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ANALYSIS OF AN EFFICIENT PARAMETER UNIFORM

DOMAIN DECOMPOSITION APPROACH FOR SINGULARLY

PERTURBED GIERER-MEINHARDT TYPE NONLINEAR

COUPLED SYSTEMS OF PARABOLIC PROBLEMS

AAKANSHA, SUNIL KUMAR, AND PRATIBHAMOY DAS

Abstract. This article presents an efficient domain decomposition algorithm of Schwarz wave-
form relaxation type for singularly perturbed Gierer-Meinhardt type nonlinear coupled systems of
parabolic problems where the diffusion terms in each equation are multiplied by small parameters
of different magnitudes. The magnitude of these small parameters leads to the sharpness and

boundary layer behavior in the solution components. Our present algorithm considers a suitable
decomposition of the domain and decouples the process of approximating the solution compo-
nents at each time level. There are two different schemes proposed in this work. Specifically, the

schemes use the backward Euler method combined with a suitable component-wise splitting for
time discretization, while employing the central difference scheme for spatial discretization. The
two numerical schemes differ in their splitting methods: Scheme 1 employs a Jacobi-type split,
whereas Scheme 2 utilizes a Gauss-Seidel-type split. The exchange of information between neigh-

boring subdomains is achieved through piecewise-linear interpolation. The convergence analysis
of the algorithm is demonstrated using some auxiliary nonlinear systems. It is shown that the
present procedure provides uniformly convergent numerical approximations to the solution having
sharp spike components. Numerical experiments demonstrate that the considered algorithm with

present discretization is more efficient in terms of accuracy and iteration counts than with the
standard available approaches.

Key words. Schwarz waveform relaxation, domain decomposition method, Gierer-Meinhardt

systems, singular perturbation, efficient algorithms, computational cost, CPU time.

1. Introduction

In the past two decades, analysis and simulation of coupled systems of pa-
rameterized nonlinear problems with boundary and interior layer phenomena have
drawn the attention of physicists and applied mathematicians due to their numer-
ous appearances inside the scientific community, see for e.g. nonlinear problems
in [1, 2, 3, 4]. The computational analysis of these nonlinear PDE systems is not
straightforward as it involves perturbation parameters of different magnitudes and
coupling in the nonlinear terms [5, 6]. These problems are characterized by singu-
larly perturbed problems when the arbitrary small perturbation parameters can not
be approximated by zero. Gierer-Meinhardt model is one of the activator-inhibitor
types of singularly perturbed nonlinear reaction diffusion system, which appears in
pattern formation and morphogenesis and is of singularly perturbed multiple scale
nature. Here, small diffusion of the activator and large diffusion of the inhibitor
lead to sharp spike at the boundary points and make it of multiple-scale nature [7].

Veerman and Doleman [3] studied the existence and stability of localized pulses
on the GM (Gierer-Meinhardt) equation with a slow nonlinearity, which can be
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formulated by the following multiple-scale reaction-diffusion equations

(1)

{
∂ty1 = ∂2

xy1 + F (y1, y2),
∂ty2 = ε2∂2

xy2 +G(y1, y2),

where 0 < ε ≪ 1 is a small parameter. A rigorous existence and stability analysis
for GM equation corresponding to interior spike, boundary spike and two boundary
spikes are examined in [8, 9] based on the boundary conditions. In general, the
procedures of deriving wellposedness of a nonlinear problem use the fixed point
theory, as given in [10].

Hence, we consider the following generalized version of nonlinear coupled sys-
tem of GM equation for further behavior of its solutions and their computational
efficiency, on Ω = D× (0, T ], where D = (0, 1):

(2) Ly := ∂ty(x, t)− ε∂2
xy(x, t) + f (x, t,y) = 0,

with initial and boundary conditions

y(x, 0) = ϕ(x), 0 ≤ x ≤ 1,

y(0, t) = φ0(t), y(1, t) = φ1(t), 0 < t ≤ T .

Here, ε = diag(ε1, ε2) is a diagonal matrix such that the parameters ε1 and ε2
can have different magnitudes with 0 < ε1 ≤ ε2 ≤ 1; L = (L1,L2)

T , the solution
y = (y1, y2)

T , the boundary data φ = (φ1, φ2)
T , and initial data ϕ = (ϕ1, ϕ2)

T . We
consider that the functions f ,ϕ,φ0, and φ1 are sufficiently smooth and appropriate
compatibility conditions hold for the present problem, see [11]. Further, for all
(x, t,y) ∈ Ω× R2, assume that the nonlinear reaction term f = (f1, f2)

T satisfies

∂fs
∂ys

(x, t, y1, y2) ≥ α > 0,
∂fs
∂yq

(x, t, y1, y2) ≤ 0, s ̸= q,

2∑
q=1

∂fs
∂yq

(x, t, y1, y2) ≥ α > 0, s = 1, 2.

The investigation of multiple scale singularly perturbed problems became signif-
icantly important due to the rapid variation of continuous solutions in specific layer
regions. Conventional simulators to solve such problems often encounter challenges
in effectively handling sufficiently small diffusion terms. Consequently, the need
arises for robust numerical methods to address these issues [12, 13]. Fitted/graded
mesh [14, 15, 16, 17, 18, 19], fitted operator [20], and domain decomposition ap-
proaches are often used to construct such robust numerical algorithms for compu-
tational efficiency. This paper utilizes the domain decomposition approach, which
is frequently used to reduce the computational cost, as like splitting approaches for
coupled systems given in [21].

Domain decomposition approaches have gained significant popularity for effec-
tively solving partial differential equations [22, 23, 24, 25, 26, 27]. Among these
methods, Schwarz Waveform Relaxation (SWR) stands out as a special class specif-
ically designed for time-dependent problems and was initially introduced in [29, 28].
The SWR approach involves dividing the original domain into space-time subprob-
lems, where each subproblem is solved over the entire time window independently
before exchanging interface data between subdomains. Notably, each subdomain
can adopt its own space and time grid along with discretization techniques, making
SWR highly adaptable and well-suited for parallel computing. SWR methods have
been developed for a wide range of regular and singularly perturbed time-dependent
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partial differential equations (where “regular” indicates non-singular perturbation
nature) in [30, 31, 32, 23, 33, 34] and the references therein.

The research presented in [35, 36] delves into a semilinear system comprising
two singularly perturbed parabolic reaction-diffusion equations set on a vertical
strip. These equations contain highest order derivatives with divergent forms, which
are multiplied by a small perturbation parameter ε2. As the solution evolves, it
reveals the existence of parabolic boundary layers of width O(ε) in the vicinity
of the strip boundary, particularly when ε approaches zero. In [35], the authors
explore the condensing mesh method and the classical finite difference method as
tools to construct a uniformly convergent difference scheme. On the other hand,
[36] employs the integro-interpolation method to create a conservative nonlinear
finite difference scheme, also demonstrating uniform convergence. In [11], a fitted
mesh approach is considered for a semilinear system that involves two singularly
perturbed parabolic reaction-diffusion equations with differing parameters. In [11],
the discretization constituting the backward Euler scheme in time and the standard
central differencing on Shishkin mesh in space is considered. So far, we are not
aware of any paper that explored the utilization of the SWR approach to address
the robust numerical solution of problem (2).

So, the purpose of the paper is two-fold: firstly, to develop an efficient SWR
type domain decomposition method for solving problem (2), and secondly, to pro-
vide a comprehensive error analysis of the developed method. We define a suitable
decomposition of the domain and decouple the process of approximating the solu-
tion’s components at each time level. We develop two different schemes that use
the backward Euler method combined with a suitable component-wise splitting for
time discretization, while employing the central difference scheme for spatial dis-
cretization. Scheme 1 uses a Jacobi type split, while Scheme 2 uses a Gauss- Seidel
type split. Following this, we introduce an iterative process, where the exchange of
information between neighboring subdomains is achieved through piecewise-linear
interpolation. The convergence analysis of the iterative process is demonstrated
using some auxiliary problems. It is shown that the algorithm provides uniformly
convergent numerical approximations to the solution. Numerical results demon-
strate that the algorithm is more effective with the present discretization approach
than the traditional discretization, which uses the backward Euler method on a
uniform mesh in time and the usual central difference scheme on a uniform mesh
in space.

The work is organized as follows. The continuous solution and its derivatives
bounds are introduced in Section 2. In the section 3, we introduce a novel algorithm
based on domain decomposition approach for solving the nonlinear system (2) by
two proposed different schemes and analyze their convergence procedures in Section
4. Next, we give numerical experiments for a few Gierer-Meinhardt type systems
in Section 5. Section 6 concludes the theoretical findings and provide the synopsis
of the present convergence procedure.

Notation: The symbol C stands for a generic positive constant which is in-
dependent of perturbation parameters εs, s = 1, 2, the iteration parameter k and
the number of partition points N and M. ||.||L∞(J) denotes the maximum nor-
m, where J is a set which is both closed and bounded. ||.||L∞(JN ,M) denotes the

discrete maximum norm on the discrete domain JN ,M of J .
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2. Analytical Properties of Singularly Perturbed Gierer-Meinhardt type
Systems

We first recall the a priori derivative estimates for the solution of nonlinear
system (2). The solution y of problem (2) is decomposed into y = v + w. The
solution components v and w denote the regular and singular parts of the solution
y respectively, such that

(3)


∂tv(x, t)− ε∂2

xv(x, t) + f (x, t, v) = 0 in Ω,

v = z on {0, 1} × (0, T ],

v = ϕ(x) on [0, 1]× {0},

and

(4)

{
∂tw(x, t)− ε∂2

xw(x, t) + f (x, t, v +w)− f (x, t, v) = 0 in Ω,

w = y− v on ({0, 1} × (0, T ]) ∪ ([0, 1]× {0}),

where z satisfies

(5)

{
∂tz + f (x, t, z ) = 0, (x, t) ∈ {0, 1} × (0, T ],

z(x, 0) = ϕ(x), x ∈ {0, 1}.

Then, following the procedure in [11], we have

(6) ||∂s
t y||L∞(Ω) ≤ C, s = 0, 1, 2.

Further, the derivatives of the regular and singular parts of the solution are bound-
ed as described in the following lemmas.

Lemma 2.1. The regular part v = (v1, v2)
t satisfies the following estimates

||∂s
t v||L∞(Ω) ≤ C, ||∂s

xv||L∞(Ω) ≤ C, s = 0, 1, 2,

||∂s
xvj ||L∞(Ω) ≤ Cε

(1−s/2)
j , j = 1, 2; s = 3, 4,

where C is independent of perturbation parameters εs, s = 1, 2.

Proof. The proof follows using the arguments in Lemmas 4-6 of [11]. �

Lemma 2.2. The singular part w = (w1, w2)
t satisfies the following estimates

|wl(x, t)| ≤ CBε2(x), l = 1, 2,

|∂s
xw1(x, t)| ≤ C(ε

−s/2
1 Bε1(x)+ε

−s/2
2 Bε2(x)), |∂s

xw2(x, t)| ≤ C(ε
−s/2
2 Bε2(x)), s = 1, 2,

|∂s
xw1(x, t)| ≤ C(ε

−s/2
1 Bε1(x) + ε

−s/2
2 Bε2(x)), s = 3, 4,

|∂s
xw2(x, t)| ≤ Cε−1

2 (ε
−(s−2)/2
1 Bε1(x) + ε

−(s−2)/2
2 Bε2(x)), s = 3, 4, ∀ (x, t) ∈ Ω.

Further, for ε1 < ε2 and ε2 ≤ α/2, the singular part w = (w1, w2)
T can be further

decomposed as w1 = ŵ1,ε1 + ŵ1,ε2 , w2 = ŵ2,ε1 + ŵ2,ε2 , where

|ŵ1,ε1(x, t)| ≤ Bε1(x), |∂2
xŵ1,ε1(x, t)| ≤ ε−1

1 Bε1(x), |∂4
xŵ1,ε2(x, t)| ≤ ε−2

2 Bε2(x),

|ŵ2,ε1(x, t)| ≤ Bε1(x), |∂2
xŵ2,ε1(x, t)| ≤ ε−1

2 Bε1(x), |∂4
xŵ2,ε2(x, t)| ≤ ε−2

2 Bε2(x).

for (x, t) ∈ Ω. Here, C is independent of perturbation parameters εs, s = 1, 2, and

the layer functions Bεq (x) are defined as Bεq (x) = e−x
√

α/εq + e−(1−x)
√

α/εq , x ∈
[0, 1], q = 1, 2.

Proof. The proof follows using the arguments in Lemmas 8,9, and 11 of [11]. �
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Figure 1. Decomposition in spatial direction.

3. Schwarz Waveform Relaxation Algorithm

From the derivative bounds given in the above lemmas, we can observe two
overlapping boundary layers near the points x = 0, 1 where the derivative bounds
are unbounded to the inverse powers of εn, n = 1, 2. These bounds lead to the
non-convergence of the approximate solution on uniform meshes, if standard dis-
cretizations are used for continuous form of singularly perturbed Gierer-Meinhardt
type systems. Here, a domain decomposition method is constructed to solve prob-
lem (2). The original domain is divided as follows: Ωp = Dp×Dt, p = L, ℓ,m, r,R,
such that DL = (0, 4ρ1), Dℓ = (ρ1, 4ρ2− 3ρ1), Dm = (ρ2, 1− ρ2), Dr = (1− 4ρ2+
3ρ1, 1 − ρ1), DR = (1 − 4ρ1, 1) and Dt = (0, T ] (see Figure 1) with subdomain
parameters ρ1 and ρ2 (see [37])

(7) ρ2 = min

{
4

26
, 2

√
ε2
α

lnN
}
, ρ1 = min

{
ρ2
4
, 2

√
ε1
α

lnN
}
,

Here, the transition parameters are chosen in such a way that the subdomains DL

andDR do not overlap with the subdomainDm. On each subdomain Ωp = Dp×Dt,
we consider the mesh DN

p × DM
t defined as follows. For Dp = (c, d), we define a

mesh D
N
p = {xi}Ni=0 with uniform step length hp = (d − c)/N , and the mesh

D
M
t = {tj}Mj=0 with uniform step length ∆t = T /M is defined on Dt. Suppose

DN
p = D

N
p ∩Dp and DM

t = D
M
t ∩(0, T ]. We consider the following discrete schemes

on the subdomains ΩN ,M
p :

Scheme 1 :

(8) [LN ,M
p Yp]i,j =

(
[LN ,M

p,1 Yp]i,j
[LN ,M

p,2 Yp]i,j

)
= 0,

where

[LN ,M
p,1 Yp]i,j := [δ−t Yp,1]i,j − ε1[δ

2
xYp,1]i,j + f1(xi, tj , [Yp,1]i,j , [Yp,2]i,j−1) = 0,

[LN ,M
p,2 Yp]i,j := [δ−t Yp,2]i,j − ε2[δ

2
xYp,2]i,j + f2(xi, tj , [Yp,1]i,j−1, [Yp,2]i,j) = 0.

Scheme 2 :

(9) [LN ,M
p Yp]i,j =

(
[LN ,M

p,1 Yp]i,j
[LN ,M

p,2 Yp]i,j

)
= 0,

where

[LN ,M
p,1 Yp]i,j := [δ−t Yp,1]i,j − ε1[δ

2
xYp,1]i,j + f1(xi, tj , [Yp,1]i,j , [Yp,2]i,j−1) = 0,

[LN ,M
p,2 Yp]i,j := [δ−t Yp,2]i,j − ε2[δ

2
xYp,2]i,j + f2(xi, tj , [Yp,1]i,j , [Yp,2]i,j) = 0.
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Here,

δ−t Wp(xi, tj) =
Wp(xi, tj)−Wp(xi, tj−1)

∆t
,

δ2xWp(xi, tj) =
Wp(xi−1, tj)− 2Wp(xi, tj) +Wp(xi+1, tj)

h2
p

.

Next, assuming Ω
N ,M

:= (Ω
N ,M
L \Ωℓ) ∪ (Ω

N ,M
ℓ \Ωm) ∪ Ω

N ,M
m ∪ (Ω

N ,M
r \Ωm) ∪

(Ω
N ,M
R \Ωr), and initial solution Y0 as

Y0(xi, tj) = 0 for (xi, tj) ∈ D× (0, T ],

Y0(xi, tj) = y(xi, tj) for (xi, tj) ∈ D
N × {0},

Y0(a, tj) = y(a, tj) for (a, tj) ∈ {0, 1} ×DM
t ,

we calculate the numerical solution Yk, k ≥ 1 of problem (2) on Ω
N ,M

as follows

(10) Yk =



Yk
L in Ω

N ,M
L \ Ωℓ,

Yk
ℓ in Ω

N ,M
ℓ \ Ωm,

Yk
m in Ω

N ,M
m ,

Yk
r in Ω

N ,M
r \ Ωm,

Yk
R in Ω

N ,M
R \ Ωr,

where we solve

(11)


[LN ,M

L Yk
L]i,j = 0 in ΩN ,M

L ,

Yk
L(xi, 0) = ϕ(xi) for xi ∈ D

N
L ,

Yk
L(0, tj) = φ0(tj),

Yk
L(4ρ1, tj) = IjYk−1(4ρ1, tj) for tj ∈ DM

t ,

(12)


[LN ,M

R Yk
R]i,j = 0 in ΩN ,M

R ,

Yk
R(xi, 0) = ϕ(xi) for xi ∈ D

N
R ,

Yk
R(1− 4ρ1, tj) = IjYk−1(1− 4ρ1, tj),

Yk
R(1, tj) = φ1(tj) for tj ∈ DM

t ,

(13)


[LN ,M

r Yk
r ]i,j = 0 in ΩN ,M

r ,

Yk
r (xi, 0) = ϕ(xi) for xi ∈ D

N
r ,

Yk
r (1− 4ρ2 + 3ρ1, tj) = IjYk−1(1− 4ρ2 + 3ρ1, tj),

Yk
r (1− ρ1, tj) = IjYk

R(1− ρ1, tj) for tj ∈ DM
t ,

(14)


[LN ,M

ℓ Yk
ℓ ]i,j = 0 in ΩN ,M

ℓ ,

Yk
ℓ (xi, 0) = ϕ(xi) for xi ∈ D

N
ℓ ,

Yk
ℓ (ρ1, tj) = IjYk

L(ρ1, tj),

Yk
ℓ (4ρ2 − 3ρ1, tj) = IjYk−1(4ρ2 − 3ρ1, tj) for tj ∈ DM

t ,
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(15)


[LN ,M

m Yk
m]i,j = 0 in ΩN ,M

m ,

Yk
m(xi, 0) = ϕ(xi) for xi ∈ D

N
m ,

Yk
m(ρ2, tj) = IjYk

ℓ (ρ2, tj) for tj ∈ DM
t ,

Yk
m(1− ρ2, tj) = IjYk

r (1− ρ2, tj) for tj ∈ DM
t ,

where IjZ represents the piecewise linear interpolant of the discrete function Z at

time level tj . We repeat the process till ||Yk+1 −Yk||
L∞(Ω

N ,M
)
≤ τ (user chosen

parameter).

4. Convergence Analysis of the Algorithm

Here, we give convergence analysis of the proposed algorithm. We define some

auxiliary problems and construct the mesh function Ỹ in a similar way as of (10).
We define

[LN ,M
L ỸL]i,j = 0 in ΩN ,M

L ,

ỸL(xi, 0) = ϕ(xi) for xi ∈ D
N
L ,

ỸL(0, tj) = y(0, tj),

ỸL(4ρ1, tj) = y(4ρ1, tj) for tj ∈ DM
t ,


[LN ,M

R ỸR]i,j = 0 in ΩN ,M
R ,

ỸR(xi, 0) = ϕ(xi) for xi ∈ D
N
R ,

ỸR(1− 4ρ1, tj) = y(1− 4ρ1, tj),

ỸR(1, tj) = y(1, tj) for tj ∈ DM
t ,

[LN ,M
r Ỹr]i,j = 0 in ΩN ,M

r ,

Ỹr(xi, 0) = ϕ(xi) for xi ∈ D
N
r ,

Ỹr(1− 4ρ2 + 3ρ1, tj) = y(1− 4ρ2 + 3ρ1, tj),

Ỹr(1− ρ1, tj) = y(1− ρ1, tj) for tj ∈ DM
t ,

[LN ,M
ℓ Ỹℓ]i,j = 0 in ΩN ,M

ℓ ,

Ỹℓ(xi, 0) = ϕ(xi) for xi ∈ D
N
ℓ ,

Ỹℓ(ρ1, tj) = y(ρ1, tj),

Ỹℓ(4ρ2 − 3ρ1, tj) = y(4ρ2 − 3ρ1, tj) for tj ∈ DM
t ,

[LN ,M
m Ỹm]i,j = 0 in ΩN ,M

m ,

Ỹm(xi, 0) = ϕ(xi) for xi ∈ D
N
m ,

Ỹm(ρ2, tj) = y(ρ2, tj),

Ỹm(1− ρ2, tj) = y(1− ρ2, tj) for tj ∈ DM
t .

Here LN ,M
p , p = L, ℓ,m, r,R are the discrete operators that were used in problems

for Yk
p, p = L, ℓ,m, r,R. The only difference between the problems for Yk

p and

Ỹp is in that we use the exact solution y of (2) in the boundary conditions for

Ỹp, p = L, ℓ,m, r,R.

Now, using the solution Ỹ we split the global error ||y −Yk||
L∞(Ω

N ,M
)
into the

discretization error ||y − Ỹ||
L∞(Ω

N ,M
)
and iteration error ||Ỹ−Yk||

L∞(Ω
N ,M

)
, and

calculate the error bound by using the triangle inequality as follows

(16) ||y −Yk||
L∞(Ω

N ,M
)
≤ ||y − Ỹ||

L∞(Ω
N ,M

)
+ ||Ỹ−Yk||

L∞(Ω
N ,M

)
.

We will now separately bound each term on the right-hand side. We provide

the details for Scheme 1 here, as Scheme 2 can be analyzed in a similar manner.
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To bound the first term, we proceed as follows: consider Scheme 1 for (xi, tj) ∈
ΩN ,M

p , p = L, ℓ,m, r,R. Then, for n = 1, 2, we have

[δ−t ep,n]i,j − εn[δ
2
xep,n]i,j

+ (fn(xi, tj , yn;i,j , y3−n;i,j−1)− fn(xi, tj , Ỹp,n;i,j , Ỹp,3−n;i,j−1))

=[(δt − ∂t)yn]i,j + εn[(∂
2
x − δ2x)yn]i,j

− (fn(xi, tj , yn;i,j , y3−n;i,j)− fn(xi, tj , yn;i,j , y3−n;i,j−1)),(17)

where ep(xi, tj) = y(xi, tj)−Ỹp(xi, tj) denotes the error function and ep = (ep,1, ep,2)
T .

The error equation (17) can be defined as

L N ,M
p,n (y − Ỹp)i,j :=[δ−t ep,n]i,j − εn[δ

2
xep,n]i,j + [sp,n]i,j(y1;i,j−n+1 − Ỹp,1;i,j−n+1)

+ [qp,n]i,j(y2;i,j+n−2 − Ỹp,2;i,j+n−2)

=[(δt − ∂t)yn]i,j + εn[(∂
2
x − δ2x)yn]i,j

− (fn(xi, tj , yn;i,j , y3−n;i,j)− fn(xi, tj , yn;i,j , y3−n;i,j−1)),

where

[sp,n]i,j =

∫ 1

0

∂fn
∂y1

(
xi, tj , Ỹp,n;i,j + a(yn;i,j − Ỹp,n;i,j),

Ỹp,3−n;i,j−1 + a(y3−n;i,j−1 − Ỹp,3−n;i,j−1)
)
da

and

[qp,n]i,j =

∫ 1

0

∂fn
∂y2

(
xi, tj , Ỹp,n;i,j + a(yn;i,j − Ỹp,n;i,j),

Ỹp,3−n;i,j−1 + a(y3−n;i,j−1 − Ỹp,3−n;i,j−1)
)
da.

Now, using the mean-value theorem, the above expression leads to
(18)

L N ,M
p,n (y − Ỹp)i,j =

(
δ−t − ∂t

)
yn;i,j − εn

(
δ2x − ∂2

x

)
yn;i,j +an(y3−n;i,j −y3−n;i,j−1),

where a1 =
∂f1
∂y2

(xi, tj , η1;i,j , ν1;i,j), a2 =
∂f2
∂y1

(xi, tj , η2;i,j , ν2;i,j) and ηk;i,j , νk;i,j ,

k = 1, 2, are intermediate values.

The operator L N ,M
p = (L N ,M

p,1 ,L N ,M
p,2 )T satisfies the following discrete maximum

principle.

Lemma 4.1. Suppose the mesh function Wp satisfies Wp(xi, tj) ≥ 0, i = 0, N ,

tj ∈ DM
t , and Wp(xi, 0) ≥ 0 for xi ∈ D

N
p . If L N ,M

p Wp ≥ 0 in ΩN ,M
p , then

Wp ≥ 0 in Ω
N ,M
p .

Proof. The lemma can be proved using the arguments in [11, Theorem 6]. �

Lemma 4.2. Let y be the solution of (2) and Ỹp denote the solution of auxiliary
problems defined above. Then

||y− Ỹp||L∞(Ω
N ,M
p )

≤ C(N−2(lnN )2 +∆t).

Proof. For the third term of equation (18), we have

|an(y3−n;i,j − y3−n;i,j−1)| ≤ C |(y3−n;i,j − y3−n;i,j−1)|
≤ C(tj − tj−1) ∥∂ty3−n(xi, .)∥L∞([tj−1,tj ])

≤ C∆t,(19)

by using Taylor expansion and the derivative bound (6).
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Further, for the first term of equation (18) we again use Taylor expansion and
the derivative bound (6) to get

(20) |
(
δ−t − ∂t

)
yn;i,j | ≤ C(tj − tj−1)

∥∥∂2
t yn(xi, .)

∥∥
L∞([tj−1,tj ])

≤ C∆t.

The estimation of the middle term of equation (18) depends on the subdomain.

First, suppose (xi, tj) ∈ ΩN ,M
L . We will consider four different cases for ρ1 and ρ2

as follows.
Case 1: ρ2 = 4/26 and ρ1 = ρ2/4.
In this case, the perturbation parameters are not very small. Further, we have
ε−1
1 ≤ C ln2 N , ε−1

2 ≤ C ln2 N , and hL ≤ CN−1. Therefore, for n = 1, 2, using
Taylor expansions and bounds in Section 2 we get

εn
∣∣(δ2x − ∂2

x

)
yn;i,j

∣∣ ≤Ch2
Lεn

∥∥∂4
xyn(., tj)

∥∥
L∞([xi−1,xi+1])

≤Ch2
L(ε

−1
1 + ε−1

2 ) ≤ CN−2(lnN )2.

Case 2: ρ2 = 4/26 and ρ1 = (2
√
ε1 lnN )/

√
α.

In this case, we have hL ≤ C
√
ε1N−1 lnN . For n = 1, 2, ε1 ≤ ε2, Taylor expansions

and bounds in Section 2 we get

εn
∣∣(δ2x − ∂2

x

)
yn;i,j

∣∣ ≤Ch2
Lεn

∥∥∂4
xyn(., tj)

∥∥
L∞([xi−1,xi+1])

≤Ch2
L(ε

−1
1 + ε−1

2 ) ≤ CN−2(lnN )2.

Case 3: ρ2 = (2
√
ε2 lnN )/

√
α and ρ1 = ρ2/4.

In this case, we have hL ≤ C
√
ε2N−1 lnN and ε

−1/2
1 ≤ 4ε

−1/2
2 . Thus, for n = 1, 2,

using Taylor expansions and bounds in Section 2 we have

εn
∣∣(δ2x − ∂2

x

)
yn;i,j

∣∣ ≤Ch2
Lεn

∥∥∂4
xyn(., tj)

∥∥
L∞([xi−1,xi+1])

≤Ch2
L(ε

−1
1 + ε−1

2 ) ≤ CN−2(lnN )2.

Case 4: ρ1 = (2
√
ε1 lnN )/

√
α and ρ2 = (2

√
ε2 lnN )/

√
α.

In this case, ε1 and ε2 are the parameters of different magnitudes and they are
small. We have hL ≤ C

√
ε1N−1 lnN . For n = 1, 2, using Taylor expansions and

bounds in Section 2 we obtain

εn
∣∣(δ2x − ∂2

x

)
yn;i,j

∣∣ ≤ Ch2
Lεn

∥∥∂4
xyn(., tj)

∥∥
L∞([xi−1,xi+1])

≤ CN−2(lnN )2.

Thus, combining the bounds in all four cases with the bounds (19)-(20) we get

|L N ,M
L,n (y − ỸL)i,j | ≤ C(N−2(lnN )2 +∆t), n = 1, 2, (xi, tj) ∈ ΩN ,M

L .

Hence, applying the discrete maximum principle for L N ,M
L to C(N−2(lnN )2+

∆t)± (y− ỸL)(xi, tj), we obtain

||y− ỸL||L∞(Ω
N ,M
L )

≤ CN−2(lnN )2 + C∆t.

Similarly,

||y− ỸR||L∞(Ω
N ,M
R )

≤ CN−2(lnN )2 + C∆t.

Next, for (xi, tj) ∈ ΩN ,M
ℓ , n = 1, 2, using (18) and (19)-(20) we have

(21) |L N ,M
ℓ,n (y − Ỹℓ)i,j | ≤ εn

∣∣(δ2x − ∂2
x

)
yn;i,j

∣∣+ C∆t.

To calculate the estimate for εn
∣∣(δ2x − ∂2

x

)
yn;i,j

∣∣, we will make use of the decompo-
sition yn = vn + wn, wn = ŵn,ε1 + ŵn,ε2 . We need to consider four different cases
for ρ1 and ρ2 as follows.
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Case 1: ρ2 = 4/26 and ρ1 = ρ2/4.

Using arguments similar to those in Case 1 for ΩN ,M
L we obtain

εn
∣∣(δ2x − ∂2

x

)
yn;i,j

∣∣ ≤ CN−2(lnN )2.

Case 2: ρ2 = 4/26 and ρ1 = (2
√
ε1 lnN )/

√
α.

In this case, ε−1
2 ≤ C ln2 N , and hℓ ≤ CN−1. Using Taylor expansions and the

derivative bounds in Section 2, for n = 1, 2, we get

εn
∣∣(δ2x − ∂2

x

)
yn;i,j

∣∣ ≤ Ch2
ℓεn

∥∥∂4
xvn(., tj)

∥∥
L∞([xi−1,xi+1])

+Cεn
∥∥∂2

xŵn,ε1(., tj)
∥∥
L∞([xi−1,xi+1])

+Ch2
ℓεn

∥∥∂4
xŵn,ε2(., tj)

∥∥
L∞([xi−1,xi+1])

≤ CN−2 + ∥Bε1∥L∞([xi−1,xi+1]) +N−2(lnN )2

≤ CN−2(lnN )2.

Case 3: ρ2 = (2
√
ε2 lnN )/

√
α and ρ1 = ρ2/4.

Using arguments similar to those in Case 3 for ΩN ,M
L we obtain

εn
∣∣(δ2x − ∂2

x

)
yn;i,j

∣∣ ≤ CN−2(lnN )2.

Case 4: ρ1 = (2
√
ε1 lnN )/

√
α and ρ2 = (2

√
ε2 lnN )/

√
α

Using Taylor expansions and the derivative bounds in Section 2 with hℓ ≤ C
√
ε1N−1 lnN ,

we get

εn
∣∣(δ2x − ∂2

x

)
yn;i,j

∣∣ ≤ Ch2
ℓεn

∥∥∂4
xvn(., tj)

∥∥
L∞([xi−1,xi+1])

+Cεn
∥∥∂2

xŵn,ε1(., tj)
∥∥
L∞([xi−1,xi+1])

+Ch2
ℓεn

∥∥∂4
xŵn,ε2(., tj)

∥∥
L∞([xi−1,xi+1])

≤ CN−2 + ∥Bε1∥L∞([xi−1,xi+1]) +N−2(lnN )2

≤ CN−2(lnN )2.

Now, applying the discrete maximum principle for L N ,M
ℓ to C(N−2(lnN )2+∆t)±

(y− Ỹℓ)(xi, tj), we obtain

||y− Ỹℓ||L∞(Ω
N ,M
ℓ )

≤ CN−2(lnN )2 + C∆t.

Similarly,

||y− Ỹr||L∞(Ω
N ,M
r )

≤ CN−2(lnN )2 + C∆t.

Now, for (xi, tj) ∈ ΩN ,M
m , n = 1, 2, we use (18) and (19)-(20) to get

(22) |L N ,M
m,n (y − Ỹm)i,j | ≤ εn

∣∣(δ2x − ∂2
x

)
yn;i,j

∣∣+ C∆t.

To calculate the estimate for εn
∣∣(δ2x − ∂2

x

)
yn;i,j

∣∣, we proceed as follows.

Case 1: ρ2 = 4/26 and ρ1 = ρ2/4

Using arguments similar to those in Case 1 for ΩN ,M
L we obtain

εn
∣∣(δ2x − ∂2

x

)
yn;i,j

∣∣ ≤ CN−2(lnN )2.

Case 2: ρ2 = 4/26 and ρ1 = (2
√
ε1 lnN )/

√
α.

Using arguments similar to those in Case 2 for ΩN ,M
ℓ we obtain

εn
∣∣(δ2x − ∂2

x

)
yn;i,j

∣∣ ≤ CN−2(lnN )2.
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Case 3: ρ2 = (2
√
ε2 lnN )/

√
α and ρ1 = ρ2/4; Case 4: ρ1 = (2

√
ε1 lnN )/

√
α and

ρ2 = (2
√
ε2 lnN )/

√
α.

For n = 1, 2, using the decomposition yn = vn+wn, Taylor expansions, and bounds
in Section 2 with hm ≤ CN−1 we get

εn
∣∣(δ2x − ∂2

x

)
yn;i,j

∣∣ ≤Ch2
mεn

∥∥∂4
xvn(., tj)

∥∥
L∞([xi−1,xi+1])

+ Cεn
∥∥∂2

xwn(., tj)
∥∥
L∞([xi−1,xi+1])

≤CN−2 + ∥Bε2∥L∞([xi−1,xi+1])

≤CN−2.

Now, applying the discrete maximum principle for L N ,M
m to C(N−2(lnN )2+∆t)±

(y− Ỹm)(xi, tj), we obtain

||y− Ỹm||
L∞(Ω

N ,M
m )

≤ CN−2(lnN )2 + C∆t.

We can establish the same bound for the Scheme 2 by applying the preceding
arguments. �

Now, we will introduce a few notations that we will use in the further analysis.

ξρ1 =max{ max
tj∈DM

t

|(Ỹℓ − ỸL)(ρ1, tj)|, max
tj∈DM

t

|(Ỹr − ỸR)(1− ρ1, tj)},

ξρ2
=max{ max

tj∈DM
t

|(Ỹm − Ỹℓ)(ρ2, tj)|, max
tj∈DM

t

|(Ỹm − Ỹr)(1− ρ2, tj)},

ξ4ρ1 =max{ max
tj∈DM

t

|(ỸL − IjỸℓ)(4ρ1, tj)|, max
tj∈DM

t

|(ỸR − IjỸr)(1− 4ρ1, tj)},

ξ4ρ2−3ρ1 =max{ max
tj∈DM

t

|(Ỹℓ − IjỸm)(4ρ2 − 3ρ1, tj)|,

max
tj∈DM

t

|(Ỹr − IjỸr)(1− 4ρ2 + 3ρ1, tj)},

ξk =max{ max
tj∈DM

t

|(ỸL − IjYk−1)(4ρ1, tj)|,

max
tj∈DM

t

|(ỸR − IjYk−1)(1− 4ρ1, tj)|,

max
tj∈DM

t

|(Ỹℓ − IjYk−1)(4ρ2 − 3ρ1, tj)|,

max
tj∈DM

t

|(Ỹr − IjYk−1)(1− 4ρ2 + 3ρ1, tj)|},

where ξk represents the iteration error, ξ4ρ1 and ξ4ρ2−3ρ1 denote the interpolation
errors, and ξρ1 and ξρ2 denote the discretization errors.

Now we proceed to bound the second term on the right hand side of (16). Here,
we will discuss the proof for Scheme 1; the proof for Scheme 2 can be done analo-

gously. For this purpose, we will introduce the operator LLLN ,M
p = (LN ,M

p,1 ,LN ,M
p,2 )T

and then establish a discrete maximum principle for it.
Consider Scheme 1 for (xi, tj) ∈ ΩN ,M

p , p = L, ℓ,m, r,R. Then, the error equa-

tion of e1p(xi, tj) = (Ỹp −Y1
p) is defined as

LN ,M
p,n (Ỹp −Y1

p)i,j :=[δ−t e1p,n]i,j − εn[δ
2
xe

1
p,n]i,j + [ŝp,n]i,j(Ỹ1;i,j−n+1 − Y 1

p,1;i,j−n+1)

+ [q̂p,n]i,j(Ỹ2;i,j+n−2 − Y 1
p,2;i,j+n−2) = 0, n = 1, 2,(23)
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where

[ŝp,n]i,j =

∫ 1

0

∂fn
∂y1

(
xi, tj , Y

1
p,n;i,j + a(Ỹn;i,j − Y 1

p,n;i,j),

Y 1
p,3−n;i,j−1 + a(Ỹ3−n;i,j−1 − Y 1

p,3−n;i,j−1)
)
da

and

[q̂p,n]i,j =

∫ 1

0

∂fn
∂y2

(
xi, tj , Y

1
p,n;i,j + a(Ỹn;i,j − Y 1

p,n;i,j),

Y 1
p,3−n;i,j−1 + a(Ỹ3−n;i,j−1 − Y 1

p,3−n;i,j−1)
)
da.

Lemma 4.3. Suppose the mesh function Zp satisfies Zp(xi, tj) ≥ 0, i = 0, N ,

tj ∈ DM
t , and Zp(xi, 0) ≥ 0 for xi ∈ D

N
p . If LLLN ,M

p Zp ≥ 0 in ΩN ,M
p , then Zp ≥ 0

in Ω
N ,M
p .

Proof. The lemma can be proved using the arguments in [11, Theorem 6]. �

Theorem 4.4. Suppose Ỹ and Yk are the solutions of the auxiliary problems and
the proposed algorithm respectively. Then

(24) ||Ỹ−Yk||
L∞(Ω

N ,M
)
≤ C

(
1

2

)k

+ C(N−2(lnN )2 +∆t).

Proof. For (xi, tj) ∈ ΩN ,M
L , using (23), ỸL −Y1

L satisfies

LLLN ,M
L (ỸL −Y1

L) = 0, in ΩN ,M
L , (ỸL −Y1

L)(xi, 0) = 0, xi ∈ D
N
,

(ỸL −Y1
L)(0, tj) = 0, |(ỸL −Y1

L)(4ρ1, tj)| ≤ ξ11, tj ∈ DM
t .

Assume the mesh function Ψ±
1 (xi, tj) =

xi

4ρ1
ξ11 ± (ỸL − Y1

L)(xi, tj) for (xi, tj) ∈
ΩN ,M

L . Now, employing the discrete maximum principle to the mesh function

Ψ±
1 (xi, tj), we obtain

|(ỸL −Y1
L)(xi, tj)| ≤

xi

4ρ1
ξ11, (xi, tj) ∈ Ω

N ,M
L .

For (xi, tj) ∈ Ω
N ,M
L \Ωℓ, xi ≤ ρ1. Therefore

(25) ||ỸL −Y1
L||L∞(Ω

N ,M
L \Ωℓ)

≤ 1

4
ξ1.

Similarly

(26) ||ỸR −Y1
R||L∞(Ω

N ,M
R \Ωr)

≤ 1

4
ξ1.

Next, for (xi, tj) ∈ ΩN ,M
ℓ , n = 1, 2, using (23), the error equation of e1ℓ(xi, tj) =

(Ỹℓ −Y1
ℓ) is defined as

LN ,M
ℓ,n (Ỹℓ − Y 1

ℓ )i,j :=[δ−t e1ℓ,n]i,j − εn[δ
2
xe

1
ℓ,n]i,j + [ŝℓ,n]i,j(Ỹ1;i,j−n+1 − Y 1

ℓ,1;i,j−n+1)

+ [q̂ℓ,n]i,j(Ỹ2;i,j+n−2 − Y 1
ℓ,2;i,j+n−2) = 0.(27)

Thus, Ỹℓ −Y1
ℓ satisfies

LLLN ,M
ℓ (Ỹℓ −Y1

ℓ) = 0, in ΩN ,M
ℓ , (Ỹℓ −Y1

ℓ)(xi, 0) = 0, xi ∈ D
N
,

|(Ỹℓ −Y1
ℓ)(4ρ2 − 3ρ1, tj)| ≤ ξ11, tj ∈ DM

t ,

|(Ỹℓ −Y1
ℓ)(ρ1, tj)| ≤ |(Ỹℓ − ỸL)(ρ1, tj)|+ |(ỸL −Y1

ℓ)(ρ1, tj)|
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≤ 1

4
ξ11+ ξρ11, tj ∈ DM

t .

Now, we consider mesh function Ψ±
2 (xi, tj) = ζ(xi)ξ

11+ξρ11± (Ỹℓ−Y1
ℓ)(xi, tj)

for (xi, tj) ∈ ΩN ,M
ℓ , where ζ(x) =

−x2 + (13ρ2 − 11ρ1)x+ 12ρ22 + 24ρ21 − 37ρ1ρ2
48(ρ2 − ρ1)2

,

is an increasing function in the domain [ρ1, 4ρ2 − 3ρ1] with ζ(ρ1) = 1/4, ζ(4ρ2 −
3ρ1) = 1, ζ(ρ2) = 1/2, ζ > 0 in Ω

N ,M
ℓ , and LLLN ,M

ℓ ζ > 0 in ΩN ,M
ℓ . So, on employing

the discrete maximum principle to the mesh function Ψ±
2 (xi, tj) for (xi, tj) ∈ Ω

N ,M
ℓ ,

we obtain

|(Ỹℓ −Y1
ℓ)(xi, tj)| ≤ ζ(xi)ξ

11+ ξρ11.

Therefore, we get

(28) ||Ỹℓ −Y1
ℓ ||L∞(Ω

N ,M
ℓ \Ωm)

≤ 1

2
ξ1 + ξρ1 .

Similarly

(29) ||Ỹr −Y1
r||L∞(Ω

N ,M
r \Ωm)

≤ 1

2
ξ1 + ξρ1 .

Next, for (xi, tj) ∈ ΩN ,M
m , n = 1, 2, the error equation of e1m(xi, tj) = (Ỹm −Y1

m)
is defined as

LN ,M
m,n (Ỹm − Y 1

m)i,j :=[δ−t e1m,n]i,j − εn[δ
2
xe

1
m,n]i,j + [ŝm,n]i,j(Ỹ1;i,j−n+1 − Y 1

m,1;i,j−n+1)

+ [q̂m,n]i,j(Ỹ2;i,j+n−2 − Y 1
m,2;i,j+n−2) = 0.(30)

Thus, Ỹm −Y1
m satisfies

LLLN ,M
m (Ỹℓ −Y1

m) = 0, in ΩN ,M
m , (Ỹm −Y1

m)(xi, 0) = 0, xi ∈ D
N
,

|(Ỹm −Y1
m)(ρ2, tj)| ≤|(Ỹm − Ỹℓ)(ρ2, tj)|+ |(Ỹℓ −Y1

m)(ρ2, tj)|

≤1

2
ξ11+ ξρ11+ ξρ21, tj ∈ DM

t .

|(Ỹm −Y1
m)(1− ρ2, tj)| ≤|(Ỹm − Ỹr)(1− ρ2, tj)|+ |(Ỹr −Y1

m)(1− ρ2, tj)|

≤1

2
ξ11+ ξρ1

1+ ξρ2
1, tj ∈ DM

t .

Therefore, by employing the discrete maximum principle, we get

(31) ||Ỹm −Y1
m||

L∞(Ω
N ,M
m )

≤ 1

2
ξ1 + ξρ1 + ξρ2 .

Hence

||Ỹ−Y1||
L∞(Ω

N ,M
)
≤ 1

2
ξ1 + ξρ1 + ξρ2 .

Now, we calculate the bound for the term ||Ỹ − Y2||. For this first we need to
find the estimate for ξ2. To this end we need to bound each term involved in the
definition of ξ2 separately.

Note that IjZ represents the piecewise linear interpolant of the mesh function
Z at time level tj . For any x ∈ [xi−1, xi], it is defined as follows

IjZ(x, tj) =
xi − x

xi − xi−1
Z(xi−1,tj ) +

x− xi−1

xi − xi−1
Z(xi, tj).
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Hence, it is easy to deduce that

|IjZ(x, tj)| ≤
∣∣∣∣ xi − x

xi − xi−1

∣∣∣∣ |Z(xi−1,tj )|+
∣∣∣∣ x− xi−1

xi − xi−1

∣∣∣∣ |Z(xi, tj)|

≤
(

xi − x

xi − xi−1
+

x− xi−1

xi − xi−1

)
max

a∈{xi,xi−1}
|Z(a, tj)|

= max
a∈{xi,xi−1}

|Z(a, tj)|.

Using the triangle inequality, the operator Ij stability, and equation (28), we get

|(ỸL − IjY1)(4ρ1, tj)| ≤ |(ỸL − IjỸℓ)(4ρ1, tj)|+ |(IjỸℓ − IjY1)(4ρ1, tj)|

≤ ξ4ρ11+
1

2
ξ11+ ξρ11.(32)

Similarly, applying the triangle inequality, the operator Ij stability, and equations
(29) and (31), we obtain

|(ỸR − IjY1)(1− 4ρ1, tj)|

≤|(ỸR − IjỸr)(1− 4ρ1, tj)|+ |(IjỸr − IjY1)(1− 4ρ1, tj)|

≤ξ4ρ11+
1

2
ξ11+ ξρ11,(33)

|(Ỹℓ − IjY1)(4ρ2 − 3ρ1, tj)|

≤|(Ỹℓ − IjỸm)(4ρ2 − 3ρ1, tj)|+ |(IjỸm − IjY1)(4ρ2 − 3ρ1, tj)|

≤ξ4ρ2−3ρ11+
1

2
ξ11+ ξρ11+ ξρ21,(34)

|(Ỹr − IjY1)(1− 4ρ2 + 3ρ1, tj)|

≤|(Ỹr − IjỸm)(1− 4ρ2 + 3ρ1, tj)|+ |(IjỸm − IjY1)(1− 4ρ2 + 3ρ1, tj))|

≤ξ4ρ2−3ρ11+
1

2
ξ11+ ξρ11+ ξρ21.(35)

Therefore, using the definition of ξ2 and equations (32)-(35) we get

ξ2 ≤ 1

2
ξ1 + ξρ1 + ξρ2 + ξ4ρ1 + ξ4ρ2−3ρ1 .

Hence

max
{
ξ2, ||Ỹ−Y1||

L∞(Ω
N ,M

)

}
≤ λ+

1

2
ξ1, λ = ξρ1 + ξρ2 + ξ4ρ1 + ξ4ρ2−3ρ1 .

Utilizing the same arguments as before will lead to

max
{
ξk+1, ||Ỹ−Yk||

L∞(Ω
N ,M

)

}
≤ λ+

1

2
ξk.

On simplifying the above expression, we get ξk ≤ 2λ+
(
1
2

)(k−1)
ξ1. Therefore,

(36) ||Ỹ−Yk||
L∞(Ω

N ,M
)
≤ 2λ+

(
1

2

)k

ξ1.

Since ρ1 ∈ D
N
L , (1−ρ1) ∈ D

N
R , ρ2 ∈ D

N
ℓ , (1−ρ2) ∈ D

N
r , from Lemma 4.2, we have

ξρ1 + ξρ2 ≤ C(N−2(lnN )2 +∆t).

To bound ξ4ρ1 , we note that |(ỸL − IjỸℓ)(4ρ1, tj)| = |(y − IjỸℓ)(4ρ1, tj)| and
|(ỸR − IjỸr)(1 − 4ρ1, tj)| = |(y − IjỸr)(1 − 4ρ1, tj)|. We now provide details to
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bound |(y − IjỸℓ)(4ρ1, tj)|; similarly, one can obtain the same bound for |(y −
IjỸr)(1− 4ρ1, tj)|. Using the triangle inequality we have

(37) |(y− IjỸℓ)(4ρ1, tj)| ≤ |(y− Ijy)(4ρ1, tj)|+ |Ij(y− Ỹℓ)(4ρ1, tj)|.
Using stability of Ij and Lemma 4.2, we get

|Ij(y− Ỹℓ)(4ρ1, tj)| ≤ C(N−2(lnN )2 +∆t), tj ∈ DM
t .

The first term on the right hand side of (37) is the interpolation error. Suppose
4ρ1 ∈ [xi, xi+1]. Then, we use the following interpolation estimates

|(yn − Ijyn)(4ρ1, tj)| ≤ Ch2
ℓ

∥∥∂2
xyn(., tj)

∥∥
L∞([xi,xi+1])

,

|(yn − Ijyn)(4ρ1, tj)| ≤ ∥yn(., tj)∥L∞([xi,xi+1])
, n = 1, 2,

and the arguments in Lemma 4.2 to prove that

|(y− Ijy)(4ρ1, tj)| ≤ CN−2(lnN )2.

Consequently,
ξ4ρ1 ≤ C(N−2(lnN )2 +∆t).

Similarly, we can prove that

ξ4ρ2−3ρ1 ≤ C(N−2(lnN )2 +∆t).

On combining these error bounds, we get λ ≤ C(N−2(lnN )2 + ∆t). Further, we
have ξ1 ≤ C, since ||y||L∞(Ω) ≤ C. Hence,

||Ỹ−Yk||
L∞(Ω

N ,M
)
≤ C

(
1

2

)k

+ C(N−2(lnN )2 +∆t).

�
Theorem 4.5. Suppose y and Yk are the solutions of problem (2) and the proposed
algorithm respectively. Then

(38) ||y−Yk||
L∞(Ω

N ,M
)
≤ C

(
1

2

)k

+ C(N−2(lnN )2 +∆t).

Proof. The proof of the theorem can be obtained by combining Lemma 4.2 and
Theorem 4.4 with (16). �
5. Numerical Experiments

To verify the theoretical findings given in the previous sections, we consider some
Gierer-Meinhardt type test problems in this section. All experiments are performed
on a Windows 10(64 bit) PC-Intel(R) Core(TM) i5-4200U CPU @1.60GHz, 6.00GB
of RAM using MATLAB 2019a. The user defined threshold is chosen to be τ =
N−2(lnN )2 for ||Yk+1 − Yk||

L∞(Ω
N ,M

)
≤ τ. Next, we define the algorithm that

will be used to compute the numerical results.

(39) [LN ,M
p Yp]i,j := [δ−t Yp]i,j − ε[δ2xYp]i,j + f (xi, tj , [Yp]i,j) = 0.

Example 5.1. Consider Gierer-Meinhardt system (2) with the following nonlinear
reaction term and initial/boundary conditions

f1(x, t,y) = 3y1 − 2y2 + t2(exp(−y21) + sin(y2)) + t(1− exp(3t)) sin(πx),

f2(x, t,y) = −t2y1

(
1 +

1

1 + y21

)
+ 3y2 − 10t2(1− cos(2πx)),
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Algorithm: Schwarz waveform relaxation algorithm

Step 1. Initialize Y0 with Y0(xi, tj) = 0, (xi, tj) ∈ (0, 1)× (0, T ],

Y0(xi, tj) = y(xi, tj) (xi, tj) ∈ D
N × {0} and

Y0(xi, tj) = y(xi, tj), (xi, tj) ∈ {0, 1} ×DM
t . Set k = 1.

Step 2. Calculate Yk
L using equation (11) and Yk

R using equation (12). Next,

calculate Yk
r using equation (13) and Yk

ℓ using equation (14). Finally, calculate

Yk
m using equation (15).

Step 3. Update Yk using (10).

Step 4. The final solution, Yk, is obtained if the stopping condition is achieved; if
not, set k = k + 1, and proceed to Step 2.
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Figure 2. Solution component y1 with Scheme 1 for Example 5.1
with ε1 = 10−7, ε2 = 10−5 and N = 64,M = 16.
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Figure 3. Solution component y2 with Scheme 1 for Example 5.1
with ε1 = 10−7, ε2 = 10−5 and N = 64,M = 16.
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Table 1. Uniform errors EN ,∆t and uniform convergence rate
RN ,∆t for Example 5.1.

Schemes N = 25 N = 26 N = 27 N = 28 N = 29

M = 4 M = 42 M = 43 M = 44 M = 45

EN ,∆t
1 5.8467e-01 1.3635e-01 3.2901e-02 8.1412e-03 2.0121e-03

Scheme 1 RN ,∆t
1 2.100 2.051 2.015 2.014

EN ,∆t
2 3.0848e-01 8.4248e-02 2.1595e-02 5.4327e-03 1.3241e-03

RN ,∆t
2 1.872 1.964 1.991 2.036

EN ,∆t
1 6.1280e-01 1.4884e-01 3.6471e-02 9.0623e-03 2.2620e-03

Scheme 2 RN ,∆t
1 2.028 2.042 2.029 2.002

EN ,∆t
2 5.9452e-01 1.5039e-01 3.7589e-02 9.3952e-03 2.3471e-03

RN ,∆t
2 1.983 2.000 2.000 2.000

EN ,∆t
1 6.8887e-01 1.8494e-01 4.6807e-02 1.1732e-02 2.8928e-03

Scheme (39) RN ,∆t
1 1.897 1.982 1.996 2.019

EN ,∆t
2 7.0525e-01 1.7203e-01 4.2581e-02 1.0608e-02 2.6388e-03

RN ,∆t
2 2.035 2.014 2.004 2.007

φ0(t) = (8t3−1.5t2+ t+1, 20t3+exp(t)−2t2)T , φ1(t) = (4.5t2+3t+1, exp(3t))T ,

ϕ(x) = (1, 1)T , T = 1.

Table 2. Present algorithm with Scheme (39): Iteration counts
with ε1 = 10−9 for Example 5.1.

ε2 = 10−q N = 25 N = 26 N = 27 N = 28 N = 29

M = 4 M = 42 M = 43 M = 44 M = 45

q = 1 4 5 6 6 7
2 3 3 5 5 6
3 3 3 4 5 5
4 3 3 4 5 4
5 3 3 3 4 4
6 3 3 3 3 3
7 2 2 2 2 3
8 2 2 2 2 2
9 2 2 2 2 2
10 1 1 1 1 1

We use the following double mesh method [38] to compute the maximum point-
wise errors because the actual solution to this test problem is unknown. Further,
the nonlinear discrete systems are solved by Newton’s method, setting τ as the
tolerance. We compute

EN ,∆t
ε1,ε2 = ||YN ,∆t −Y2N ,∆t/4||

L∞(Ω
N ,M

)
,

where the approximation Y2N ,∆t/4 is obtained by taking 2N + 1 discretization
points in x direction and ∆t/4 mesh width in t direction by utilizing the same

transition parameters ρ1 and ρ2 as for the solution YN ,∆t. The uniform errors
EN ,∆t are calculated as

EN ,∆t = max
ε1

EN ,∆t
ε1 ,
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Table 3. Present algorithm with Scheme 1 or Scheme 2 : Iteration
counts with ε1 = 10−9 for Example 5.1.

ε2 = 10−q N = 25 N = 26 N = 27 N = 28 N = 29

M = 4 M = 42 M = 43 M = 44 M = 45

q = 1 4 5 5 6 6
2 3 3 4 4 5
3 3 3 3 4 4
4 3 3 4 3 4
5 3 3 3 4 4
6 3 3 3 3 4
7 2 2 2 2 3
8 2 2 2 2 2
9 2 2 2 2 2
10 1 1 1 1 1
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Figure 4. Component 1 with Scheme 2 for Example 5.2 with
ε1 = 10−7, ε2 = 10−5 and N = 64,M = 16.

where EN ,∆t
ε1 = max{EN ,∆t

ε1,1
,EN ,∆t

ε1,10−1 , ...,E
N ,∆t
ε1,10−s} is calculated for a constant value

of ε1 = 10−s, s ∈ {q : 0 ≤ q ≤ 10}. Next, we use the formula below to define the
uniform convergence rates

RN ,∆t = log2(E
N ,∆t/E2N,∆t/4),

where RN ,∆t = (RN ,∆t
1 ,RN ,∆t

2 )T and EN ,∆t = (EN ,∆t
1 , EN ,∆t

2 )T .
We also compute the numerical results using the algorithm with the standard

discretization scheme, which uses the backward Euler method on a uniform mesh
in time and the central difference scheme on a uniform mesh in space, as defined
below

The solution plots for Examples 5.1 and 5.2 are displayed in Figures 2 - 3 and
4 -5. For Scheme 1, Scheme 2, and Scheme (39), the uniform errors and uniform
convergence rates for the solution components are presented in Table 1 for Example
5.1. The numerical results presented in Table 1 are almost similar for all three
schemes. Tables 2 and 3 display the number of iterations to achieve the stopping
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Figure 5. Solution Component y2 with Scheme 2 for Example 5.2
with ε1 = 10−7, ε2 = 10−5 and N = 64,M = 16.

Table 4. Uniform errors EN ,∆t and uniform convergence rates
RN ,∆t for Example 5.2.

Schemes N = 25 N = 26 N = 27 N = 28 N = 29

M = 1/4 M = 42 M = 43 M = 44 M = 45

EN ,∆t
1 1.2734e-02 3.9623e-03 1.0423e-03 2.6382e-04 6.6120e-05

Scheme 1 RN ,∆t
1 1.684 1.927 1.982 1.996

EN ,∆t
2 3.5016e-02 9.5811e-03 2.5464e-03 7.0867e-04 1.8222e-04

RN ,∆t
2 1.869 1.912 1.845 1.959

EN ,∆t
1 1.1026e-02 3.3801e-03 9.1004e-04 2.3167e-04 5.7932e-05

Scheme 2 RN ,∆t
1 1.706 1.893 1.973 1.999

EN ,∆t
2 2.0197e-02 7.8078e-03 2.4604e-03 6.0747e-04 1.5148e-04

RN ,∆t
2 1.371 1.666 2.018 2.001

EN ,∆t
1 1.4421e-02 4.8217e-03 1.3339e-03 3.4251e-04 8.6492e-05

Scheme (39) RN ,∆t
1 1.581 1.854 1.959 1.985

EN ,∆t
2 1.9394e-02 7.9896e-03 2.6077e-03 6.9169e-04 1.7736e-04

RN ,∆t
2 1.279 1.615 1.915 1.963

criterion. The number of iterations for the proposed algorithm with Scheme 1 and
Scheme 2 are the same, whereas these counts are slightly different for Scheme (39).

Example 5.2. Consider the nonlinear coupled system (2) of singularly perturbed
nature with the following nonlinear reaction term and initial/boundary conditions

f1(x, t,y) = 4y1 − y2 + cos(y2)− 2t(x− x2 + sin(πx))− 4,

f2(x, t,y) = −y1 − sin(y1) + 7y2 + sin2(y2)− xt− 1,

φ0 = (10t sin t, 10 cos t(1− exp(−t)))T , φ1 = (10t sin t, 10 cos t(1− exp(−t)))T ,

ϕ(x) = (0, 0)T , T = 1.

The uniform convergence rates RN ,∆t and uniform errors EN ,∆t are computed
in the same manner as before. The uniform errors and uniform convergence rates
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Table 5. Present algorithm with Scheme (39): Iteration counts
taking ε1 = 10−9 in Example 5.2.

ε2 = 10−q N = 25 N = 26 N = 27 N = 28 N = 29

M = 4 M = 42 M = 43 M = 44 M = 45

q = 1 5 5 6 6 7
2 4 4 5 5 6
3 3 4 4 5 5
4 3 4 4 4 4
5 3 3 4 4 3
6 3 3 3 3 3
7 2 2 2 2 2
8 2 2 2 2 2
9 2 2 2 2 2
10 1 1 1 1 1

Table 6. Present algorithm with Scheme 1 or Scheme 2 : Iteration
counts with ε1 = 10−9 in Example 5.2.

ε2 = 10−q N = 25 N = 26 N = 27 N = 28 N = 29

M = 4 M = 42 M = 43 M = 44 M = 45

q = 1 4 5 6 6 6
2 3 4 4 5 5
3 3 4 4 4 5
4 3 3 4 4 4
5 3 3 3 4 3
6 3 3 3 3 3
7 2 2 2 2 3
8 2 2 2 2 2
9 2 2 2 2 2
10 1 1 1 1 1

for the Scheme 1, Scheme 2, and Scheme (39) for the solution components are
presented in Table 4 for Example 5.2. Further, Tables 5 and 6 show how many
iterations are necessary to satisfy the stopping constraint. Here, we also observe
the same behavior of the numerical results as in Example 5.1.

Table 7. CPU time (in seconds) used by the present algorithm
for Example 5.1 with ε1 = 10−7, ε2 = 10−5.

Scheme N = 25 N = 26 N = 27 N = 28 N = 29

M = 42 M = 43 M = 44 M = 45 M = 46

Scheme 1 0.434 2.610 26.878 271.484 6854.164
Scheme 2 0.569 2.824 28.986 291.506 7086.662

Scheme (39) 1.064 4.095 57.706 933.209 46471.232

To show the efficiency of the algorithm with Schemes 1 and 2, we compare the
computational cost required by the the algorithm with Schemes 1, 2, and Scheme
(39) in Tables 7 and 8 for the Examples 5.1 and 5.2 respectively. These results
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Table 8. CPU time (in seconds) used by the present algorithm
for Example 5.2 with ε1 = 10−7, ε2 = 10−5.

Scheme N = 25 N = 26 N = 27 N = 28 N = 29

M = 42 M = 43 M = 44 M = 45 M = 46

Scheme 1 0.895 2.198 18.481 209.241 5821.146
Scheme 2 0.783 2.856 20.185 249.665 6056.191

Scheme (39) 1.377 3.765 52.840 1066.341 42924.251

Table 9. Uniform errors EN ,∆t and uniform convergence rates
RN ,∆t using the tolerance τ = 10−7 for Example 5.2.

Schemes N = 25 N = 26 N = 27 N = 28 N = 29

M = 1/4 M = 42 M = 43 M = 44 M = 45

EN ,∆t
1 1.2734e-02 3.9623e-03 1.0423e-03 2.6382e-04 6.6159e-05

Scheme 1 RN ,∆t
1 1.684 1.927 1.982 1.995

EN ,∆t
2 3.5016e-02 9.5811e-03 2.5347e-03 7.0668e-04 1.8916e-04

RN ,∆t
2 1.869 1.918 1.843 1.901

EN ,∆t
1 1.1017e-02 3.3773e-03 9.0948e-04 2.3211e-04 5.8595e-05

Scheme 2 RN ,∆t
1 1.706 1.893 1.970 1.986

EN ,∆t
2 2.0012e-02 7.7631e-03 2.4473e-03 6.8585e-04 1.8496e-04

RN ,∆t
2 1.366 1.665 1.835 1.890

EN ,∆t
1 1.4421e-02 4.8217e-03 1.3339e-03 3.4430e-04 8.761e-05

Scheme (39) RN ,∆t
1 1.581 1.854 1.954 1.971

EN ,∆t
2 1.9220e-02 7.9597e-03 2.5881e-03 7.2213e-04 1.9257e-04

RN ,∆t
2 1.272 1.621 1.841 1.907

Table 10. CPU time (in seconds) used by the present algorithm
for Example 5.2 with ε1 = 10−7, ε2 = 10−5, and the tolerance
τ = 10−7.

Scheme N = 25 N = 26 N = 27 N = 28 N = 29

M = 42 M = 43 M = 44 M = 45 M = 46

Scheme 1 1.827 5.820 35.504 380.224 5972.221
Scheme 2 1.607 7.224 36.336 428.854 6176.527

Scheme (39) 1.851 8.299 81.535 1155.001 44608.912

are calculated for fixed values ε1 = 10−7 and ε2 = 10−5 and different values of
discretization parameters N and ∆t. These results clearly show that the algorithm
with Schemes 1 and 2 is computationally more efficient than Scheme (39).

We also compute the numerical results using a fixed tolerance of τ = 10−7 as
the stopping criterion for the algorithm. These results are shown in Tables 9 to
12. From these tables, we observe that the uniform errors and convergence rates
are consistent with the previous results. Additionally, the conclusions for the three
schemes remain unchanged. However, when comparing Tables 8 and 10, we find
that using the fixed tolerance τ = 10−7 as the stopping criterion results in higher
CPU time compared to using the tolerance τ = N−2(lnN )2.
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Table 11. Present algorithm with Scheme 1 : Iteration counts
with ε1 = 10−9 and the tolerance τ = 10−7 for Example 5.2.

ε2 = 10−q N = 25 N = 26 N = 27 N = 28 N = 29

M = 4 M = 42 M = 43 M = 44 M = 45

q = 1 7 7 7 7 7
2 4 5 6 6 6
3 4 4 4 5 6
4 4 4 5 5 5
5 4 4 4 4 4
6 3 3 4 4 4
7 2 2 2 2 2
8 2 2 2 2 2
9 2 2 2 2 2
10 2 2 2 2 2

Table 12. Present algorithm with Scheme (39) : Iteration counts
with ε1 = 10−9 and the tolerance τ = 10−7 for Example 5.2.

ε2 = 10−q N = 25 N = 26 N = 27 N = 28 N = 29

M = 4 M = 42 M = 43 M = 44 M = 45

q = 1 8 8 8 8 8
2 6 7 7 8 8
3 5 6 6 6 7
4 5 5 5 6 6
5 5 5 5 5 5
6 4 4 4 4 5
7 2 2 3 3 3
8 2 2 2 2 2
9 2 2 2 2 2
10 2 2 2 2 2

6. Conclusions

We have proposed a domain decomposition algorithm to solve the semilinear
coupled system of singularly perturbed Gierer-Meinhardt type parabolic problems.
On each subdomain, a classical central difference scheme in space along with the
splitting of components technique in time, is utilized. We have shown that the
proposed algorithm is parameter uniform, with the accuracy of almost second order
in space variable and one in time variable. To support the theoretical findings and
show the efficiency of the proposed algorithm, we have included two nonlinear
coupled system of test problems. It is also worth noting that Scheme 1 can be
implemented in parallel.
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