This leads to an equivalent norm ∥ · ∥a =
√
a(·, ·) in H1

0 , i.e., there exist two
constants 0 < c1 < c2 such that c1∥ · ∥1 ≤ ∥ · ∥a ≤ c2∥ · ∥1.



TIME-STEPPING ALGORITHM FOR ELECTROPOROELASTICITY 255

2.2. Finite element spaces. Let Th be a regular tetrahedral partition of D . For
each element K ∈ Th with faces FK and edges EK , let hK be its diameter and
h = maxK∈Th

hK be the mesh size of Th. For any integer l ≥ 0, denote by Pl(K)

and P̃l(K) the spaces of polynomials with degree no more than l and homogeneous
polynomials with degree of l, respectively. For any l ≥ 1, define two spaces

Sl(K) = {L ∈ P̃l(K) : L(x) · x = 0, ∀x ∈ K},
Rl(K) = Pl−1(K)⊕ Sl(K).

Now, we construct four finite element spaces

Eh = {Eh ∈ H0(curl) : Eh|K ∈ R1(K), ∀K ∈ Th},
Hh = {Hh ∈ L2(D) : Hh|K ∈ P0(K), ∀K ∈ Th},
Uh = {uh ∈ C(D̄) : uh|∂D = 0, uh|K ∈ P1(K), ∀K ∈ Th},
Ph = {ph ∈ C(D̄) : ph|∂D = 0, ph|K ∈ P1(K), ∀K ∈ Th}.

Notice that Eh is the space consisting of Nédélec elements [23].
Let Ph : L2(D) → Eh, Ph : L2(D) → Hh, Ph : L2(D) → Uh and Ph : L2(D) →

Ph be L2-orthogonal projection operators, respectively. The next lemma collects
some approximation estimates of these operators.

Lemma 2.1. ([9, Lemma 11.18]) There exists a constant C > 0 independent of h
such that for any (E,H,u, p) ∈ H2 ×H1 ×H2 ×H2,

∥E−PhE∥ ≤ Ch2∥E∥2,
∥H−PhH∥ ≤ Ch∥H∥1,

∥u− Phu∥+ h∥u− Phu∥1 ≤ Ch2∥u∥2,
∥p− Php∥+ h∥p− Php∥1 ≤ Ch2∥p∥2.

Define three sets of moments for w ∈ H2 on K ∈ Th [21, 22, 23]

MeK (w) =

{∫
eK

(w · τeK )χdeK , ∀χ ∈ Pl−1(eK), eK ∈ EK
}
,

MfK (w) =

{∫
fK

(w × n) · χdfK , ∀χ ∈ (Pl−2(fK))2, fK ∈ FK

}
,

MK(w) =

{∫
K

w · χ dK, ∀χ ∈ Pl−3(K)

}
,

where τeK denotes a unit vector parallel to edge eK . Let Ih : H2 → Eh be
an interpolation operator such that (IhE)|K is the unique polynomial in Rl(K)
having the same moments as E|K , cf. [10, 21, 23].

Let Qh : H1
0 → Uh and Rh : H1

0 → Ph be a pair of Ritz projection operators
such that for any u ∈ H1

0 and p ∈ H1
0 ,

a(Qhu,vh)− (Rhp, α∇ · vh) = a(u,vh)− (p, α∇ · vh), ∀vh ∈ Uh,(5)

(κ∇Rhp,∇qh) = (κ∇p,∇qh), ∀ qh ∈ Ph.(6)

Lemma 2.2. ([16, Lemma 14]) There exists a constant C > 0 independent of h
such that for any E ∈ H2, u ∈ H2 ∩H1

0 and p ∈ H2 ∩H1
0 ,

∥IhE−E∥+ ∥∇ × (IhE−E)∥ ≤ Ch∥E∥2,
∥Qhu− u∥1 ≤ Ch∥u∥2 + Ch2∥p∥2,
∥Rhp− p∥+ h∥∇(Rhp− p)∥ ≤ Ch2∥p∥2.
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3. Physics-based multi-time stepping algorithm

Due to the multi-physics nature of electroporoelasticity equations, one may i-
dentify two distinct time scales which are for the electromagnetic waves and elastic
waves. In this section, we propose a multi-time stepping numerical algorithm re-
flecting these two different time scales for Maxwell’s equations and Biot’s equations.

For any integers NM , NK > 0, let τM = T/NM and τK = T/NK be two different
step-sizes. Denote by tMm = mτM (0 ≤ m ≤ NM ) and tKk = kτK (0 ≤ k ≤ NK)
the corresponding time partition nodes. In this paper, we always choose these two
step-sizes such that the ratio r = τK/τM is a fixed positive integer. Let mk = kr,
then tMmk

= tKk .
We will apply backward Euler method and FEM to construct a multi-time step-

ping scheme to approximate (4). In order to make the idea clear, assume we already
have a numerical solution (E

mk−1

h ,H
mk−1

h ,u
mk−1

h , p
mk−1

h ) at tMmk−1
, we will find the

next approximate solution (Emk

h ,Hmk

h ,umk

h , pmk

h ) at tMmk
via two steps. First, we re-

peatedly solve Maxwell’s equations r times to determine (Emk

h ,Hmk

h ): successively
seeking (Em

h ,H
m
h ) ∈ Eh ×Hh for m = mk−1 + 1,mk−1 + 2, . . . ,mk such that

(7)
(ϵ∂̄tMEm

h ,Dh)+(σEm
h ,Dh)−(Hm

h ,∇×Dh)=(L∇pmk−1

h ,Dh)+(j(tMm ),Dh),

(µ∂̄tMHm
h ,Bh) + (∇×Em

h ,Bh) = 0,

for all (Dh,Bh) ∈ Eh×Hh, where ∂̄tMEm
h = (Em

h −Em−1
h )/τM , etc. Then, we solve

Biot’s equations to find (umk

h , pmk

h ): searching (umk

h , pmk

h ) ∈ Uh × Ph such that

(8)

a(umk

h ,vh)− (pmk

h , α∇ · vh) = 0,

(c0∂̄tKp
mk

h , qh) + (α∇ · ∂̄tKumk

h , qh) + (κ∇pmk

h ,∇qh)

=
(
L
1

r

mk∑
i=mk−1+1

Ei
h,∇qh

)
+ (g(tMmk

), qh),

for all (vh, qh) ∈ Uh × Ph, where ∂̄tKp
mk

h = (pmk

h − p
mk−1

h )/τK , etc.
The concrete computational procedure can be described as in Algorithm 1.

Algorithm 1 Multi-time stepping Algorithm

Take

(9) (E0
h,H

0
h,u

0
h, p

0
h) = (PhE0,PhH0,Phu0, Php0).

for k = 1, 2, . . . , NK do
for m = mk−1 + 1,mk−1 + 2, . . . ,mk do

Solve (7).
end for
Solve (8).

end for

Now, we investigate the stability of Algorithm 1.

Theorem 3.1. Assume (H1) and (H2). Suppose (Em
h ,H

m
h ) (1 ≤ m ≤ NM ) and

(umk

h , pmk

h ) (1 ≤ k ≤ NK) are obtained from Algorithm 1. Then there exists a
constant C > 0 independent of τM , τK and h such that

∥Em
h ∥2 + ∥Hm

h ∥2 + ∥umk

h ∥21 + ∥pmk

h ∥2 ≤ C.
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Proof. Taking (Dh,Bh) = (2τMEm
h , 2τMHm

h ) in (7) and summing up, we get

(10)
(ϵ∂̄tMEm

h , 2τMEm
h ) + (µ∂̄tMHm

h , 2τMHm
h ) + 2στM∥Em

h ∥2

= (L∇pmk−1

h , 2τMEm
h ) + (j(tMm ), 2τMEm

h ).

Obviously, we have

(∂̄tMEm
h , 2τMEm

h ) =∥Em
h ∥2 − ∥Em−1

h ∥2 + ∥Em
h −Em−1

h ∥2

≥∥Em
h ∥2 − ∥Em−1

h ∥2.(11)

Similarly, we get

(12) (∂̄tMHm
h , 2τMHm

h ) ≥ ∥Hm
h ∥2 − ∥Hm−1

h ∥2.
From (10)–(12), it follows that

(13)
ϵ∥Em

h ∥2 + µ∥Hm
h ∥2 ≤ ϵ∥Em−1

h ∥2 + µ∥Hm−1
h ∥2 − 2στM∥Em

h ∥2

+(L∇pmk−1

h , 2τMEm
h ) + (j(tMm ), 2τMEm

h ).

Inductively for m = mk−1 + 1, . . . ,mk in (13), and then applying Cauchy–Schwarz
and Young’s inequalities, we obtain

(14)

ϵ∥Emk

h ∥2 + µ∥Hmk

h ∥2

≤ ϵ∥Emk−1

h ∥2 + µ∥Hmk−1

h ∥2 − 2στM

mk∑
i=mk−1+1

∥Ei
h∥2

+

mk∑
i=mk−1+1

(L∇pmk−1

h , 2τMEi
h) +

mk∑
i=mk−1+1

(j(tMi ), 2τMEi
h)

≤ ϵ∥Emk−1

h ∥2 + µ∥Hmk−1

h ∥2 − 2στM

mk∑
i=mk−1+1

∥Ei
h∥2

+

mk∑
i=mk−1+1

(
κτM∥∇pmk−1

h ∥2 + L2

κ
τM∥Ei

h∥2
)

+

mk∑
i=mk−1+1

( 1

2σ
τM∥j(tMi )∥2 + 2στM∥Ei

h∥2
)

= ϵ∥Emk−1

h ∥2 + µ∥Hmk−1

h ∥2 + κτK∥∇pmk−1

h ∥2

+
L2

κ
τM

mk∑
i=mk−1+1

∥Ei
h∥2 +

1

2σ
τM

mk∑
i=mk−1+1

∥j(tMi )∥2.

Inductively for k ≥ 1 in above inequality, we have

(15)

ϵ∥Emk

h ∥2 + µ∥Hmk

h ∥2 ≤ ϵ∥E0
h∥2 + µ∥H0

h∥2 + κτK

k∑
ℓ=1

∥∇pmℓ−1

h ∥2

+
L2

κ
τM

k∑
ℓ=1

mℓ∑
i=mℓ−1+1

∥Ei
h∥2 +

1

2σ
τM

k∑
ℓ=1

mℓ∑
i=mℓ−1+1

∥j(tMi )∥2

= ϵ∥E0
h∥2 + µ∥H0

h∥2 + κτK

k∑
ℓ=1

∥∇pmℓ−1

h ∥2

+
L2

κ
τM

mk∑
i=1

∥Ei
h∥2 +

1

2σ
τM

mk∑
i=1

∥j(tMi )∥2.
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For any 1 ≤ s ≤ r − 1, in a similar way as proving (14), inductively for m =
mk−1 + 1, . . . ,mk−1 + s in (13), and then utilizing (15) with k replaced by k − 1,
we get

(16)

ϵ∥Emk−1+s
h ∥2 + µ∥Hmk−1+s

h ∥2

≤ ϵ∥Emk−1

h ∥2 + µ∥Hmk−1

h ∥2 + κτK∥∇pmk−1

h ∥2

+
L2

κ
τM

mk−1+s∑
i=mk−1+1

∥Ei
h∥2 +

1

2σ
τM

mk−1+s∑
i=mk−1+1

∥j(tMi )∥2

≤ ϵ∥E0
h∥2 + µ∥H0

h∥2 + κτK

k∑
ℓ=1

∥∇pmℓ−1

h ∥2

+
L2

κ
τM

mk−1+s∑
i=1

∥Ei
h∥2 +

1

2σ
τM

mk−1+s∑
i=1

∥j(tMi )∥2.

Taking (vh, qh) = (2τK ∂̄tKumk

h , 2τKp
mk

h ) in (8) and summing up lead to

(17)

a(umk

h , 2τK ∂̄tKumk

h ) + (c0∂̄tKp
mk

h , 2τKp
mk

h ) + 2κτK∥∇pmk

h ∥2

=
(
L
1

r

mk∑
i=mk−1+1

Ei
h, 2τK∇pmk

h

)
+ (g(tMmk

), 2τKp
mk

h ).

In a similar way as proving (11), we have

a(umk

h , 2τK ∂̄tKumk

h ) ≥ ∥umk

h ∥2a − ∥umk−1

h ∥2a,
(∂̄tKp

mk

h , 2τKp
mk

h ) ≥ ∥pmk

h ∥2 − ∥pmk−1

h ∥2.

These together with (17), Cauchy–Schwarz and Young’s inequalities yield

∥umk

h ∥2a + c0∥pmk

h ∥2 + 2κτK∥∇pmk

h ∥2

≤∥umk−1

h ∥2a + c0∥p
mk−1

h ∥2

+
L2

κ
τK

1

r

mk∑
i=mk−1+1

∥Ei
h∥2 + κτK∥∇pmk

h ∥2 + τK∥g(tMmk
)∥2 + τK∥pmk

h ∥2.

Inductively for k ≥ 1 in above inequality, we get

(18)

∥umk

h ∥2a + c0∥pmk

h ∥2 + κτK

k∑
ℓ=1

∥∇pmℓ

h ∥2

≤∥u0
h∥2a + c0∥p0h∥2 +

L2

κ
τM

k∑
ℓ=1

mℓ∑
i=mℓ−1+1

∥Ei
h∥2

+ τK

k∑
ℓ=1

∥g(tMmℓ
)∥2 + τK

k∑
ℓ=1

∥pmℓ

h ∥2

= ∥u0
h∥2a + c0∥p0h∥2 + τK

k∑
ℓ=1

∥g(tMmℓ
)∥2 + L2

κ
τM

mk∑
i=1

∥Ei
h∥2 + τK

k∑
ℓ=1

∥pmℓ

h ∥2.
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By virtue of (15) and (18), we obtain estimates at nodes tMmk
= tKk (1 ≤ k ≤ NK),

(19)

ϵ∥Emk

h ∥2 + µ∥Hmk

h ∥2 + ∥umk

h ∥2a + c0∥pmk

h ∥2 + κτK∥∇pmk

h ∥2

≤ ϵ∥E0
h∥2 + µ∥H0

h∥2 + ∥u0
h∥2a + c0∥p0h∥2 + κτK∥∇p0h∥2

+
1

2σ
τM

mk∑
i=1

∥j(tMi )∥2 + τK

k∑
ℓ=1

∥g(tMmℓ
)∥2

+
2L2

κ
τM

mk∑
i=1

∥Ei
h∥2 + τK

k∑
ℓ=1

∥pmℓ

h ∥2.

In order to set up the boundedness of numerical solutions at nodes tMmk−1+s for
1 ≤ k ≤ NK and 1 ≤ s ≤ r−1, we supplement the definition of the approximation to

u and p at nodes tMmk−1+s by u
mk−1+s
h = u

mk−1

h and p
mk−1+s
h = p

mk−1

h , respectively.

Then, form (16) and (18) with k replaced by k − 1, it follows that

(20)

ϵ∥Emk−1+s
h ∥2 + µ∥Hmk−1+s

h ∥2 + ∥umk−1+s
h ∥2a + c0∥p

mk−1+s
h ∥2

= ϵ∥Emk−1+s
h ∥2 + µ∥Hmk−1+s

h ∥2 + ∥umk−1

h ∥2a + c0∥p
mk−1

h ∥2

≤ ϵ∥E0
h∥2 + µ∥H0

h∥2 + ∥u0
h∥2a + c0∥p0h∥2 + κτK∥∇p0h∥2

+
1

2σ
τM

mk−1+s∑
i=1

∥j(tMi )∥2 + τK

k−1∑
ℓ=1

∥g(tMmℓ
)∥2

+
2L2

κ
τK

mk−1+s∑
i=1

∥Ei
h∥2 + τK

k−1∑
ℓ=1

∥pmℓ

h ∥2.

According to (19) and (20), we obtain for all 1 ≤ m ≤ NM and 1 ≤ k ≤ NK ,

(21)

ϵ∥Em
h ∥2 + µ∥Hm

h ∥2 + ∥um
h ∥2a + c0∥pmh ∥2

≤ ϵ∥E0
h∥2 + µ∥H0

h∥2 + ∥u0
h∥2a + c0∥p0h∥2 + κτK∥∇p0h∥2

+
1

2σ
τM

m∑
i=1

∥j(tMi )∥2 + τK

k∑
ℓ=1

∥g(tMmℓ
)∥2

+
2L2

κ
τK

m∑
i=1

∥Ei
h∥2 + τK

m∑
i=1

∥pih∥2.

By virtue of (9), we get

∥E0
h∥2 = ∥PhE0∥2 ≤ ∥E0∥2,

∥H0
h∥2 = ∥PhH0∥2 ≤ ∥H0∥2,

∥u0
h∥2a = ∥Phu0∥2a ≤ c22∥Phu0∥21 ≤ c22∥u0∥21,

∥p0h∥2 = ∥Php0∥2 ≤ ∥p0∥2,
∥∇p0h∥2 = ∥∇Php0∥2 ≤ ∥Php0∥21 ≤ ∥p0∥21.

Applying discrete Gronwall’s lemma to (21), we obtain that for all 1 ≤ m ≤ NM ,

∥Em
h ∥2 + ∥Hm

h ∥2 + ∥um
h ∥2a + ∥pmh ∥2 ≤ CeC

∑m
i=1 τK ≤ CeCrT ≤ C,

where C > 0 is a constant independent of τM , τK and h. �
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4. Error estimates

In order to investigate the convergence order of numerical approximation, we
need additional regularity of the exact solution to (4). Thus, we assume

(H3) E ∈ H1(0, T ;H2) ∩H2(0, T ;L2(D)),
H ∈ H1(0, T ;H1) ∩H2(0, T ;L2(D)),
u ∈ H1(0, T ;H2) ∩H2(0, T ;H1),
p ∈ H1(0, T ;H2) ∩H2(0, T ;L2(D)).

Note, the errors can be decomposed as follows: for all 1 ≤ m ≤ NM and 1 ≤
k ≤ NK ,

E(tMm )−Em
h = (E(tMm )− IhE(tMm )) + (IhE(tMm )−Em

h ) =: Ξ(tMm ) + Φm
h ,

H(tMm )−Hm
h = (H(tMm )− PhH(tMm )) + (PhH(tMm )−Hm

h ) =: Ψ(tMm ) + Θm
h ,

u(tMmk
)− umk

h = (u(tMmk
)−Qhu(t

M
mk

)) + (Qhu(t
M
mk

)− umk

h ) =: ϕ(tMmk
) +φmk

h ,

p(tMmk
)− pmk

h = (p(tMmk
)−Rhp(t

M
mk

)) + (Rhp(t
M
mk

)− pmk

h ) =: ξ(tMmk
) + ψmk

h .

The error estimates for the projections and interpolation in the above equalities
are easily obtained from (H3), Lemmas 2.1 and 2.2. In particular, there exists a
constant C > 0 independent of τM , τK and h such that for all 1 ≤ m ≤ NM and
1 ≤ k ≤ NK ,

(22)

∥Ξ(tMm )∥ = ∥E(tMm )− IhE(tMm )∥ ≤ Ch∥E(tMm )∥2 ≤ Ch,

∥Ψ(tMm )∥ = ∥H(tMm )− PhH(tMm )∥ ≤ Ch∥H(tMm )∥1 ≤ Ch,

∥ϕ(tMmk
)∥1 = ∥u(tMmk

)−Qhu(t
M
mk

)∥1
≤ Ch∥u(tMmk

)∥2+Ch2∥p(tMmk
)∥2 ≤ Ch,

∥ξ(tMmk
)∥ = ∥p(tMmk

)−Rhp(t
M
mk

)∥ ≤ Ch2∥p(tMmk
)∥2 ≤ Ch2.

Now, we are ready to derive the error estimates between the exact and numerical
solutions to (4).

Theorem 4.1. Assume (H1)–(H3). Let (E,H,u, p) be the exact solution to (4)
and (Em

h ,H
m
h ) (1 ≤ m ≤ NM ) and (umk

h , pmk

h ) (1 ≤ k ≤ NK) be obtained from

Algorithm 1. Then there exist three positive constants C1 = C1(
∂2E
∂t2 ,

∂2H
∂t2 ), C2 =

C2(
∂p
∂t ,

∂2p
∂t2 ,

∂2u
∂t2 ,

∂E
∂t ) and C independent of τM , τK and h such that

∥E(tMm )−Em
h ∥2 + ∥H(tMm )−Hm

h ∥2 + ∥u(tMmk
)− umk

h ∥21 + ∥p(tMmk
)− pmk

h ∥2

≤ C1τ
2
M + C2τ

2
K + Ch2.

Proof. Taking D = Dh ∈ Eh in the first equation of (4) and noticing the first
equation of (7), we get

(ϵ∂̄tMΦm
h ,Dh) + (σΦm

h ,Dh)− (Θm
h ,∇×Dh)

= (ϵ∂̄tM (IhE(tMm )−Em
h ),Dh)+(σ(IhE(tMm )−Em

h ),Dh)−(PhH(tMm )−Hm
h ,∇×Dh)

= (ϵ(Ih∂̄tME(tMm )− ∂̄tME(tMm )),Dh) + (ϵ∂̄tME(tMm ),Dh)− (ϵ∂̄tMEm
h ,Dh)

− (σΞ(tMm ),Dh) + (σE(tMm ),Dh)− (σEm
h ,Dh) + (Ψ(tMm ),∇×Dh)

− (H(tMm ),∇×Dh) + (Hm
h ,∇×Dh)

= (ϵ(Ih∂̄tME(tMm )− ∂̄tME(tMm )),Dh) + (ϵ∂̄tME(tMm ),Dh)− (σΞ(tMm ),Dh)

+ (σE(tMm ),Dh)− (H(tMm ),∇×Dh)− (j(tMm ),Dh)− (L∇pmk−1

h ,Dh)
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= (ϵ(Ih∂̄tME(tMm )−∂̄tME(tMm )),Dh)+
(
ϵ(∂̄tME(tMm )− ∂

∂t
E(tMm )),Dh

)
−(σΞ(tMm ),Dh)

+ (L∇(p(tMm )− p(tMmk−1
)),Dh) + (L∇ξ(tMmk−1

),Dh) + (L∇ψmk−1

h ,Dh)

=: (ϵωM1(t
M
m ),Dh) + (ϵρm

M1,Dh)− (σΞ(tMm ),Dh)

+ (L∇(p(tMm )− p(tMmk−1
)),Dh) + (L∇ξ(tMmk−1

),Dh) + (L∇ψmk−1

h ,Dh),

where we have used the fact that (Ψ(tMm ),∇×Dh) = 0, which is due to ∇×Dh|K ∈
Hh|K . Similarly, by virtue of the second equations in (4) and in (7), we obtain for
all Bh ∈ Hh,

(µ∂̄tMΘm
h ,Bh) + (∇× Φm

h ,Bh)

= (µ∂̄tM (PhH(tMm )−Hm
h ),Bh) + (∇× (IhE(tMm )−Em

h ),Bh)

= (µ(Ph∂̄tMH(tMm )− ∂̄tMH(tMm )),Bh) + (µ∂̄tMH(tMm ),Bh)− (µ∂̄tMHm
h ,Bh)

− (∇× Ξ(tMm ),Bh) + (∇×E(tMm ),Bh)− (∇×Em
h ,Bh)

= (µ(Ph∂̄tMH(tMm )− ∂̄tMH(tMm )),Bh) +
(
µ(∂̄tMH(tMm )− ∂

∂t
H(tMm )),Bh

)
− (∇× Ξ(tMm ),Bh)

=: (µωM2(t
M
m ),Bh) + (µρm

M2,Bh)− (∇× Ξ(tMm ),Bh).

Taking Dh = 2τMΦm
h and Bh = 2τMΘm

h in above two equations, respectively, and
then summing up, we get an error equation

(23)

(ϵ∂̄tMΦm
h , 2τMΦm

h ) + (µ∂̄tMΘm
h , 2τMΘm

h ) + 2στM∥Φm
h ∥2

= (ϵωM1(t
M
m ), 2τMΦm

h ) + (ϵρm
M1, 2τMΦm

h )− (σΞ(tMm ), 2τMΦm
h )

+ (L∇(p(tMm )− p(tMmk−1
)), 2τMΦm

h ) + (L∇ξ(tMmk−1
), 2τMΦm

h )

+ (L∇ψmk−1

h , 2τMΦm
h ) + (µωM2(t

M
m ), 2τMΘm

h ) + (µρm
M2, 2τMΘm

h )

− (∇× Ξ(tMm ), 2τMΘm
h ).

In a similar way as proving (11), we have

(24)
(∂̄tMΦm

h , 2τMΦm
h ) ≥ ∥Φm

h ∥2 − ∥Φm−1
h ∥2,

(∂̄tMΘm
h , 2τMΘm

h ) ≥ ∥Θm
h ∥2 − ∥Θm−1

h ∥2.

Inductively for m = mk−1 + 1, . . . ,mk in (23), and then applying (24), Cauchy–
Schwarz and Young’s inequalities, we obtain
(25)

ϵ∥Φmk

h ∥2 + µ∥Θmk

h ∥2

≤ ϵ∥Φmk−1

h ∥2+µ∥Θmk−1

h ∥2+ϵτM
mk∑

i=mk−1+1

∥ωM1(t
M
i )∥2+ϵτM

mk∑
i=mk−1+1

∥Φi
h∥2

+ ϵτM

mk∑
i=mk−1+1

∥ρi
M1∥2 + ϵτM

mk∑
i=mk−1+1

∥Φi
h∥2 + στM

mk∑
i=mk−1+1

∥Ξ(tMi )∥2

+ στM

mk∑
i=mk−1+1

∥Φi
h∥2 + LτM

mk∑
i=mk−1+1

∥∇(p(tMi )− p(tMmk−1
))∥2

+LτM

mk∑
i=mk−1+1

∥Φi
h∥2+LτM

mk∑
i=mk−1+1

∥∇ξ(tMmk−1
)∥2+LτM

mk∑
i=mk−1+1

∥Φi
h∥2
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+ κτM

mk∑
i=mk−1+1

∥∇ψmk−1

h ∥2 + L2

κ
τM

mk∑
i=mk−1+1

∥Φi
h∥2

+µτM

mk∑
i=mk−1+1

∥ωM2(t
M
i )∥2+µτM

mk∑
i=mk−1+1

∥Θi
h∥2+µτM

mk∑
i=mk−1+1

∥ρi
M2∥2

+µτM

mk∑
i=mk−1+1

∥Θi
h∥2+τM

mk∑
i=mk−1+1

∥∇ × Ξ(tMi )∥2+τM
mk∑

i=mk−1+1

∥Θi
h∥2

≤ ϵ∥Φmk−1

h ∥2 + µ∥Θmk−1

h ∥2 + κτK∥∇ψmk−1

h ∥2 + ϵτM

mk∑
i=mk−1+1

∥ωM1(t
M
i )∥2

+ ϵτM

mk∑
i=mk−1+1

∥ρi
M1∥2 + στM

mk∑
i=mk−1+1

∥Ξ(tMi )∥2

+ LτM

mk∑
i=mk−1+1

∥∇(p(tMi )− p(tMmk−1
))∥2 + LτK∥∇ξ(tMmk−1

)∥2

+ µτM

mk∑
i=mk−1+1

∥ωM2(t
M
i )∥2 + µτM

mk∑
i=mk−1+1

∥ρi
M2∥2

+ τM

mk∑
i=mk−1+1

∥∇ × Ξ(tMi )∥2 + (2ϵ+ σ + 2L+
L2

κ
)τM

mk∑
i=mk−1+1

∥Φi
h∥2

+ (2µ+ 1)τM

mk∑
i=mk−1+1

∥Θi
h∥2.

Inductively for k ≥ 1 in above inequality, we have

(26)

ϵ∥Φmk

h ∥2 + µ∥Θmk

h ∥2

≤ ϵ∥Φ0
h∥2 + µ∥Θ0

h∥2 + κτK

k∑
ℓ=1

∥∇ψmℓ−1

h ∥2 + ϵτM

mk∑
i=1

∥ωM1(t
M
i )∥2

+ ϵτM

mk∑
i=1

∥ρi
M1∥2 + στM

mk∑
i=1

∥Ξ(tMi )∥2

+ LτM

k∑
ℓ=1

mℓ∑
i=mℓ−1+1

∥∇(p(tMi )− p(tMmℓ−1
))∥2 + LτK

k∑
ℓ=1

∥∇ξ(tMmℓ−1
)∥2

+ µτM

mk∑
i=1

∥ωM2(t
M
i )∥2 + µτM

mk∑
i=1

∥ρi
M2∥2 + τM

mk∑
i=1

∥∇ × Ξ(tMi )∥2

+ (2ϵ+ σ + 2L+
L2

κ
)τM

mk∑
i=1

∥Φi
h∥2 + (2µ+ 1)τM

mk∑
i=1

∥Θi
h∥2.

For any 1 ≤ s ≤ r − 1, in a similar way as proving (25), inductively for m =
mk−1 + 1, . . . ,mk−1 + s in (23), and then utilizing (26) with k replaced by k − 1,



TIME-STEPPING ALGORITHM FOR ELECTROPOROELASTICITY 263

we get
(27)

ϵ∥Φmk−1+s
h ∥2 + µ∥Θmk−1+s

h ∥2

≤ ϵ∥Φmk−1

h ∥2 + µ∥Θmk−1

h ∥2 + κτK∥∇ψmk−1

h ∥2 + ϵτM

mk−1+s∑
i=mk−1+1

∥ωM1(t
M
i )∥2

+ ϵτM

mk−1+s∑
i=mk−1+1

∥ρi
M1∥2 + στM

mk−1+s∑
i=mk−1+1

∥Ξ(tMi )∥2

+ LτM

mk−1+s∑
i=mk−1+1

∥∇(p(tMi )− p(tMmk−1
))∥2 + LτK∥∇ξ(tMmk−1

)∥2

+ µτM

mk−1+s∑
i=mk−1+1

∥ωM2(t
M
i )∥2 + µτM

mk−1+s∑
i=mk−1+1

∥ρi
M2∥2

+ τM

mk−1+s∑
i=mk−1+1

∥∇ × Ξ(tMi )∥2

+ (2ϵ+ σ + 2L+
L2

κ
)τM

mk−1+s∑
i=mk−1+1

∥Φi
h∥2 + (2µ+ 1)τM

mk−1+s∑
i=mk−1+1

∥Θi
h∥2

≤ ϵ∥Φ0
h∥2 + µ∥Θ0

h∥2 + κτK

k∑
ℓ=1

∥∇ψmℓ−1

h ∥2

+ ϵτM

mk−1+s∑
i=1

∥ωM1(t
M
i )∥2 + ϵτM

mk−1+s∑
i=1

∥ρi
M1∥2 + στM

mk−1+s∑
i=1

∥Ξ(tMi )∥2

+ LτM

k−1∑
ℓ=1

mℓ∑
i=mℓ−1+1

∥∇(p(tMi )− p(tMmℓ−1
))∥2

+ LτM

mk−1+s∑
i=mk−1+1

∥∇(p(tMi )− p(tMmk−1
))∥2 + LτK

k∑
ℓ=1

∥∇ξ(tMmℓ−1
)∥2

+ µτM

mk−1+s∑
i=1

∥ωM2(t
M
i )∥2 + µτM

mk−1+s∑
i=1

∥ρi
M2∥2 + τM

mk−1+s∑
i=1

∥∇×Ξ(tMi )∥2

+ (2ϵ+ σ + 2L+
L2

κ
)τM

mk−1+s∑
i=1

∥Φi
h∥2 + (2µ+ 1)τM

mk−1+s∑
i=1

∥Θi
h∥2.

According to (5), the third equation in (4) and the first equation in (8), we get for
all vh ∈ Uh,

a(φmk

h ,vh)− (ψmk

h , α∇ · vh)

= a(Qhu(t
M
mk

)− umk

h ,vh)− (Rhp(t
M
mk

)− pmk

h , α∇ · vh)

= a(u(tMmk
),vh)− (p(tMmk

), α∇ · vh)−
(
a(umk

h ,vh)− (pmk

h , α∇ · vh)
)

= 0.
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By (6), the last equation in (4) and the second equation in (8), we obtain for all
qh ∈ Ph,

(c0∂̄tKψ
mk

h , qh) + (α∇ · ∂̄tKφmk

h , qh) + (κ∇ψmk

h ,∇qh)
= (c0∂̄tK (Rhp(t

M
mk

)− pmk

h ), qh) + (α∇ · ∂̄tK (Qhu(t
M
mk

)− umk

h ), qh)

+ (κ∇(Rhp(t
M
mk

)− pmk

h ),∇qh)
= (c0(Rh∂̄tKp(t

M
mk

)− ∂̄tKp(t
M
mk

)), qh) + (c0∂̄tKp(t
M
mk

), qh)− (c0∂̄tKp
mk

h , qh)

+ (α∇ · (Qh∂̄tKu(tMmk
)− ∂̄tKu(tMmk

)), qh) + (α∇ · ∂̄tKu(tMmk
), qh)

− (α∇ · ∂̄tKumk

h , qh) + (κ∇p(tMmk
),∇qh)− (κ∇pmk

h ,∇qh)
= (c0(Rh∂̄tKp(t

M
mk

)− ∂̄tKp(t
M
mk

)), qh) + (c0∂̄tKp(t
M
mk

), qh)

+ (α∇ · (Qh∂̄tKu(tMmk
)− ∂̄tKu(tMmk

)), qh) + (α∇ · ∂̄tKu(tMmk
), qh)

+ (κ∇p(tMmk
),∇qh)− (g(tMmk

), qh)−
(
L
1

r

mk∑
i=mk−1+1

Ei
h,∇qh

)
= (c0(Rh∂̄tKp(t

M
mk

)− ∂̄tKp(t
M
mk

)), qh) +
(
c0(∂̄tKp(t

M
mk

)− ∂

∂t
p(tMmk

)), qh
)

+ (α∇ · (Qh∂̄tKu(tMmk
)− ∂̄tKu(tMmk

)), qh) +
(
α∇ · (∂̄tKu(tMmk

)− ∂

∂t
u(tMmk

)), qh
)

+
(
L
1

r

mk∑
i=mk−1+1

(E(tMmk
)−E(tMi )),∇qh

)
+

(
L
1

r

mk∑
i=mk−1+1

Ξ(tMi ),∇qh
)

+
(
L
1

r

mk∑
i=mk−1+1

Φi
h,∇qh

)
=: (c0ωK3(t

K
k ), qh) + (c0ρ

k
K3, qh) + (α∇ · ωK4(t

K
k ), qh) + (α∇ · ρk

K4, qh)

+
(
L
1

r

mk∑
i=mk−1+1

(E(tMmk
)−E(tMi )),∇qh

)
+

(
L
1

r

mk∑
i=mk−1+1

Ξ(tMi ),∇qh
)

+
(
L
1

r

mk∑
i=mk−1+1

Φi
h,∇qh

)
.

Taking vh = 2τK ∂̄tKφmk

h and qh = 2τKψ
mk

h in above two equations, respectively,
and then summing up, we get an error equation

(28)

a(φmk

h , 2τK ∂̄tKφmk

h ) + (c0∂̄tKψ
mk

h , 2τKψ
mk

h ) + 2κτK∥∇ψmk

h ∥2

= (c0ωK3(t
K
k ), 2τKψ

mk

h ) + (c0ρ
k
K3, 2τKψ

mk

h ) + (α∇ · ωK4(t
K
k ), 2τKψ

mk

h )

+ (α∇ · ρk
K4, 2τKψ

mk

h ) +
(
L
1

r

mk∑
i=mk−1+1

(E(tMmk
)−E(tMi )), 2τK∇ψmk

h

)
+
(
L
1

r

mk∑
i=mk−1+1

Ξ(tMi ), 2τK∇ψmk

h

)
+
(
L
1

r

mk∑
i=mk−1+1

Φi
h, 2τK∇ψmk

h

)
.

In a similar way as proving (11), we have

a(φmk

h , 2τK ∂̄tKφmk

h ) ≥ ∥φmk

h ∥2a − ∥φmk−1

h ∥2a,
(∂̄tKψ

mk

h , 2τKψ
mk

h ) ≥ ∥ψmk

h ∥2 − ∥ψmk−1

h ∥2.
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These together with (28), Cauchy–Schwarz and Young’s inequalities lead to

∥φmk

h ∥2a + c0∥ψmk

h ∥2 + 2κτK∥∇ψmk

h ∥2

≤ ∥φmk−1

h ∥2a + c0∥ψ
mk−1

h ∥2 + c0τK∥ωK3(t
K
k )∥2 + c0τK∥ψmk

h ∥2 + c0τK∥ρkK3∥2

+ c0τK∥ψmk

h ∥2 + ατK∥∇ · ωK4(t
K
k )∥2 + ατK∥ψmk

h ∥2 + ατK∥∇ · ρk
K4∥2

+ ατK∥ψmk

h ∥2 + 3L2

κ

1

r2
τK

∥∥∥ mk∑
i=mk−1+1

(E(tMmk
)−E(tMi ))

∥∥∥2
+
κ

3
τK∥∇ψmk

h ∥2 + 3L2

κ

1

r2
τK

∥∥∥ mk∑
i=mk−1+1

Ξ(tMi )
∥∥∥2 + κ

3
τK∥∇ψmk

h ∥2

+
3L2

κ

1

r2
τK

∥∥∥ mk∑
i=mk−1+1

Φi
h

∥∥∥2 + κ

3
τK∥∇ψmk

h ∥2

≤ ∥φmk−1

h ∥2a + c0∥ψ
mk−1

h ∥2 + c0τK∥ωK3(t
K
k )∥2 + c0τK∥ρkK3∥2

+ ατK∥∇ · ωK4(t
K
k )∥2 + ατK∥∇ · ρk

K4∥2

+
3L2

κ
τM

mk∑
i=mk−1+1

∥E(tMmk
)−E(tMi )∥2 + 3L2

κ
τM

mk∑
i=mk−1+1

∥Ξ(tMi )∥2

+
3L2

κ
τM

mk∑
i=mk−1+1

∥Φi
h∥2 + (2c0 + 2α)τK∥ψmk

h ∥2 + κτK∥∇ψmk

h ∥2.

Inductively for k ≥ 1 in above inequality, we get

(29)

∥φmk

h ∥2a + c0∥ψmk

h ∥2 + κτK

k∑
ℓ=1

∥∇ψmℓ

h ∥2

≤ ∥φ0
h∥2a + c0∥ψ0

h∥2 + c0τK

k∑
ℓ=1

∥ωK3(t
K
ℓ )∥2 + c0τK

k∑
ℓ=1

∥ρℓK3∥2

+ ατK

k∑
ℓ=1

∥∇ · ωK4(t
K
ℓ )∥2 + ατK

k∑
ℓ=1

∥∇ · ρℓ
K4∥2

+
3L2

κ
τM

k∑
ℓ=1

mℓ∑
i=mℓ−1+1

∥E(tMmℓ
)−E(tMi )∥2 + 3L2

κ
τM

mk∑
i=1

∥Ξ(tMi )∥2

+
3L2

κ
τM

mk∑
i=1

∥Φi
h∥2 + (2c0 + 2α)τK

k∑
ℓ=1

∥ψmℓ

h ∥2.

According to (26) and (29), we obtain error estimates at nodes tMmk
= tKk (1 ≤ k ≤

NK),

(30)

ϵ∥Φmk

h ∥2 + µ∥Θmk

h ∥2 + ∥φmk

h ∥2a + c0∥ψmk

h ∥2 + κτK∥∇ψmk

h ∥2

≤ ϵ∥Φ0
h∥2 + µ∥Θ0

h∥2 + ∥φ0
h∥2a + c0∥ψ0

h∥2 + κτK∥∇ψ0
h∥2

+ ϵτM

mk∑
i=1

∥ωM1(t
M
i )∥2 + ϵτM

mk∑
i=1

∥ρi
M1∥2 + (σ +

3L2

κ
)τM

mk∑
i=1

∥Ξ(tMi )∥2

+ LτM

k∑
ℓ=1

mℓ∑
i=mℓ−1+1

∥∇(p(tMi )− p(tMmℓ−1
))∥2 + LτK

k∑
ℓ=1

∥∇ξ(tMmℓ−1
)∥2
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+ µτM

mk∑
i=1

∥ωM2(t
M
i )∥2 + µτM

mk∑
i=1

∥ρi
M2∥2 + τM

mk∑
i=1

∥∇ × Ξ(tMi )∥2

+ c0τK

k∑
ℓ=1

∥ωK3(t
K
ℓ )∥2 + c0τK

k∑
ℓ=1

∥ρℓK3∥2 + ατK

k∑
ℓ=1

∥∇ · ωK4(t
K
ℓ )∥2

+ ατK

k∑
ℓ=1

∥∇ · ρℓ
K4∥2 +

3L2

κ
τM

k∑
ℓ=1

mℓ∑
i=mℓ−1+1

∥E(tMmℓ
)−E(tMi )∥2

+ (2ϵ+ σ + 2L+
4L2

κ
)τM

mk∑
i=1

∥Φi
h∥2 + (2µ+ 1)τM

mk∑
i=1

∥Θi
h∥2

+ (2c0 + 2α)τK

k∑
ℓ=1

∥ψmℓ

h ∥2.

In order to analyze error estimates for numerical solutions at nodes tMmk−1+s for 1 ≤
k ≤ NK and 1 ≤ s ≤ r − 1, we assume φ

mk−1+s
h = φ

mk−1

h and ψ
mk−1+s
h = ψ

mk−1

h ,
respectively. Then, from (27) and (29) with k replaced by k − 1, it follows that
(31)

ϵ∥Φmk−1+s
h ∥2 + µ∥Θmk−1+s

h ∥2 + ∥φmk−1+s
h ∥2a + c0∥ψ

mk−1+s
h ∥2

= ϵ∥Φmk−1+s
h ∥2 + µ∥Θmk−1+s

h ∥2 + ∥φmk−1

h ∥2a + c0∥ψ
mk−1

h ∥2

≤ϵ∥Φ0
h∥2 + µ∥Θ0

h∥2 + ∥φ0
h∥2a + c0∥ψ0

h∥2 + κτK∥∇ψ0
h∥2

+ ϵτM

mk−1+s∑
i=1

∥ωM1(t
M
i )∥2 + ϵτM

mk−1+s∑
i=1

∥ρi
M1∥2

+ (σ +
3L2

κ
)τM

mk−1+s∑
i=1

∥Ξ(tMi )∥2 + LτM

k−1∑
ℓ=1

mℓ∑
i=mℓ−1+1

∥∇(p(tMi )− p(tMmℓ−1
))∥2

+ LτM

mk−1+s∑
i=mk−1+1

∥∇(p(tMi )− p(tMmk−1
))∥2+LτK

k∑
ℓ=1

∥∇ξ(tMmℓ−1
)∥2

+ µτM

mk−1+s∑
i=1

∥ωM2(t
M
i )∥2 + µτM

mk−1+s∑
i=1

∥ρi
M2∥2 + τM

mk−1+s∑
i=1

∥∇×Ξ(tMi )∥2

+ c0τK

k−1∑
ℓ=1

∥ωK3(t
K
ℓ )∥2 + c0τK

k−1∑
ℓ=1

∥ρℓK3∥2 + ατK

k−1∑
ℓ=1

∥∇ · ωK4(t
K
ℓ )∥2

+ ατK

k−1∑
ℓ=1

∥∇ · ρℓ
K4∥2 +

3L2

κ
τM

k−1∑
ℓ=1

mℓ∑
i=mℓ−1+1

∥E(tMmℓ
)−E(tMi )∥2

+ (2ϵ+ σ + 2L+
4L2

κ
)τM

mk−1+s∑
i=1

∥Φi
h∥2 + (2µ+ 1)τM

mk−1+s∑
i=1

∥Θi
h∥2

+ (2c0 + 2α)τK

k−1∑
ℓ=1

∥ψmℓ

h ∥2.
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According to (30) and (31), we get for all 1 ≤ m ≤ NM and 1 ≤ k ≤ NK ,

(32)

ϵ∥Φm
h ∥2 + µ∥Θm

h ∥2 + ∥φm
h ∥2a + c0∥ψm

h ∥2

≤ϵ∥Φ0
h∥2+ µ∥Θ0

h∥2+ ∥φ0
h∥2a+ c0∥ψ0

h∥2+ κτK∥∇ψ0
h∥2+ ϵτM

m∑
i=1

∥ωM1(t
M
i )∥2

+ ϵτM

m∑
i=1

∥ρi
M1∥2 + (σ +

3L2

κ
)τM

m∑
i=1

∥Ξ(tMi )∥2

+ LτM

k∑
ℓ=1

mℓ∑
i=mℓ−1+1

∥∇(p(tMi )− p(tMmℓ−1
))∥2 + LτK

k∑
ℓ=1

∥∇ξ(tMmℓ−1
)∥2

+ µτM

m∑
i=1

∥ωM2(t
M
i )∥2 + µτM

m∑
i=1

∥ρi
M2∥2 + τM

m∑
i=1

∥∇ × Ξ(tMi )∥2

+ c0τK

k∑
ℓ=1

∥ωK3(t
K
ℓ )∥2 + c0τK

k∑
ℓ=1

∥ρℓK3∥2 + ατK

k∑
ℓ=1

∥∇ · ωK4(t
K
ℓ )∥2

+ ατK

k∑
ℓ=1

∥∇ · ρℓ
K4∥2 +

3L2

κ
τM

k∑
ℓ=1

mℓ∑
i=mℓ−1+1

∥E(tMmℓ
)−E(tMi )∥2

+ (2ϵ+ σ + 2L+
4L2

κ
)τK

m∑
i=1

∥Φi
h∥2 + (2µ+ 1)τK

m∑
i=1

∥Θi
h∥2

+ (2c0 + 2α)τK

m∑
i=1

∥ψi
h∥2.

From Lemmas 2.1 and 2.2, it follows that

(33)

∥Φ0
h∥ = ∥IhE0 −E0

h∥ ≤ ∥IhE0 −E0∥+ ∥E0 −PhE0∥
≤ Ch∥E0∥2 + Ch2∥E0∥2 ≤ Ch∥E0∥2,

∥Θ0
h∥ = ∥PhH0 −H0

h∥ = 0,

∥φ0
h∥a = ∥Qhu0 − u0

h∥a ≤ c2∥Qhu0 − u0∥1 + c2∥u0 − Phu0∥1
≤ Ch∥u0∥2 + Ch2∥p0∥2 + Ch∥u0∥2 ≤ Ch∥u0∥2 + Ch2∥p0∥2,

∥ψ0
h∥ = ∥Rhp0 − p0h∥ ≤ ∥Rhp0 − p0∥+ ∥p0 − Php0∥

≤ Ch2∥p0∥2 + Ch2∥p0∥2 ≤ Ch2∥p0∥2,
∥∇ψ0

h∥ = ∥∇(Rhp0 − p0h)∥ ≤ ∥∇(Rhp0 − p0)∥+ ∥∇(p0 − Php0)∥
≤ Ch∥p0∥2 + Ch∥p0∥2 ≤ Ch∥p0∥2,

where C > 0 is a constant independent of τM , τK and h. Direct computation yields

ωM1(t
M
i ) =Ih∂̄tME(tMi )− ∂̄tME(tMi )

=
1

τM

∫ tMi

tMi−1

(
Ih

∂

∂t
E(θ)− ∂

∂t
E(θ)

)
dθ.
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Utilizing Cauchy–Schwarz inequality and Lemma 2.2, we have

(34)

∥ωM1(t
M
i )∥2 ≤

( 1

τM

∫ tMi

tMi−1

∥Ih
∂

∂t
E(θ)− ∂

∂t
E(θ)∥dθ

)2

≤ 1

τ2M

∫ tMi

tMi−1

12 dθ

∫ tMi

tMi−1

∥Ih
∂

∂t
E(θ)− ∂

∂t
E(θ)∥2 dθ

≤ C
1

τM
h2

∫ tMi

tMi−1

∥ ∂
∂t

E(θ)∥22 dθ.

Noticing Lemma 2.1 and in a similar way, we get

(35)

∥ωM2(t
M
i )∥2 ≤ 1

τM

∫ tMi

tMi−1

∥Ph
∂

∂t
H(θ)− ∂

∂t
H(θ)∥2 dθ

≤ C
1

τM
h2

∫ tMi

tMi−1

∥ ∂
∂t

H(θ)∥21 dθ,

∥ωK3(t
K
ℓ )∥2 ≤ 1

τK

∫ tKℓ

tKℓ−1

∥Rh
∂

∂t
p(θ)− ∂

∂t
p(θ)∥2 dθ

≤ C
1

τK
h4

∫ tKℓ

tKℓ−1

∥ ∂
∂t
p(θ)∥22 dθ,

∥∇ · ωK4(t
K
ℓ )∥2 ≤ 1

τK

∫ tKℓ

tKℓ−1

∥∇ ·
(
Qh

∂

∂t
u(θ)− ∂

∂t
u(θ)

)
∥2 dθ

≤ 1

τK

∫ tKℓ

tKℓ−1

∥Qh
∂

∂t
u(θ)− ∂

∂t
u(θ)∥21 dθ

≤ C
1

τK
h2

∫ tKℓ

tKℓ−1

∥ ∂
∂t

u(θ)∥22 dθ + C
1

τK
h4

∫ tKℓ

tKℓ−1

∥ ∂
∂t
p(θ)∥22 dθ.

Applying Taylor expansion yields

ρi
M1 = ∂̄tME(tMi )− ∂

∂t
E(tMi ) =

1

τM

∫ tMi

tMi−1

(tMi−1 − θ)
∂2

∂t2
E(θ) dθ.

By virtue of Cauchy–Schwarz inequality, we obtain

(36) ∥ρi
M1∥2 ≤

(∫ tMi

tMi−1

∥ ∂
2

∂t2
E(θ)∥ dθ

)2

≤ τM

∫ tMi

tMi−1

∥ ∂
2

∂t2
E(θ)∥2 dθ.

Similarly, we get

(37)

∥ρi
M2∥2 ≤ τM

∫ tMi

tMi−1

∥ ∂
2

∂t2
H(θ)∥2 dθ,

∥ρℓK3∥2 ≤ τK

∫ tKℓ

tKℓ−1

∥ ∂
2

∂t2
p(θ)∥2 dθ,

∥∇ · ρℓ
K4∥2 ≤ ∥ρℓ

K4∥21 ≤ τK

∫ tKℓ

tKℓ−1

∥ ∂
2

∂t2
u(θ)∥21 dθ.
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From Lemma 2.2, it follows that

(38)

∥Ξ(tMi )∥2 = ∥E(tMi )− IhE(tMi )∥2 ≤ Ch2∥E(tMi )∥22,
∥∇ξ(tMmℓ−1

)∥2 = ∥∇(p(tKℓ−1)−Rhp(t
K
ℓ−1))∥2 ≤ Ch2∥p(tKℓ−1)∥22,

∥∇ × Ξ(tMi )∥2 = ∥∇ × (E(tMi )− IhE(tMi ))∥2 ≤ Ch2∥E(tMi )∥22.

For any mℓ−1 + 1 ≤ i ≤ mℓ, applying Cauchy–Schwarz inequality, we get

(39)

∥∇(p(tMi )− p(tMmℓ−1
))∥2 = ∥

∫ tMi

tMmℓ−1

∇ ∂

∂t
p(θ) dθ∥2

≤
(∫ tKℓ

tKℓ−1

∥ ∂
∂t
p(θ)∥1 dθ

)2

≤ τK

∫ tKℓ

tKℓ−1

∥ ∂
∂t
p(θ)∥21 dθ.

Similarly, we have for mℓ−1 + 1 ≤ i ≤ mℓ,

(40) ∥E(tMmℓ
)−E(tMi )∥2 ≤ τK

∫ tKℓ

tKℓ−1

∥ ∂
∂t

E(θ)∥2 dθ.

According to (32)–(40) and (H3), we obtain that for all 1 ≤ m ≤ NM and 1 ≤ k ≤
NK ,

ϵ∥Φm
h ∥2 + µ∥Θm

h ∥2 + ∥φm
h ∥2a + c0∥ψm

h ∥2

≤ ϵCh2∥E0∥22 + Ch2∥u0∥22 + Ch4∥p0∥22 + c0Ch
4∥p0∥22 + κCh2∥p0∥22

+ ϵCh2
∫ tMm

0

∥ ∂
∂t

E(θ)∥22 dθ + ϵτ2M

∫ tMm

0

∥ ∂
2

∂t2
E(θ)∥2 dθ

+ (σ +
3L2

κ
)Ch2

m∑
i=1

τM∥E(tMi )∥22 + Lτ2K

∫ tKk

0

∥ ∂
∂t
p(θ)∥21 dθ

+ LCh2
k∑

ℓ=1

τK∥p(tKℓ−1)∥22 + µCh2
∫ tMm

0

∥ ∂
∂t

H(θ)∥21 dθ

+ µτ2M

∫ tMm

0

∥ ∂
2

∂t2
H(θ)∥2 dθ + Ch2

m∑
i=1

τM∥E(tMi )∥22

+ c0Ch
4

∫ tKk

0

∥ ∂
∂t
p(θ)∥22 dθ + c0τ

2
K

∫ tKk

0

∥ ∂
2

∂t2
p(θ)∥2 dθ

+ αCh2
∫ tKk

0

∥ ∂
∂t

u(θ)∥22 dθ + αCh4
∫ tKk

0

∥ ∂
∂t
p(θ)∥22 dθ

+ ατ2K

∫ tKk

0

∥ ∂
2

∂t2
u(θ)∥21 dθ +

3L2

κ
τ2K

∫ tKk

0

∥ ∂
∂t

E(θ)∥2 dθ

+ (2ϵ+ σ + 2L+
4L2

κ
)

m∑
i=1

τK∥Φi
h∥2 + (2µ+ 1)

m∑
i=1

τK∥Θi
h∥2

+ (2c0 + 2α)
m∑
i=1

τK∥ψi
h∥2

≤ C1τ
2
M + C2τ

2
K + Ch2 + C

m∑
i=1

τK
(
∥Φi

h∥2 + ∥Θi
h∥2 + ∥ψi

h∥2
)
,



270 X. LIU, Y. ZOU, AND A.J. MEIR

where C1 = C1(
∂2E
∂t2 ,

∂2H
∂t2 ), C2 = C2(

∂p
∂t ,

∂2p
∂t2 ,

∂2u
∂t2 ,

∂E
∂t ) and C are positive constants

independent of τM , τK and h. Applying discrete Gronwall’s lemma to above in-
equality, we get for all 1 ≤ m ≤ NM ,

∥Φm
h ∥2 + ∥Ψm

h ∥2 + ∥φm
h ∥2a + ∥ψm

h ∥2

≤ (C1τ
2
M + C2τ

2
K + Ch2)eC

∑m
i=1 τK ≤ C1τ

2
M + C2τ

2
K + Ch2.

This leads that for all 1 ≤ m ≤ NM and 1 ≤ k ≤ NK ,

∥Φm
h ∥2 + ∥Ψm

h ∥2 + ∥φmk

h ∥21 + ∥ψmk

h ∥2 ≤ C1τ
2
M + C2τ

2
K + Ch2,

which together with (22) completes the proof. �

Remark 4.1. We would mention that the electromagnetic waves (E,H) vary much
rapidly than the elastic waves (u, p) in physical world. Therefore, the constant C1

is reasonably larger than C2. In order to construct a fast numerical algorithm and
keep the accuracy, we will choose the step-sizes such that C1τ

2
M = C2τ

2
K which

indicates to choose rτM = τK for some fixed integer r > 0.

Table 1. Errors and convergence orders of Algorithm 1 (r = 4).

h
∥∥E(T )−ENM

h

∥∥ Order
∥∥H(T )−HNM

h

∥∥ Order

1/4 0.09156409 - 0.18640165 -

1/8 0.05003390 0.8719 0.09339199 0.9970

1/12 0.03339432 0.9972 0.06224391 1.0007

1/16 0.02507113 0.9965 0.04671507 0.9976

h
∥∥u(T )− uNM

h

∥∥
1

Order
∥∥p(T )− pNM

h

∥∥ Order

1/4 1.44226916 - 0.08017291 -

1/8 0.75396900 0.9358 0.02233873 1.8436

1/12 0.50650102 0.9812 0.01012946 1.9505

1/16 0.38087188 0.9909 0.00573148 1.9795

Table 2. Errors and convergence orders of Algorithm 1 (r = 3).

h
∥∥E(T )−ENM

h

∥∥ Order
∥∥H(T )−HNM

h

∥∥ Order

1/4 0.09154328 - 0.18640474 -

1/8 0.05002734 0.8717 0.09339180 0.9971

1/12 0.03339072 0.9971 0.06224386 1.0007

1/16 0.02506857 0.9965 0.04671505 0.9976

h
∥∥u(T )− uNM

h

∥∥
1

Order
∥∥p(T )− pNM

h

∥∥ Order

1/4 1.44226894 - 0.08019893 -

1/8 0.75396866 0.9358 0.02235443 1.8430

1/12 0.50650076 0.9812 0.01013972 1.9498

1/16 0.38087167 0.9909 0.00573940 1.9782
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Table 3. Errors and convergence orders of Algorithm 1 (r = 2).

h
∥∥E(T )−ENM

h

∥∥ Order
∥∥H(T )−HNM

h

∥∥ Order

1/4 0.09152293 - 0.18640783 -

1/8 0.05002099 0.8716 0.09339160 0.9971

1/12 0.03338728 0.9970 0.06224381 1.0007

1/16 0.02506616 0.9964 0.04671503 0.9976

h
∥∥u(T )− uNM

h

∥∥
1

Order
∥∥p(T )− pNM

h

∥∥ Order

1/4 1.44226872 - 0.08022432 -

1/8 0.75396833 0.9358 0.02236992 1.8425

1/12 0.50650050 0.9812 0.01014992 1.9490

1/16 0.38087146 0.9909 0.00574732 1.9769

Table 4. Errors and convergence orders of splitting FEM.

h
∥∥E(T )−ENM

h

∥∥ Order
∥∥H(T )−HNM

h

∥∥ Order

1/4 0.09150305 - 0.18641093 -

1/8 0.05001483 0.8715 0.09339140 0.9971

1/12 0.03338399 0.9970 0.06224376 1.0007

1/16 0.02506390 0.9964 0.04671501 0.9976

h
∥∥u(T )− uNM

h

∥∥
1

Order
∥∥p(T )− pNM

h

∥∥ Order

1/4 1.44226849 - 0.08024908 -

1/8 0.75396800 0.9358 0.02238519 1.8419

1/12 0.50650023 0.9812 0.01016005 1.9482

1/16 0.38087126 0.9909 0.00575525 1.9756

5. Numerical experiments

Let T = 0.1, D = [0, 1]3 and set physical parameters ϵ = 1, σ = 2, L = 1,
µ = 1, λ = 1, G = 1, α = 1, c0 = 1 and κ = 2. Take uniform tetrahedral partition
for D with mesh size h. The numerical experiments are conducted on the FEniCS
computing platform [1, 17].

Example 5.1. The initial value (E0,H0,u0, p0) and right-hand side functions j,
f , g are chosen such that the exact solution to (1)–(3) reads

E =

 sin(πt) sin(πx) sin(πy) sin(πz)
sin(πt) sin(πx) sin(πy) sin(πz)
sin(πt) sin(πx) sin(πy) sin(πz)

 ,

H =

 cos(πt)(sin(πx) cos(πy) sin(πz)− sin(πx) sin(πy) cos(πz))
cos(πt)(sin(πx) sin(πy) cos(πz)− cos(πx) sin(πy) sin(πz))
cos(πt)(cos(πx) sin(πy) sin(πz)− sin(πx) cos(πy) sin(πz))

 ,

u =

 e−t sin(πx) sin(πy) sin(πz)
e−t sin(πx) sin(πy) sin(πz)
e−t sin(πx) sin(πy) sin(πz)

 ,

p = e−t sin(πx) sin(πy) sin(πz).
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Table 5. Errors and convergence orders of standard FEM.

h
∥∥E(T )−ENM

h

∥∥ Order
∥∥H(T )−HNM

h

∥∥ Order

1/4 0.09148317 - 0.18641405 -

1/8 0.05000852 0.8713 0.09339119 0.9972

1/12 0.03338053 0.9969 0.06224371 1.0007

1/16 0.02506151 0.9964 0.04671499 0.9976

h
∥∥u(T )− uNM

h

∥∥
1

Order
∥∥p(T )− pNM

h

∥∥ Order

1/4 1.44226850 - 0.08026594 -

1/8 0.75396801 0.9358 0.02239562 1.8416

1/12 0.50650024 0.9812 0.01016832 1.9474

1/16 0.38087126 0.9909 0.00576269 1.9740

Table 6. CPU running time.

Time(s)

h
1/4 1/8 1/12 1/16

Algorithm 1 (r=4) 23 164 691 2669

Algorithm 1 (r=3) 27 174 790 3416

Algorithm 1 (r=2) 36 239 941 3602

Splitting FEM 40 306 1255 6121

Standard FEM 43 435 3948 23906

We take τM = 1/1800 and τK = rτM (r = 4, 3, 2), respectively, and then car-
ry out Algorithm 1 with different mesh sizes h = 1

4 ,
1
8 ,

1
12 ,

1
16 , respectively. The

corresponding errors and convergence orders are shown in Tables 1–3. Meanwhile,
we also perform numerical computations using splitting FEM [16] and standard
FEM [12] with time step-size τ = 1/1800 and present the corresponding errors and
convergence orders in Tables 4 and 5, respectively. All the numerical experiments
indicate that the three methods possess the same accuracy. We also record the
CPU running time in Table 6 to show the efficiency of our method.
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