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ANALYSIS OF AN EFFICIENT PARAMETER UNIFORM
DOMAIN DECOMPOSITION APPROACH FOR SINGULARLY
PERTURBED GIERER-MEINHARDT TYPE NONLINEAR
COUPLED SYSTEMS OF PARABOLIC PROBLEMS

AAKANSHA, SUNIL KUMAR, AND PRATIBHAMOY DAS

Abstract. This article presents an efficient domain decomposition algorithm of Schwarz wave-
form relaxation type for singularly perturbed Gierer-Meinhardt type nonlinear coupled systems of
parabolic problems where the diffusion terms in each equation are multiplied by small parameters
of different magnitudes. The magnitude of these small parameters leads to the sharpness and
boundary layer behavior in the solution components. Our present algorithm considers a suitable
decomposition of the domain and decouples the process of approximating the solution compo-
nents at each time level. There are two different schemes proposed in this work. Specifically, the
schemes use the backward Euler method combined with a suitable component-wise splitting for
time discretization, while employing the central difference scheme for spatial discretization. The
two numerical schemes differ in their splitting methods: Scheme 1 employs a Jacobi-type split,
whereas Scheme 2 utilizes a Gauss-Seidel-type split. The exchange of information between neigh-
boring subdomains is achieved through piecewise-linear interpolation. The convergence analysis
of the algorithm is demonstrated using some auxiliary nonlinear systems. It is shown that the
present procedure provides uniformly convergent numerical approximations to the solution having
sharp spike components. Numerical experiments demonstrate that the considered algorithm with
present discretization is more efficient in terms of accuracy and iteration counts than with the
standard available approaches.

Key words. Schwarz waveform relaxation, domain decomposition method, Gierer-Meinhardt
systems, singular perturbation, efficient algorithms, computational cost, CPU time.

1. Introduction

In the past two decades, analysis and simulation of coupled systems of pa-
rameterized nonlinear problems with boundary and interior layer phenomena have
drawn the attention of physicists and applied mathematicians due to their numer-
ous appearances inside the scientific community, see for e.g. nonlinear problems
in [1, 2, 3, 4]. The computational analysis of these nonlinear PDE systems is not
straightforward as it involves perturbation parameters of different magnitudes and
coupling in the nonlinear terms [5, 6]. These problems are characterized by singu-
larly perturbed problems when the arbitrary small perturbation parameters can not
be approximated by zero. Gierer-Meinhardt model is one of the activator-inhibitor
types of singularly perturbed nonlinear reaction diffusion system, which appears in
pattern formation and morphogenesis and is of singularly perturbed multiple scale
nature. Here, small diffusion of the activator and large diffusion of the inhibitor
lead to sharp spike at the boundary points and make it of multiple-scale nature [7].

Veerman and Doleman [3] studied the existence and stability of localized pulses
on the GM (Gierer-Meinhardt) equation with a slow nonlinearity, which can be
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formulated by the following multiple-scale reaction-diffusion equations

1) { Oyr = 02y1 + F(y1, y2),
Ovys = £202y> + G(y1, y2),

where 0 < £ < 1 is a small parameter. A rigorous existence and stability analysis
for GM equation corresponding to interior spike, boundary spike and two boundary
spikes are examined in [8, 9] based on the boundary conditions. In general, the
procedures of deriving wellposedness of a nonlinear problem use the fixed point
theory, as given in [10].

Hence, we consider the following generalized version of nonlinear coupled sys-
tem of GM equation for further behavior of its solutions and their computational
efficiency, on Q@ = x (0, 7], where ©® = (0, 1):

(2) Ly:=dpy(x,t) —edoy(x,t) + f(z,t,y) =0,
with initial and boundary conditions

Y(,0) = ¢(x), 0<z <1,

y(O,t) = ‘PO(t)v y(]-vt) = Qol(t)v 0<t S T

Here, € = diag(e1,€2) is a diagonal matrix such that the parameters €; and e
can have different magnitudes with 0 < &1 < &g < 1; £ = (£1,£2)7, the solution
y= (y1,y2)T, the boundary data ¢ = (1, p2)7, and initial data ¢ = (¢, p2)T. We
consider that the functions f, ¢, ¢, and ¢, are sufficiently smooth and appropriate
compatibility conditions hold for the present problem, see [11]. Further, for all
(z,t,y) € Q x R?, assume that the nonlinear reaction term f = (f1, f2)7 satisfies

Ofs Ofs

xata 1,92 Za>07 73),757 1,92 SO; S q,
ays( Y1, 92) ayq( Y1,92) #

2

Ofs
Z f (xatvylva) Za>0, S = 172
qzlayq

The investigation of multiple scale singularly perturbed problems became signif-
icantly important due to the rapid variation of continuous solutions in specific layer
regions. Conventional simulators to solve such problems often encounter challenges
in effectively handling sufficiently small diffusion terms. Consequently, the need
arises for robust numerical methods to address these issues [12, 13]. Fitted/graded
mesh [14, 15, 16, 17, 18, 19], fitted operator [20], and domain decomposition ap-
proaches are often used to construct such robust numerical algorithms for compu-
tational efficiency. This paper utilizes the domain decomposition approach, which
is frequently used to reduce the computational cost, as like splitting approaches for
coupled systems given in [21].

Domain decomposition approaches have gained significant popularity for effec-
tively solving partial differential equations [22, 23, 24, 25, 26, 27]. Among these
methods, Schwarz Waveform Relaxation (SWR) stands out as a special class specif-
ically designed for time-dependent problems and was initially introduced in [29, 28].
The SWR approach involves dividing the original domain into space-time subprob-
lems, where each subproblem is solved over the entire time window independently
before exchanging interface data between subdomains. Notably, each subdomain
can adopt its own space and time grid along with discretization techniques, making
SWR highly adaptable and well-suited for parallel computing. SWR, methods have
been developed for a wide range of regular and singularly perturbed time-dependent
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partial differential equations (where “regular” indicates non-singular perturbation
nature) in [30, 31, 32, 23, 33, 34] and the references therein.

The research presented in [35, 36] delves into a semilinear system comprising
two singularly perturbed parabolic reaction-diffusion equations set on a vertical
strip. These equations contain highest order derivatives with divergent forms, which
are multiplied by a small perturbation parameter 2. As the solution evolves, it
reveals the existence of parabolic boundary layers of width O(e) in the vicinity
of the strip boundary, particularly when e approaches zero. In [35], the authors
explore the condensing mesh method and the classical finite difference method as
tools to construct a uniformly convergent difference scheme. On the other hand,
[36] employs the integro-interpolation method to create a conservative nonlinear
finite difference scheme, also demonstrating uniform convergence. In [11], a fitted
mesh approach is considered for a semilinear system that involves two singularly
perturbed parabolic reaction-diffusion equations with differing parameters. In [11],
the discretization constituting the backward Euler scheme in time and the standard
central differencing on Shishkin mesh in space is considered. So far, we are not
aware of any paper that explored the utilization of the SWR approach to address
the robust numerical solution of problem (2).

So, the purpose of the paper is two-fold: firstly, to develop an efficient SWR
type domain decomposition method for solving problem (2), and secondly, to pro-
vide a comprehensive error analysis of the developed method. We define a suitable
decomposition of the domain and decouple the process of approximating the solu-
tion’s components at each time level. We develop two different schemes that use
the backward Euler method combined with a suitable component-wise splitting for
time discretization, while employing the central difference scheme for spatial dis-
cretization. Scheme 1 uses a Jacobi type split, while Scheme 2 uses a Gauss- Seidel
type split. Following this, we introduce an iterative process, where the exchange of
information between neighboring subdomains is achieved through piecewise-linear
interpolation. The convergence analysis of the iterative process is demonstrated
using some auxiliary problems. It is shown that the algorithm provides uniformly
convergent numerical approximations to the solution. Numerical results demon-
strate that the algorithm is more effective with the present discretization approach
than the traditional discretization, which uses the backward Euler method on a
uniform mesh in time and the usual central difference scheme on a uniform mesh
in space.

The work is organized as follows. The continuous solution and its derivatives
bounds are introduced in Section 2. In the section 3, we introduce a novel algorithm
based on domain decomposition approach for solving the nonlinear system (2) by
two proposed different schemes and analyze their convergence procedures in Section
4. Next, we give numerical experiments for a few Gierer-Meinhardt type systems
in Section 5. Section 6 concludes the theoretical findings and provide the synopsis
of the present convergence procedure.

Notation: The symbol C stands for a generic positive constant which is in-
dependent of perturbation parameters €5, = 1,2, the iteration parameter k and
the number of partition points A" and M. [|.||r=(;) denotes the maximum nor-
m, where J is a set which is both closed and bounded. ||.|[f (s~ M) denotes the
discrete maximum norm on the discrete domain JVM of J.
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2. Analytical Properties of Singularly Perturbed Gierer-Meinhardt type
Systems

We first recall the a priori derivative estimates for the solution of nonlinear
system (2). The solution y of problem (2) is decomposed into y = v+ w. The
solution components v and w denote the regular and singular parts of the solution
y respectively, such that

Ov(x,t) —ed?v(z,t) + f(x,t,v) =01in Q,
(3) v=2zon {0,1} x (0,7],
v = ¢(x) on [0,1] x {0},

Oyw(x,t) — ed?w(z,t) + f(x,t, v+ w) — f(z,t,v) =0 in Q,
w=y—wvon ({0,1} x (0, 7]) U ([0,1] x {0}),
where z satisfies
5) Oz + f(x,t,2) =0, (x,t) € {0,1} x (0, 7],
z(z,0) = ¢(x), = € {0,1}.
Then, following the procedure in [11], we have
(6) 107 Yl oo (@) < € 5 =0, 1,2,
Further, the derivatives of the regular and singular parts of the solution are bound-
ed as described in the following lemmas.

Lemma 2.1. The regqular part v = (vy,v2)?

satisfies the following estimates
Hatg,UHLm(ﬁ) S C7 ||8;v||L°°(ﬁ) S C? s = 07 1727

12 =12, s =3,4,

where C' is independent of perturbation parameters e, s = 1,2.

10301l @) < Ce

Proof. The proof follows using the arguments in Lemmas 4-6 of [11]. O

Lemma 2.2. The singular part w = (w1, ws)t satisfies the following estimates
‘wl('x’t” S 0652(23), l = 1a2a
031 (2, 1)] < Cley *2Be, (2)+25 " *Be, (2)), [03wa (2, 1)] < Cley*?Be, (2)), 5 =1,2,
05w (2, 1)) < C(ey*Be, (2) + &5 B, (), 5 = 3,4,
08wy (z, 1) < Cey ey “ 2B, (2) + 25 VB, (x), s =3,4, V (z,t) € Q.

Further, for e1 < g9 and €3 < a/2, the singular part w = (wy,ws)? can be further
decomposed as wy = W1,¢, + W1,e,, W2 = Wa, + Wa,,, where

|UA)1761 (l‘,t)| < BEl (33), |a£w1,51 ('T7 t)' < 51_1881 (x)v Ia;lwl,az (1‘,t)| < 62_2662 ($)7
|UA)2751 (l‘,t)| < 661 (Ji), |8§UA}2751 (‘r’t)| < 52_1681 ($)7 ‘6;112]2,82 (Z‘,t)‘ < 52_2862 (.23)
for (x,t) € Q. Here, C is independent of perturbation parameters e5,s = 1,2, and

the layer functions Be () are defined as Be (x) = e” "V /e pem(Imm)Valea g ¢
[0,1],¢ =1, 2.

Proof. The proof follows using the arguments in Lemmas 8,9, and 11 of [11]. O
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FIGURE 1. Decomposition in spatial direction.

3. Schwarz Waveform Relaxation Algorithm

From the derivative bounds given in the above lemmas, we can observe two
overlapping boundary layers near the points x = 0,1 where the derivative bounds
are unbounded to the inverse powers of €,, n = 1,2. These bounds lead to the
non-convergence of the approximate solution on uniform meshes, if standard dis-
cretizations are used for continuous form of singularly perturbed Gierer-Meinhardt
type systems. Here, a domain decomposition method is constructed to solve prob-
lem (2). The original domain is divided as follows: , =©,x®;, p= L. {,m,r, R,
such that D = (0,4p1), D¢ = (p1,4p2 —3p1), DOm = (p2,1—p2), D, = (1 —4p2+
3p1,1 = p1), Or = (1 —4p1,1) and ©; = (0, 7] (see Figure 1) with subdomain
parameters p; and py (see [37])

.4 /€2 P2 [€1
(7) pg—mln{26,2 aln]\/},m-m1n{4,2 alnj\/'},

Here, the transition parameters are chosen in such a way that the subdomains ©,
and D r do not overlap with the subdomain ®,,. On each subdomain Q,, = D, x Dy,
we consider the mesh ’Dﬁf x DM defined as follows. For ®, = (c,d), we define a
mesh Eﬁf = {z;}}¥, with uniform step length h, = (d — ¢)/N, and the mesh
52\4 = {t;}74, with uniform step length At = 7 /M is defined on D;. Suppose
@Q/ = ngﬂ@p and DM = 5?4 N (0, T]. We consider the following discrete schemes
on the subdomains QvaM:

Scheme 1 :
LYY )i
] LN’MY i = [ p,1 plt.g | _
( ) [ D P] »J <[£.I/>/2,MYP]ZJ )
where

NM _
(L0 Y i o= [0, Yopuliy — €1[02Ypalig + fi(zisty, Ypulig, Ypalij—1) =0,

_/\/" _
LMY i o= 107 Yoliy — €2002Yy2liy + fa(@i by, [Yoali—1, [Yp2liy) = 0.
Scheme 2 :

LMY
9 LN My iq = [ p,1 plti) =,
( ) [ D P] 5] <[£-I/;\,[2’MY;D]1,]
where

[ﬁﬁ,/iMYp]i,j = [0; Ypulij — €162Yplig + fi(zisty, [Yoalij, [Yplij—1) =0,

NM . _
(L5 Yplig o= [0; Ypalij — €2[02Yp2lij + falwisty, YVpulij, Ypaliy) = 0.
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Here,
_ \%% l‘i,t‘ -W l‘i,t‘_
51& Wp($i7tj) _ :D( J) X P( J 1)7
52 W (i, t5) = Wolris,ty) - QWP(fi’tj) *Wolzi b))
hy
Next, assuming oM = (ﬁjL\[’M\ﬁg) U (ﬁ?f’M\ﬁm) U ﬁfnf’M U (ﬁivM\ﬁm) U

(ﬁﬁ/’M\Q), and initial solution Y° as

0 for (z;,t;) € ® x (0, 7],
Yo(xiatj) = y(l'“tj) for (ﬂfz,t]) € 5'/\/‘ X {0}7
Y'(a,t;) = yla,t;)  for (a,t;) € {0,1} x DM,

we calculate the numerical solution Y*, k > 1 of problem (2) on ﬁN’M as follows

Yh i o) M\,

where we solve

1) MY =0 Q) M,
Y]Z((Ei, 0) = ¢(a;) for z; € 52/,

Y5 (0,t5) = o(t;),
Y]z(4p1,tj) = Iij71(4p1,tj) for tj € @{5\4,

LN MY Rl =0 in M,

Y4 (2:,0) = ¢(x;) for a; € 5%,
Yh(1—4p1,t;) = LY (1 —dp1ty),
Yr(1,t;) = ¢y (t;) for t; € DM,

(LMY =0 in QM

YF(2i,0) = ¢(x;) for z; € 51\/,

Y7 (1 —4ps +3p1,t5) = LY (1 = 4ps + 3p1, t;),
YE(1 = p1,ty) = YR — pa,ty) for t; € DM,

(13)

MY =0 i oM,

Y} (x5,0) = ¢(x;) for z; € 52\[,

Y0 (pr.t;) = LY (o),

Y5 (4p2 — 3p1,t) = LY L (4pa — 3p1, t;) for t; € DM,
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(LAY ] = 0 in Q)M
YF (2:,0) = ¢(;) for z; € 5N
Y% (p2,t;) = I, Y} (pa, t) for t; € DM,

Y5 (1= pa,t;) = Z,YF(1 — pa, t;) for t; € DM

(15)

where Z; Z represents the piecewise linear interpolant of the discrete function Z at
time level ¢;. We repeat the process till |[Y* — YkHLm(ﬁN,M) < 7 (user chosen

parameter).

4. Convergence Analysis of the Algorithm

Here, we give convergence analysis of the proposed algorithm. We define some
auxiliary problems and construct the mesh function Y in a similar way as of (10).
We define

VMY L] =0in @M, [CNMY gl =0 in QM

Y1 (2:,0) = (a) for a; € D . Y (2:,0) = ¢(a,) for z; € Dy,
?L(O,tj):y(o,tj)v ?R(1*4/)17tj):y(1*4ﬂl,tj),
Y1 (4p1,t;) = y(4p1,t;) for t; € DM, Yr(1,t;) = y(1,t;) for t; € DM,

MMM?LJ_omQNM
Y, (2;,0) = ¢(x;) for x; € @

Y, (1—4py +3p1,t;) = y(1_4p2+3p15tj)a
Y ( — p1,t )—y(l—pht]‘) for tjE@'tAA,
[L:N MY@L’J =0in Q?/’M,

Y(2:,0) = ¢(x;) for z; 5?/,
Y@(platj) = y(pht’)a
Y(4p2 — 3p1,t;) = y(4p2 — 3p1,t;) for t; € DM

[L';\,{’M?m]i,j =0in Q‘{X’M,

S —N

Yo (2,0) = ¢(z;) for x; € D,

Ym(p2a tj) = Z/(PQ» t ')7

Yo (1= pa,ty) = y(1 — past;) for t; € DM.
Here [,i,v M p=L., 0, m,r, R are the discrete operators that were used in problems
for Y’;,p = L,¢,m,r, R. The only difference between the problems for Y}; and
?p is in that we use the exact solution y of (2) in the boundary conditions for
Y,,p=L,{,m,r R.

Now, using the solution Y we split the global error ||y — YkHLw@N.M) into the

discretization error ||y — Y| |Lw(§N,M) and iteration error |[Y — Yk||LOO(§/\f,/\A)7 and
calculate the error bound by using the triangle inequality as follows

16) Ny~ Y| v, < 11y = Yl g, + 1Y = Y| vom.

We will now separately bound each term on the right-hand side. We provide

the details for Scheme 1 here, as Scheme 2 can be analyzed in a similar manner.



466 AAKANSHA, S. KUMAR, AND P. DAS

To bound the first term, we proceed as follows: consider Scheme 1 for (z;,t;) €
QQ/’M, p=L,¢;m,r, R. Then, for n = 1,2, we have
[0 epnli — En[aiep,n}l}j
 (Fn (@it Ynsi o Ys—nsing—1) = (@it Vomsi g Yp3-niij—1))
=[(6: = 0)ynli; + €nl(02 — 62)ynli
(17) = (fa(@istjs Ynii g Y3—nsig) = (@i Uy Ynsigs Ys—niii-1)),

where e, (z;,t;) = y(xi, t;)—Y,(z;,t;) denotes the error function and e, = (e, 1,€,2)7.
The error equation (17) can be defined as

LNMy = Yp)ig =[07 epnliy — enldzepnliy + [Spmlii Wrsig—ns1 — Vo1 j—nt1)

+ [ap,nli i (Y2si,4n—2 — )N/p,2;i,j+n—2)
=[(6r — B)ynli,; + €nl(02 — 6 ynli
— (fn(@is s Unsi g Y3—nsig) — Fr(Tis by Ynsi g Y3—msij—1)),

where
1
of - -
[3p.nli.s :/ o (xi,tj,Yp,n;i,j + alYnsij = Younisg),
0o dY1
Yy 3-niij—1 + a(Ys—nsij—1 — Ypﬁ—n;@jﬂ)) da
and

! afn <7 <7
[p,nli; = o 373/2 (xhtjv Ypniig + @(Ynsig — Ypniig)s

Yp3—niij—1 + a(Ys—n;ij—1 — Yp,3fn;i,jfl)) da.
Now, using the mean-value theorem, the above expression leads to
(18)
LM Y=Y )ig = (07 = 1) Ynsij —n (02 = 02) Ynsi g+ an (Y3 nsij — Ys—nsij—1);
df1 P
where a1 = (@i, tj, M5, Viig), a2 = 2 (Tis b5 024055 Vasig) and Mg, Vki,gs

Yo o
k = 1,2, are intermediate values.

The operator fﬁf’M = (‘,S,”Zf?/l’M, f;}g’M)T satisfies the following discrete maximum
principle.

Lemma 4.1. Suppose the mesh function W, satisfies Wy(x;, t;) > 0, i =0, N,
t; € DM, and W,(z;,0) > 0 for z; € 52/. If XQ/’M W, > 0 in QQ/*M, then
W, > 0in ) ™M

Proof. The lemma can be proved using the arguments in [11, Theorem 6]. |

Lemma 4.2. Let y be the solution of (2) and ?p denote the solution of auxiliary
problems defined above. Then

ly— ?pHLoo(ﬁﬁ/’M) < N (InN)? + At).
Proof. For the third term of equation (18), we have

| (Y3—niij — Y3—niij—1)| < Cl(Y3=nsi,j — Y3—nsi,j—1)|
(19) < Oty — 1) 0eys—n(@is )l oo 1, 1y < CAL,

by using Taylor expansion and the derivative bound (6).
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Further, for the first term of equation (18) we again use Taylor expansion and
the derivative bound (6) to get

(20) ‘ (5; - at) yn;i,jl < C(tj - tjfl) Hatzyn(x“ ')”Loo([t]._htj]) < CAL.

The estimation of the middle term of equation (18) depends on the subdomain.
First, suppose (z;,t;) € QJX’M. We will consider four different cases for p; and po
as follows.
Case 1: po =4/26 and p; = pa/4.
In this case, the perturbation parameters are not very small. Further, we have
et < CIn N, e5' < CIn® N, and hy, < CN ', Therefore, for n = 1,2, using
Taylor expansions and bounds in Section 2 we get
2 2 2 4
En ‘(635 - 81) yn;i,j’ SCthn Hazyn(v tj)HLoo([Ii—l,z'H—l])
<Chi(er' +e3') < ONT(lnN)?
Case 2: py =4/26 and p; = (2,/61InN)/y/a.
In this case, we have hy, < C\/ETJ\/'_1 InN.Forn = 1,2, e; < &g, Taylor expansions
and bounds in Section 2 we get
2 2 2 4
en [ (02 = 02) Ynssi| <Chien Hawyn("tj)HLm([a:i_l,zi+1])
<Chi(e7' +e3') SCON2(InN)2
Case 3: p2 = (2\/e2InN)//a and p; = po/4.
In this case, we have hy, < C\/eaN ' InN and 51_1/2 < 452_1/2. Thus, for n =1, 2,
using Taylor expansions and bounds in Section 2 we have
2 2 2 4
(62 = 02) | <OW e 08
<Chi(e;t +e3') <CN72InN)%
Case 4: p1 = (2\/e1InN)//a and ps = (2\/E2InN)/ /.
In this case, €1 and ey are the parameters of different magnitudes and they are

small. We have hy, < C\/etN “!InN. For n = 1,2, using Taylor expansions and
bounds in Section 2 we obtain

en | (07 = 07) ynsi | < Chien ||8§yn(-7tj)“mo([
Thus, combining the bounds in all four cases with the bounds (19)-(20) we get
LMy = Y1)l < CW 2N + At),n = 1,2, (2, ;) € QM.

< CN 2 (InN)2.

Ti1,Tiq1]) —

Hence, applying the discrete maximum principle for ZJL\/’M to C(N"2(InN)? +
At) £ (y—Yp)(x;,t;), we obtain

1y = YLl vy < ON T2 (IN)? 4 CAL.

Similarly,
1y = YRl oo vty < CN72(InN)? + CAL

Next, for (z;,t;) € Q?/’M, n = 1,2, using (18) and (19)-(20) we have
(21) L™ (= Ye)ig) < en] (6 = 02) i | + O

To calculate the estimate for ¢, | (5% — 83) yn;i’j|, we will make use of the decompo-
sition ¥, = vp + Wn, Wy = Wn e, + Wne,. We need to consider four different cases
for p; and po as follows.
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Case 1: py =4/26 and p; = pa/4.

Using arguments similar to those in Case 1 for QJL\/’M we obtain
En |((5§ - 8%) yn;i7j| < CN_Q(IHN)z.

Case 2: pp =4/26 and p; = (2/61InN)/\/a.
In this case, 551 < CIn®WN, and hy < CN L. Using Taylor expansions and the
derivative bounds in Section 2, for n = 1,2, we get

en | (97 = 0 ynsij| < Chien Ha;lvn("tj)HL""([zi,l,mi+1])
+Ce, ||a§wn,€1(.,

A

tj)HL"C([ﬂCi—thl])
+Chijen ||0thn.e, (-, tj)HLoo([xH,me
CN7T2 4 1By [l oo (2 y,wi0a]) + N2 (InN)?
CN2(InN)2.

Case 3: p2 = (2\/e2InN)//a and p; = po /4.

Using arguments similar to those in Case 3 for QJL\/’M we obtain

en | (02 = 02) Yniij| < CN(InN)2.
Case 4: p1 = (2y/e1InN)//a and py = (2y/22InN)//a

Using Taylor expansions and the derivative bounds in Section 2 with hy < C\/egN "' In N,
we get

IA A

en | (97 = 0 yniig| < Chien|Opvn(t5)]| poe
+Ceyp ||020n e, (-,

[xi—1,miq1])
tj)’|L°°([1i—17ﬂ7i+1])

+Oh§€n Ha;lwn752 (~7 t]) ||Lw([mi—1,1i+1])

CN_2 + ”881 ”LW([xi,l,mHl]) +N_2(IHN)2
CN2(InN)2.

Now, applying the discrete maximum principle for Z?/’M to C(N2(In V)2 +At)+
(y—Yy)(z4,t;), we obtain

19 = Yell o vy < ON2(InN)? + CAL.

ININA

Similarly,
19 = Yol oo oty < ON72(InN)? + CAL.

Now, for (z;,t;) € QXM n=1,2, we use (18) and (19)-(20) to get
(22) L (Y = Yon)ig| < en | (53 = 82) yniig| + CALL
To calculate the estimate for ¢, |(5§ — 8%) yn;i7j|, we proceed as follows.
Case 1: py =4/26 and p; = p2/4
Using arguments similar to those in Case 1 for

en | (02 = 02) Ynsij| < CN?(InN)?.
Case 2: py = 4/26 and p; = (2\/1 InN)/\/ax.

Using arguments similar to those in Case 2 for QQ/’M we obtain

En ’(65 - aﬁ) yn;@j‘ < CN_2(111N)2,

QJL\/’M we obtain
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Case 3: p2 = (2/e2InN)//a and p; = pa/4; Case 4: p; = (2,/e1InN)/y/a and
p2 = (2/e2InN)//a.

For n = 1, 2, using the decomposition y,, = v, +w,, Taylor expansions, and bounds
in Section 2 with h,, < CN ™! we get

en (82 = 02) nsig| SOz [Oh0n ()]
+Cey ||892:wﬂ('7tj)|‘L°°([z,;_1,ri+1])
SCN_Q + ||BEQ||L°O([$WL—17I1‘+1])
<CN2.

([wi—1,2it1])

Now, applying the discrete maximum principle for fﬁ\n/’M to CIN2(In N2+ At)+
(y— Y )(xi,t5), we obtain

19 = Yol oo vty € CN2(INN)? + CAL.

We can establish the same bound for the Scheme 2 by applying the preceding
arguments. O

Now, we will introduce a few notations that we will use in the further analysis.

& =max{ max (Yo —Y1)(p1,t))], max (Y, — Yr)(1—p1,t))},

l
t;edM t;edM

592 :max{ max |(?m _?4)(p2’tj)|7 (.max ‘(?m _?T)(l _p27tj)}7

t;€OM t;€DM

apy = max{t;g%? (YL —Z;Y.)(4p1, )], e, (Yr —Z;Y,)(1 —4py1,t5)},

Eaps—sp, =max{ max (Yo —Z;Ym)(4p2 — 3p1,t;)],
tjei){"‘

max |(Y, —Z;Y,)(1 — 4py + 3p1,t;)},
tjei){‘”‘

& =max{ max_|(Yz ~Z,Y*")(dp1, 1))

t;edM

max |(Yr—Z; Y )(1 —4p1,t;)],

t;edM

max (Ve — Z,Y* ") (dpz — 3p1.1,),

t;eoM

max |(YT - I]'Yk_l)(l - 4p2 + 3p17tj)‘}7
t; E@?A

where £* represents the iteration error, &4p, and &4p,-3,, denote the interpolation
errors, and §,, and &,, denote the discretization errors.

Now we proceed to bound the second term on the right hand side of (16). Here,
we will discuss the proof for Scheme 1; the proof for Scheme 2 can be done analo-

. . . - NM _ m NM ¢ N MN\T

gously. For this purpose, we will introduce the operator L " = (]Lp LS )
and then establish a discrete maximum principle for it.

Consider Scheme 1 for (z;,t;) € QQ[’M, p=L,¢,m,r, R. Then, the error equa-
tion of e} (z;,t;) = (Y, — Yll,) is defined as

LAM(Y, — Y0 =[07 eb )iy — enld2ep nli + Bpnlig Vij—nt1 — Yorijoni1)

(23) + [Gpnli (Yasijan—2 = Ypoi j4n—2) = 0, n=1,2,
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where
1
. of >
[Siﬂﬂ]i’j = /O 8:;; ( tJ7 Y;Dln RN a’(Yn;iJ Ypln 3 J)
Yp1,37n;i,j71 +a(Ys_n;ij—1— Yp{B—n;i,ﬁl)) da
and

1
~ 6f 1 Ve 1
[Qp,n]i,j :A (:)yz (1‘1, tJ7Yp n;ji,j a(Yn;iJ - }/p,n;i,j)v
Y13 n;t,j—1 + a(Y3 nii,j—1 7 }/1)1,3—n;i,j—1)> da.

Lemma 4.3. Suppose the mesh function Z, satisfies Z,(x;,t;) > 0, i = 0, N,
t; € DM, and Z,(z;,0) > 0 for z; € @2/. If ]LQ/MZP > 0in QQ/M, then Z, > 0
in (1,

Proof. The lemma can be proved using the arguments in [11, Theorem 6. ]

Theorem 4.4. Suppose Y and Y* are the solutions of the auziliary problems and
the proposed algorithm respectively. Then

~ 1 k _
(24) 1Y = Y|y g, < C (2) +C(N2(InN)? + At).

Proof. For (z;,t;) € QJL\/’M, using (23), Y, — Y} satisfies
LY MY, - YL =0, in OV M (YL - Y1) (2:,0) =0, 2, €D,
(Yo = YL)(0.t;) =0, [(Yo = YL)(4p1, 1)) < €'1, t; € D).
i el 4 (Y — Y5 (2, t ;) for (x;,t;) €

Q/X’M. Now, employing the discrete maximum principle to the mesh function
U (24,t;), we obtain

(Y = Y1) (i, 1)] <

Assume the mesh function W5 (z,,t;) =

—N M
(xia tj) € QL

For (z;,t;) € ﬁf’M\ﬁg, x; < p1. Therefore

> 1
1 1
(25) HYL - YL||Loo(ﬁ']:\/=M\§Z) < 15 :
Similarly
=~ 1
1 1
(26) ||YR - YRHLoc(ﬁ/}\{vM\ﬁT) < Zf .

Next, for (z;,t;) € QNM, n = 1,2, using (23), the error equation of e} (xz;,t;) =
(Y, —Y}) is defined as

Ly M (Yo = Y1)y =107 e nlig — enl02et )i + [Bemli(Viigontt = Vi joni1)
(27) + [denli (Vasijan—2 — Vi jin_2) = 0.
Thus, Y, — Y, satisfies
LY MY, - Y =0, in @M (Y, - YY) (2:,0) = 0, z; €D,
(Yo = Y3)(dp2 —3p1,t)| < €', t; € DM
(Yo = Y3) (o1, )| < (Yo = Y)(pr,t)| + (YL = Y) (1, 1))
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1
< Z,511 +&,,1, t; € DM

Now, we consider mesh function W5 (;,t,) = ()61 +&,, 1+ (Ye—Y}3)(s, t;)
-2+ (1 —11 1202 + 24p% —
for (x;,t) € Q?/’M, where ((z) = =+ U3z oL)T + p§ =n 37[)1/)27
48(p2 — p1)
is an increasing function in the domain [p1,4p2 — 3p1] with ((p1) = 1/4, ((4p2 —

3p1) =1, C(p2) = 1/2, ¢ > 0in )™, and LY ¢ > 0 in . So, on employing
calM
4

the discrete maximum principle to the mesh function \I@t (@i, t;) for (x;, ;)
we obtain

)

(Ve = YD) (@i, t5)] < ()€1 + &, 1.
Therefore, we get

=~ 1
1
(28) Y, _YZHLOO(E'Q/"M\ﬁm) < 551 + o1
Similarly
= 1
1 1
(29) HYT - YrHLoo(ﬁi\f-rM\ﬁm) < 55 +&p.-

Next, for (z;,t;) € QNM n = 1,2, the error equation of e}, (z;,t;) = (Y —YL)
is defined as

LA MY, — Y )ig =107 ety nlig — enl02em nlig + [Bmmlig (Vi jmnt1 — Vb 15 nt1
(30) + [Gmnli;(Vasijin—2 = Yo jin—2) = 0.
Thus, Y, — Y. satisfies

LY MY, YL )= 0, in OV M, (Y, — YL )(2:,0) =0, 2, €D,

(Yo = Y0) (02, )] <I(¥im = Yo) (2. t5)] + (Yo = Y;,) (02, 1))

1
§§§11 + &6, 14651, t; € DM,

(Yo = Y5 )1 = po, t)] <[(Y o = Y, ) (1= po,t)| +|(Yr = Y0) (1 = pa.t))]
1
§§§11 + &, 1+&,,1, t; € DM

Therefore, by employing the discrete maximum principle, we get

= 1
(31) HYm - YinHLoo(ﬁﬁ:’M) < 551 + fm +§P2'
Hence )
||Y7Y1||Lm(§N’M) S 551 +£p1 +sz'

Now, we calculate the bound for the term H? — Y?||. For this first we need to
find the estimate for £2. To this end we need to bound each term involved in the
definition of €2 separately.
Note that Z;Z represents the piecewise linear interpolant of the mesh function
Z at time level t;. For any x € [x;_1, z,], it is defined as follows
r; — X r —T;—1

Z(xith]‘) +
Ty — Tj—1 Ty — Tj—1

IjZ((E,tj) = Z(l’z,t])
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Hence, it is easy to deduce that

i — T Tr—x

|Z,Z(z,t)| <

|Z(iv,e;)| + |Z (s, 1)

Tj — Tj—1

( TiT® + x—xi1> max _|Z(a,t;)]|

Ti— Ti—1 Ty — Ti—1) a€{zi,zi—1}

Ty — Tj—1

IN

max }|Z(a,tj)|.

ac{z;,ri_1

Using the triangle inequality, the operator Z; stability, and equation (28), we get
(YL —Z,Y")(dp1, t)] < (Y — T Yo)(dpr, t)| + (T, Yo — T, Y1) (4p1, 1))
1
(32) §§4p11+§§11+£p11'

Similarly, applying the triangle inequality, the operator Z; stability, and equations
(29) and (31), we obtain

(Yr — iY)(1 — 4py,t))|
<|(Yr =LY, (1 —4p1,t)| + (T Y, — LY (1 = dpy, ty))|
(3) <€ 1+ 561+6,1,
(Yo = Z,Y")(4p2 — 3p1,t))]
<|(Ye = Z;Y ) (4p2 = 3p1,t5)| + [(Z; Yo — LY ) (4p2 — 3p1, 1)
(34) S54p273p1 1+ %511 + fml + 5p217
(Y, = ZY')(1 = 4ps + 31, 1;)|
(Ve = Z¥m) (1= 4p2 + 3p1, 1) + (T ¥ = LY (1= dpa + 3p1, 1))
(35)  <&app-3p, 1+ %511 +&p 1461
Therefore, using the definition of £ and equations (32)-(35) we get
&< %51 + €+ Epy + Eapy + Eapy—3p,-
Hence
e {€2, 17 = Y| ey} S A+ 564 A=y 6+ Ep + Eupus
Utilizing the same arguments as before will lead to
max {g’@“, Y — Y’“||Lm(§N,M)} <A+ %gk.
On simplifying the above expression, we get &8 < 2\ + (%)(k_l) &1, Therefore,

(36) 1Y = Y¥|| o v <2/\+< ) gl

Since py € 52/, (I1-p1)€ 5;\3[, p2 € 5?/, (1—p2) € 5iv, from Lemma 4.2, we have
£, + €y < CIN2(INA)? + A1),

To bound &4,,, we note that (YL — Ij?g)(4p1,tj)| =|(y— Ij?g)(4p1,tj)| and
(YR —Z,Y,)(1 —4p1, ;)| = |(y— Ij?r)(l — 4p1,t;)|. We now provide details to
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bound [(y — Ij{/g)(élpl,tj)\; similarly, one can obtain the same bound for |(y —
Z;Y,)(1 —4p1,t;)|. Using the triangle inequality we have
(37 y—ZYo)(dp1 ;)] < [(y—Ti9)(4pa, t)| + [Z;(y — Yo) (dpu, t;)].
Using stability of Z; and Lemma 4.2, we get
IZi(y— Yo)(4p1,t))] < CN T2 (InN)? + Ab), t; € DM

The first term on the right hand side of (37) is the interpolation error. Suppose
4py € [xi,x;41]. Then, we use the following interpolation estimates

|(yn - jyn)(4p17tj)| < Ch? Hazyn(wtj)|‘Loo([xi7£i+1])7

W~ Zi) o1, )] < 1)y 7 = 12,
and the arguments in Lemma 4.2 to prove that
|(y = Ziy)(dp1.t)| < CN 7 (In V)2,
Consequently,
€ip, SCNT2(InN)? + At).
Similarly, we can prove that
€aps—3p1 < C(Niz(ln-/v)z + At).

On combining these error bounds, we get A < C(N2(InN)? 4 At). Further, we
have ¢ < C, since Yl 1o @) < C- Hence,

IV = YH e

k
iy <C (;) + C(N2(InN)% + At).
O

Theorem 4.5. Suppose y and Y* are the solutions of problem (2) and the proposed
algorithm respectively. Then

k
1
(38) 1y = Y¥Il oo v, <C(2> + CN2(InN)? + At).
Proof. The proof of the theorem can be obtained by combining Lemma 4.2 and

Theorem 4.4 with (16). O
5. Numerical Experiments

To verify the theoretical findings given in the previous sections, we consider some
Gierer-Meinhardt type test problems in this section. All experiments are performed
on a Windows 10(64 bit) PC-Intel(R) Core(TM) i5-4200U CPU @1.60GHz, 6.00GB
of RAM using MATLAB 2019a. The user defined threshold is chosen to be 7 =
N=2(InN)? for |[YFH! — YkHLoo(ﬁN’,M) < 7. Next, we define the algorithm that

will be used to compute the numerical results.

(39) (LMY= (07 Ypliy — €l02Y )i + F (i 5, [Yplis) = 0.

Example 5.1. Consider Gierer-Meinhardt system (2) with the following nonlinear
reaction term and initial/boundary conditions

fi(z,t,y) = 3y1 — 2y + t*(exp(—y7) + sin(y2)) + t(1 — exp(3t)) sin(7z),

1
folz t,y) = =Py ( 14+ ——5 | + 3y2 — 10t*(1 — cos(27z)),
1+yy
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Algorithm: Schwarz waveform relaxation algorithm
Step 1. Initialize Y? with Y°(2;,¢;) = 0, (24,¢;) € (0,1) x (0, 7],
—N
YO(SL'i7tj) = y(xi,tj) (l’i7t]’) €D X {0} and
Yo(xi,tj) = y(xi,tj), (.’Ei,tj) € {0, ].} X @tj\/{ Set k= 1.

Step 2. Calculate Y% using equation (11) and Y, using equation (12). Next,
calculate Y* using equation (13) and Y} using equation (14). Finally, calculate
YF using equation (15).

Step 3. Update Y* using (10).

Step 4. The final solution, Y*, is obtained if the stopping condition is achieved; if
not, set k =k + 1, and proceed to Step 2.

FIGURE 2. Solution component y; with Scheme 1 for Example 5.1
with e; = 1077, e = 107° and N = 64, M = 16.

FI1GURE 3. Solution component yo with Scheme 1 for Example 5.1
with e; = 1077, 69 = 107° and N = 64, M = 16.
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TABLE 1. Uniform errors EV -2t

and uniform convergence rate
RNAL for Example 5.1.

Schemes N=2° N =20 N =27 N =28 N =29
M=4 M=4 M=43 M=4 M=4
EYA15.8467e-01  1.3635e-01  3.2901e-02 8.1412¢-03  2.0121e-03

Scheme 1 RYAT 2,100 2.051 2.015 2.014
E)A13.0848¢-01  8.4248¢-02 2.1595¢-02 5.4327¢-03  1.3241e-03

RYA 1.872 1.964 1.991 2.036
EY276.1280e-01  1.4884e-01  3.6471e-02  9.0623¢-03  2.2620e-03

Scheme 2 RYAT 2,028 2.042 2.029 2.002
E)A15.9452¢-01 1.5039e-01  3.7589-02 9.3952¢-03 2.3471e-03

RYAT 1,983 2.000 2.000 2.000
EYR6.8887¢-01 1.8494e-01 4.6807e-02 1.1732e-02 2.8928e-03

Scheme (39) R4t 1.897 1.982 1.996 2.019
E)A7.05250-01  1.7203¢-01  4.2581e-02  1.0608¢-02  2.6388¢-03

RY AT 2,035 2.014 2.004 2.007

wo(t) = (83— 1.5t2 4t +1,20t3 +exp(t) — 2t2)T, o, (t) = (4.5t>+ 3t +1,exp(3t))7,
o(x) =0, 1), T=1.

TABLE 2. Present algorithm with Scheme (39): Iteration counts
with e; = 1079 for Example 5.1.

gg = 1071 N =2° N =26
M=4 M =42

< =

|

< =
|

< =
|

—_
=~
ot
D

50000 otk w N
=R DD N O W Lo W W
=R DD N O W Lo W W
[ I U RSV JUR SO N |
NN DN WS Lot
=N N W W R Ul ]

We use the following double mesh method [38] to compute the maximum point-
wise errors because the actual solution to this test problem is unknown. Further,
the nonlinear discrete systems are solved by Newton’s method, setting 7 as the
tolerance. We compute

EN,At _ HYN,At . Y2N,At/4

£1,62 7N‘M)a

where the approximation Y2VAYA ig obtained by taking 2N + 1 discretization
points in x direction and At/4 mesh width in ¢ direction by utilizing the same

transition parameters p; and ps as for the solution YAt The uniform errors
EVA! are calculated as

EVN AL = max E?{’At
€1

)
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TABLE 3. Present algorithm with Scheme 1 or Scheme 2 : Iteration
counts with e; = 10~ for Example 5.1.

e2=10"9 N =25 N =25 N =27 N =28 N=2°
M=4 M =42 M =43 M =44 M=4°
g=1 4 5 5 6 6
2 3 3 4 4 5
3 3 3 3 4 4
4 3 3 4 3 4
5 3 3 3 4 4
6 3 3 3 3 4
7 2 2 2 2 3
8 2 2 2 2 2
9 2 2 2 2 2
10 1 1 1 1 1
10
FIGURE 4. Component 1 with Scheme 2 for Example 5.2 with
€1 =10"",e9 = 107% and N = 64, M = 16.
where E?{’At = max{E?f:lAt, E?{:fot,l, e E?{:ﬁ)t,s} is calculated for a constant value

of ey =107°, s € {¢ : 0 < ¢ < 10}. Next, we use the formula below to define the
uniform convergence rates

R/\/,At E/\/,At/]_EQN,At/z;)7

= log,(
where RVA! = (RVAT RYANT ang ENAL = (BN A BYAHT,

We also compute the numerical results using the algorithm with the standard
discretization scheme, which uses the backward Euler method on a uniform mesh
in time and the central difference scheme on a uniform mesh in space, as defined
below

The solution plots for Examples 5.1 and 5.2 are displayed in Figures 2 - 3 and
4 -5. For Scheme 1, Scheme 2, and Scheme (39), the uniform errors and uniform
convergence rates for the solution components are presented in Table 1 for Example
5.1. The numerical results presented in Table 1 are almost similar for all three
schemes. Tables 2 and 3 display the number of iterations to achieve the stopping
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FIGURE 5. Solution Component y» with Scheme 2 for Example 5.2
with €1 = 1077, 69 = 107° and N = 64, M = 16.

TABLE 4. Uniform errors EV 4
RNA for Example 5.2.

and uniform convergence rates

Schemes N=2° N =26 N =27 N =28 N =2°
M=1/4 M=42 M=4 M=4" M=4
EY 2112734602 3.9623e-03  1.0423¢-03 2.6382¢-04 6.6120e-05

Scheme 1~ R)AT 1.684 1.927 1.982 1.996
E)At3.5016e-02  9.5811e-03  2.5464¢-03  7.0867c-04 1.8222¢-04

RYAT 1.869 1.912 1.845 1.959
EY271.1026e-02  3.3801e-03  9.1004e-04 2.3167e-04  5.7932¢-05

Scheme 2 RYAT 1.706 1.893 1.973 1.999
EYA12.0197¢-02  7.8078¢-03  2.4604c-03  6.0747e-04 1.5148¢-04

RYAT 1371 1.666 2.018 2.001
EN 2114421602 4.8217e-03  1.3339e-03  3.4251e-04  8.6492¢-05

Scheme (39) R)AT 1.581 1.854 1.959 1.985
E3A11.93946-02  7.9896e-03  2.6077¢-03  6.9169¢-04 1.7736e-04

RYAT 1.279 1.615 1.915 1.963

criterion. The number of iterations for the proposed algorithm with Scheme 1 and
Scheme 2 are the same, whereas these counts are slightly different for Scheme (39).

Example 5.2. Consider the nonlinear coupled system (2) of singularly perturbed
nature with the following nonlinear reaction term and initial/boundary conditions

fi(z,t,y) = 4y — yo + cos(ya) — 2t(x — x2 + sin(nz)) — 4,
fo(z,t,y) = —y1 —sin(yy) + Tya + sin’(ya) — ot — 1,
o = (10tsint, 10 cost(1 — exp(—t)))?, ¢, = (10tsint, 10 cost(1 — exp(—t)))7,
¢(x) = (0,0)", T=1.

. A . A
The uniform convergence rates RN At and uniform errors ENVA are computed
in the same manner as before. The uniform errors and uniform convergence rates
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TABLE 5. Present algorithm with Scheme (39): Iteration counts
taking €1 = 1077 in Example 5.2.

g = 1071 N=2° N =26 N =27 N =28 N =2°
M= M = 42 M =43 M =44 M =45

qg=1 5 5 6 6 7

2 4 4 5 5 6

3 3 4 4 5 5

4 3 4 4 4 4

5 3 3 4 4 3

6 3 3 3 3 3

7 2 2 2 2 2

8 2 2 2 2 2

9 2 2 2 2 2

10 1 1 1 1 1

TABLE 6. Present algorithm with Scheme 1 or Scheme 2 : Tteration
counts with £; = 107 in Example 5.2.

go=10"9 N =2° N =26 N =27 N =28 N =29
M=4 M =42 M =43 M =44 M =45

qg=1 4 5 6 6 6

2 3 4 4 5 5

3 3 4 4 4 5

4 3 3 4 4 4

5) 3 3 3 4 3

6 3 3 3 3 3

7 2 2 2 2 3

8 2 2 2 2 2

9 2 2 2 2 2

10 1 1 1 1 1

for the Scheme 1, Scheme 2, and Scheme (39) for the solution components are
presented in Table 4 for Example 5.2. Further, Tables 5 and 6 show how many
iterations are necessary to satisfy the stopping constraint. Here, we also observe
the same behavior of the numerical results as in Example 5.1.

TaBLE 7. CPU time (in seconds) used by the present algorithm
for Example 5.1 with e; = 1077, g5 = 107°.

Scheme N =25 N =26 N =27 N =28 N =29
M =42 M =43 M =44 M =45 M =45

Scheme 1 0.434 2.610 26.878 271.484 6854.164
Scheme 2 0.569 2.824 28.986 291.506 7086.662
Scheme (39) 1.064 4.095 57.706 933.209 46471.232

To show the efficiency of the algorithm with Schemes 1 and 2, we compare the
computational cost required by the the algorithm with Schemes 1, 2, and Scheme
(39) in Tables 7 and 8 for the Examples 5.1 and 5.2 respectively. These results
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TABLE 8. CPU time (in seconds) used by the present algorithm
for Example 5.2 with e = 1077, €5 = 107°.

Scheme N =2° N =26 N =27 N =28 N =29

M=2  M=4£ M=4 M=+ M =4

Scheme I 0.895 2.198 18.481 209.241 5821.146
Scheme 2 0.783 2.856 20.185 249.665 6056.191
Scheme (39)  1.377 3.765 52840 1066.341  42024.251

TABLE 9. Uniform errors EV*4! and uniform convergence rates
RN AL using the tolerance 7 = 107 for Example 5.2.

Schemes N=2° N =26 N =27 N =28 N =29
M=1/4 M=4 M=4 M=4 M=4
E{V’Atl.2734e-02 3.9623e-03 1.0423e-03 2.6382e-04 6.6159e-05

Scheme 1~ R)A! 1.684 1.927 1.982 1.995
E)At35016e-02 9.5811e-03  2.5347¢-03  7.0668¢-04 1.8916¢-04
RY At 1.869 1.918 1.843 1.901
ENAT11017e-02 3.3773¢-03  9.0948¢-04 2.3211e-04  5.8595¢-05

Scheme 2 RYAT 1.706 1.893 1.970 1.986
EYA12.0012e-02  7.7631e-03  2.4473¢-03  6.8585¢-04  1.8496e-04
RYAT 1.366 1.665 1.835 1.890
EY211.4421e-02  4.8217e-03 1.3339e-03 3.4430e-04  8.761e-05

Scheme (39) R}AT 1.581 1.854 1.954 1.971
E)A11.92200-02  7.9597e-03  2.5881e-03  7.2213¢-04  1.9257c-04
RYAL 1272 1.621 1.841 1.907

TABLE 10. CPU time (in seconds) used by the present algorithm
for Example 5.2 with &1 = 1077, eo = 1072, and the tolerance

T=10"".
Scheme N =25 N =20 N =27 N =28 N =27
M=42 M=  M=41  M=45 M=
Scheme 1 1.827 5.820 35.504 380.224 5972.221
Scheme 2 1.607 7.224 36.336 428.854 6176.527
Scheme (39) 1.851 8.299 81.535 1155.001 44608.912

are calculated for fixed values 1 = 1077 and €5 = 107° and different values of
discretization parameters N" and At. These results clearly show that the algorithm
with Schemes 1 and 2 is computationally more efficient than Scheme (39).

We also compute the numerical results using a fixed tolerance of 7 = 1077 as
the stopping criterion for the algorithm. These results are shown in Tables 9 to
12. From these tables, we observe that the uniform errors and convergence rates
are consistent with the previous results. Additionally, the conclusions for the three
schemes remain unchanged. However, when comparing Tables 8 and 10, we find
that using the fixed tolerance 7 = 10~7 as the stopping criterion results in higher
CPU time compared to using the tolerance 7 = N 72(In )2
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TABLE 11. Present algorithm with Scheme 1 : Iteration counts
with £, = 107 and the tolerance 7 = 10~7 for Example 5.2.

o =10"7 N =2° N =26 N =27 N =28 N =29
M=14 M =42 M =43 M =44 M =45

[u—y
EN|
EN(
EN(
EN(
EN(
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TABLE 12. Present algorithm with Scheme (39) : Tteration counts
with £, = 107 and the tolerance 7 = 10~7 for Example 5.2.

go =102 N =25 N =26 N =27 N =28 N =29
M=14 M =42 M =43 M =44 M =45

—_
oo
oo
oo
oo

S © 000 ot w
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6. Conclusions

We have proposed a domain decomposition algorithm to solve the semilinear
coupled system of singularly perturbed Gierer-Meinhardt type parabolic problems.
On each subdomain, a classical central difference scheme in space along with the
splitting of components technique in time, is utilized. We have shown that the
proposed algorithm is parameter uniform, with the accuracy of almost second order
in space variable and one in time variable. To support the theoretical findings and
show the efficiency of the proposed algorithm, we have included two nonlinear
coupled system of test problems. It is also worth noting that Scheme 1 can be
implemented in parallel.
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