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A CONFORMING DISCONTINUOUS GALERKIN FINITE

ELEMENT METHOD FOR SECOND-ORDER PARABOLIC

EQUATION

FUCHANG HUO, YUCHEN SUN, JIAGENG WU, AND LIYUAN ZHANG*

Abstract. The conforming discontinuous Galerkin (CDG) finite element method is an innovative

and effective numerical approach to solve partial differential equations. The CDG method is based
on the weak Galerkin (WG) finite element method, and removes the stabilizer in the numerical
scheme. And the CDG method uses the average of the interior function to replace the value of
the boundary function in the standard WG method. The integration by parts is used to construct

the discrete weak gradient operator in the CDG method. This paper uses the CDG method to
solve the parabolic equation. Firstly, the semi-discrete and full-discrete numerical schemes of the
parabolic equation and the well-posedness of the numerical methods are presented. Then, the

corresponding error equations for both numerical schemes are established, and the optimal order
error estimates of H1 and L2 are provided, respectively. Finally, the numerical results of the CDG
method are verified.

Key words. Conforming discontinuous Galerkin finite element method, parabolic equation, weak

Galerkin finite element method, optimal order convergence.

1. Introduction

The parabolic equation is an essential class of equations in partial differential
equations. Its unique concept and properties make it play a huge role in physics
and mathematics and have significant theoretical value. Many problems can be
described by parabolic equations in life, for example, heat conduction of objects,
flow problems of porous media, and diffusion problems of pollutant concentration. It
is challenging to obtain analytical solutions on these practical problems, so scholars
began to study their numerical solutions, which provides a solid theoretical basis
for solving practical problems.

In this paper, we consider the initial-boundary value problems for second-order
parabolic equation: Find u satisfies ut −∇ · (a∇u) = f, x ∈ Ω, t ∈ J,

u = 0, x ∈ ∂Ω, t ∈ J,
u(·, 0) = ψ, x ∈ Ω,

(1)

where J =
[
0, T

]
, T > 0, Ω ⊂ R2 is a polygon domain, and the boundary ∂Ω

is Lipschitz continuous. And the source term f(x, t) ∈ L∞
(
0, T ;L2(Ω)

)
and the

initial value ψ ∈ H2(Ω). Assume that a(·)2×2 ∈ [L∞(Ω)]2×2 is a symmetric matrix-
valued function, which satisfies

C1η
T η ≤ ηTaη ≤ C2η

T η, ∀η ∈ R2,

here C1 and C2 are two positive constants with 0 < C1 < C2 ≪ ∞.
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The variational formulation of the parabolic equation (1) is to find u ∈ L2
(
0, T ;

[H1
0 (Ω)]

d
)
, such that{

(ut, v) + (a∇u,∇v) = (f, v), ∀ v ∈ H1
0 (Ω), t ∈ J,

u(·, 0) = ψ.
(2)

The Sobolev spaces are defined as follows:

H1(Ω) :=
{
v|v ∈ L2(Ω),∇v ∈ [L2(Ω)]2

}
,

H1
0 (Ω) :=

{
v|v ∈ H1(Ω), v|∂Ω = 0

}
,

L2(0, T ;V ) :=

{
v | v(·, t) ∈ V, ∀t ∈

[
0, T

]
,

∫ T

0

∥v(·, t)∥2V dt <∞

}
,

here V is a Sobolev space with a norm ∥ · ∥V .
There are many numerical methods to solve the parabolic equation, such as the

finite element method (FEM) [14, 33], the nonconforming finite element method
(NC-FEM) [31], the discontinuous Galerkin (DG) finite element method [3, 13], the
virtual element method [15, 32], the weak Galerkin (WG) finite element method
[1, 4, 5, 21], etc. In this paper, we propose a conforming discontinuous Galerkin
(CDG) finite element method to solve the parabolic equation.

The CDG method is based on the WG method [2, 6, 7, 16, 17, 22]. Its main
idea is to use the discontinuous polynomial as the approximate function and in-
crease the degree of the polynomial for calculating the weak differential operators.
Using higher-order degree polynomials can effectively ensure the weak continuity
of discontinuous functions over element boundaries and substantially reduce com-
putational complexity without altering the dimensions of the stiffness matrix and
the global sparsity. In contrast to the WG method, the CDG method uses the
averages of the interior functions to replace the boundary functions, reducing the
number of boundary degrees of freedom. It has the advantages of being easy to
construct the finite element space and the numerical scheme. In addition, the CDG
numerical scheme is amenable to parallel computing, thereby effectively mitigating
the computational overhead. Recently, the CDG method has garnered considerable
scholarly attention and has been successfully used to solve the second-order elliptic
problems [25–27], Stokes problems [10, 28], Biharmonic problems [29, 30], elliptic
interface problems [23], linear elasticity interface problems [24], and so on.

In this paper, we use the CDG method to solve the initial-boundary value prob-
lems for second-order parabolic equation. In the CDG scheme, the approximation
of the function is achieved through the employment of the discontinuous k-th degree
polynomial. Concomitantly, the stabilizer terms within the numerical method are
eliminated by increasing the polynomial degree for calculating the weak differential
operators. The numerical schemes are presented for the semi-discrete spatial case,
wherein only space is discretized, and the full-discrete case, which involves the dis-
cretization of time and space. Subsequently, the error equations for semi-discrete
and full-discrete schemes are presented. Additionally, optimal order error estimates
in the H1 and L2 norms are derived.

An outline of this paper is as follows. In Section 2, we propose a semi-discrete
CDG scheme for the parabolic equation (1). In Section 3, the full-discrete CDG
scheme for the parabolic equation (1) is established. In Section 4, we derive the
optimal order error estimate for the semi-discrete CDG scheme and full-discrete
CDG scheme. In Section 5, numerical results are presented to validate the accuracy
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and effectiveness of the CDG method. In Section 6, we provide a comprehensive
summary of the content encapsulated within this paper.

2. Semi-discrete CDG scheme

In this section, we construct the semi-discrete CDG scheme for the parabolic
equation (1) and study the stability of the semi-discrete CDG scheme.

Let Th be the partition of Ω satisfying the shape regularity hypothesis [19, 20].
For each T ∈ Th, hT represents the diameter of T , h = maxT∈Th

hT represents the
mesh size of Th. Let Eh be the set of all edges in Th and E0

h be the set of all interior
edges in Th.

For any integer k ≥ 1, we define the weak finite element space Vh and the
subspace V 0

h as follows:

Vh = {v ∈ L2(Ω), v|T ∈ Pk(T ), T ∈ Th},
V 0
h = {v ∈ Vh, v = 0 on ∂Ω}.

Let e ∈ Eh be the shared edge of element T1 and T2. For any v ∈ Vh +H1
0 (Ω),

the average {·} and jump [·] are defined by

{v} =

{
1
2v|T1 +

1
2v|T2 , e ∈ E0

h,
v, e ∈ ∂Ω,

(3)

and

[v] =

{
v|T1 − v|T2 , e ∈ E0

h,
v, e ∈ ∂Ω.

(4)

According to the definitions of the average (3) and jump (4), it is easy to show
that {

∥v − {v}∥e =
1

2
∥[v]∥e, e ∈ E0

h,

∥v − {v}∥e = 0, e ∈ ∂Ω.
(5)

Now, we define the discrete weak gradient operator.

Definition 2.1. [18, 25] For any v ∈ Vh + H1(Ω), its discrete weak gradient
∇wv ∈ [Pj(T )]

2 (j > k) satisfies

(∇wv, τ )T = −(v,∇ · τ )T + ⟨{v}, τ · n⟩∂T , ∀ τ ∈ [Pj(T )]
2,(6)

where n is the unit outward normal direction on ∂T .

Let Qh be the L2 projection onto Pk(T ), Rh be the L2 projection onto [Pj(T )]
2.

For any w, v ∈ Vh, define

a(w, v) =
∑
T∈Th

(a∇ww,∇wv)T .

Semi-discrete CDG Algorithm 1. The semi-discrete CDG scheme of the par-
abolic equation (1) is given by seeking uh ∈ L2(0, T ;V 0

h ) and uh(·, 0) = Qhψ, such
that

((uh)t, v) + a(uh, v) = (f, v), ∀ v ∈ V 0
h .(7)

Here (uh)t represents the derivative of uh with respect to t.

For any v ∈ Vh +H1(Ω), we define two semi-norms as follows:

|||v|||2 =
∑
T∈Th

(∇wv,∇wv)T ,(8)
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∥v∥21,h =
∑
T∈Th

∥∇v∥2T +
∑
e∈ε0h

h−1
e ∥[v]∥2e.(9)

Lemma 2.1. [25] For all v ∈ Vh + H1(Ω), there exist two positive constants C1

and C2, such that

C1∥v∥1,h ≤ |||v||| ≤ C2∥v∥1,h,(10)

which implies j = n+ k − 1, where n is the number of edges of convex polygon.

From the the definition of ||| · ||| and Lemma 2.1, it is simple to get the following
results.

Lemma 2.2. ||| · ||| is a norm in V 0
h .

Lemma 2.3. [9] For any w, v ∈ Vh, there exist two positive constants α, β, such
that

|a(w, v)| ≤ β|||w||||||v|||,(11)

α|||v|||2 ≤ a(v, v).(12)

For the semi-discrete CDG scheme (7), we have the following stable result.

Theorem 2.1. Let uh(t) ∈ L2(0, T ;V 0
h ) be the numerical solution of the semi-

discrete CDG scheme (7), there exists C > 0 such that

∥uh(t)∥2 ≤ C

(
∥uh(0)∥2 +

∫ t

0

∥f(s)∥2ds
)
, ∀ t ∈ (0, T ],(13)

where C is independent of h and t.

Proof. By setting v = uh in (7), we have

((uh(t))t, uh(t)) + a(uh(t), uh(t)) = (f, uh(t)).

From the coercive of the bilinear form a(·, ·) in (12), we get

(f, uh(t)) ≥ ((uh(t))t, uh(t)),

which yields ∫
Ω

f uh(t)dx ≥ ((uh(t))t, uh(t)) =
1

2

d

dt

∫
Ω

u2h(t)dx.

By using the Young inequality, we obtain

1

2

d

dt

∫
Ω

u2h(t)dx ≤ 1

2

(∫
Ω

f2dx+

∫
Ω

u2h(t)dx

)
.

By integrating the above equation with respect to t, we arrive at

∥uh(t)∥2 ≤ ∥uh(0)∥2 +
∫ t

0

∥f(s)∥2ds+
∫ t

0

∥uh(s)∥2ds.(14)

Combining (14) and Gronwall inequality [12] yield (13). The proof is completed. �

Now, we give some results about the projection operator Qh and Rh. Recall the
definitions of projection operator, denote by Qh the L2 projection operator onto
Pk(T ) and by Rh the L2 projection operator onto [Pn+k−1(T )]

2.
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Lemma 2.4. [18] For any φ ∈ Hk+1(Ω), there hold∑
T∈Th

∥φ−Qhφ∥2T +
∑
T∈Th

h2T ∥∇(φ−Qhφ)∥2T ≤ Ch2(k+1)∥φ∥2k+1,(15)

∑
T∈Th

∥a(∇φ−Rh(∇φ))∥2T ≤ Ch2k∥φ∥2k+1.(16)

Lemma 2.5. For u ∈ H1(Ω), we have

∇wu = Rh∇u.(17)

Proof. From the definition of the weak gradient (6), integration by parts, and the
definition of Rh, we get

(∇wu, τ )T = −(∇ · τ , u)T + ⟨{u}, τ · n⟩∂T
= −(∇ · τ , u)T + ⟨u, τ · n⟩∂T
= (∇u, τ )T − ⟨u, τ · n⟩∂T + ⟨u, τ · n⟩∂T
= (Rh∇u, τ )T , ∀ τ ∈ [Pn+k−1(T )]

2,

which proves (17). �

Lemma 2.6. Let u ∈ H1(Ω), there holds true

(a∇wu,∇wv)T = (∇v, a∇u)T − ⟨v − {v}, aRh∇u · n⟩∂T , ∀ v ∈ V 0
h .(18)

Proof. According to (17), integration by parts, and the definition of the weak gra-
dient (6), we have

(a∇wu,∇wv)T = (aRh∇u,∇wv)T

= −(v,∇ · (aRh∇u))T + ⟨{v}, (aRh∇u) · n⟩∂T
= (∇v, aRh∇u)T − ⟨v, aRh∇u · n⟩∂T + ⟨{v}, (aRh∇u) · n⟩∂T
= (∇v, a∇u)T − ⟨v − {v}, aRh∇u · n⟩∂T .

The proof is completed. �

Let u be the exact solution of the parabolic equation (1), uh(t) ∈ L2(0, T ;V 0
h )

be the numerical solution of the semi-discrete CDG scheme (7), we define the error
as follows:

e := u− uh.

Theorem 2.2. Assume u ∈ C1
(
0, T ;Hk+1(Ω)

)
, there exists a constant C > 0,

such that

∥e(·, t)∥2 +
∫ t

0

α|||e|||2ds ≤ ∥e(·, 0)∥2 + Ch2k
∫ t

0

∥u∥2k+1ds,(19)

and

∥e∥2 +
∫ t

0

∥es∥2ds+
α

4
|||e|||2 ≤∥e(·, 0)∥2 + β|||e(·, 0)|||2 + Ch2k

(
∥u(·, 0)∥2k+1

+ ∥u∥2k+1 +

∫ t

0

∥u∥2k+1ds+ ∥us∥2k+1ds
)
.

(20)

Proof. By testing (1) with v ∈ V 0
h , we have

(f, v) = (ut, v) +
∑
T∈Th

(−∇ · (a∇u), v)T .
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Using integration by parts, the fact that
∑

T∈Th

⟨a∇u · n, {v}⟩∂T = 0 and (18), we

obtain

(f, v) =(ut, v) +
∑
T∈Th

(−∇ · a∇u, v)T

=(ut, v) +
∑
T∈Th

(a∇u,∇v)T −
∑
T∈Th

⟨v, a∇u · n⟩∂T

=(ut, v) +
∑
T∈Th

(a∇u,∇v)T −
∑
T∈Th

⟨v − {v}, a∇u · n⟩∂T

=(ut, v) +
∑
T∈Th

(a∇wu,∇wv)T +
∑
T∈Th

⟨v − {v}, aRh∇u · n⟩∂T

−
∑
T∈Th

⟨v − {v}, a∇u · n⟩∂T

=(ut, v) +
∑
T∈Th

(a∇wu,∇wv)T +
∑
T∈Th

⟨a(Rh∇u−∇u) · n, v − {v}⟩∂T .

(21)

Subtracting (7) from (21), we arrive at

((u− uh)t, v) +
∑
T∈Th

(a∇w(u− uh),∇wv)T =
∑
T∈Th

⟨a(∇u−Rh∇u) · n, v − {v}⟩∂T ,

which implies that

(et, v) +
∑
T∈Th

(a∇we,∇wv)T =
∑
T∈Th

⟨a(∇u−Rh∇u) · n, v − {v}⟩∂T .(22)

Using the Cauchy-Schwarz inequality, the trace inequality, and the Young in-
equality, we get∣∣∣∣∣ ∑

T∈Th

⟨a(∇u−Rh∇u) · n, v − {v}⟩∂T

∣∣∣∣∣
≤

(∑
T∈Th

hT ∥a(∇u−Rh∇u)∥2∂T

) 1
2
(∑

T∈Th

h−1
T ∥v − {v}∥2∂T

) 1
2

≤ C

(∑
T∈Th

(
∥a (∇u−Rh∇u) ∥2T + h2T ∥∇(a(∇u−Rh∇u))∥2T

)) 1
2

· |||v|||

≤ Chk∥u∥k+1 · |||v|||

≤ Ch2k∥u∥2k+1 +
α

2
|||v|||2.

(23)

By taking v = e in (22), we have

(et, e) +
∑
T∈Th

(a∇we,∇we) =
∑
T∈Th

⟨a(∇u−Rh∇u) · n, e− {e}⟩∂T .(24)

According to the coercive of the bilinear form a(·, ·) in (12) and estimate (23), we
obtain

1

2

d

dt
∥e∥2 + α|||e|||2 ≤ (et, e) + a(e, e) ≤ Ch2k∥u∥2k+1 +

α

2
|||e|||2,

which leads to
d

dt
∥e∥2 + α|||e|||2 ≤ Ch2k∥u∥2k+1.(25)
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By integrating the above equation with respect to t, we arrive at

∥e∥2 − ∥e(·, 0)∥2 + α

∫ t

0

|||e|||2ds ≤ Ch2k
∫ t

0

∥u∥2k+1ds,

which yields

∥e∥2 +
∫ t

0

α|||e|||2ds ≤ ∥e(·, 0)∥2 + Ch2k
∫ t

0

∥u∥2k+1ds.(26)

Then, we turn to estimate (20). Setting v = et in (22), we get

(et, et) + (a∇we,∇wet)

=
∑
T∈Th

⟨a(∇u−Rh∇u) · n, et − {et}⟩∂T

=
d

dt

∑
T∈Th

⟨a(∇u−Rh∇u) · n, e− {e}⟩∂T −
∑
T∈Th

⟨a(∇ut −Rh∇ut) · n, e− {e}⟩∂T .

By using the Cauchy-Schwarz inequality and the Young inequality, we have

∥et∥2 +
1

2

d

dt
a(e, e)

≤ d

dt

∑
T∈Th

⟨a(∇u−Rh∇u) · n, e− {e}⟩∂T

+

∣∣∣∣∣ ∑
T∈Th

⟨a(∇ut −Rh∇ut) · n, e− {e}⟩∂T

∣∣∣∣∣
≤ d

dt

∑
T∈Th

⟨a(∇u−Rh∇u) · n, e− {e}⟩∂T

+
1

4α

∑
T∈Th

hT ∥a(∇ut −Rh∇ut)∥2∂T + α|||e|||2.

(27)

Integrating the above equation with respect to t and together with the bounded-ness
(11), the Cauchy-Schwarz inequality, and the Young inequality, we get

∫ t

0

∥es∥2ds+
α

2
|||e|||2 ≤β

2
|||e(·, 0)|||2 +

∑
T∈Th

⟨a(∇u−Rh∇u) · n, e− {e}⟩∂T

−
∑
T∈Th

⟨a (∇u(·, 0)−Rh∇u(·, 0)) · n, e(·, 0)− {e(·, 0)}⟩∂T

+

∫ t

0

1

4α

(∑
T∈Th

hT ∥a(∇us −Rh∇us)∥2∂T

)
ds+ α

∫ t

0

|||e|||2ds

≤β
2
|||e(·, 0)|||2 + 1

α

∑
T∈Th

hT ∥a(∇u−Rh∇u)∥2∂T +
α

4
|||e|||2

+
1

2β

∑
T∈Th

hT ∥a (∇u(·, 0)−Rh∇u(·, 0)) ∥2∂T +
β

2
|||e(·, 0)|||2

+

∫ t

0

1

4α

(∑
T∈Th

hT ∥a(∇us −Rh∇us)∥2∂T

)
ds+

∫ t

0

α|||e|||2ds,

(28)
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which yields

∥e∥2 +
∫ t

0

∥es∥2ds+
α

4
|||e|||2

≤∥e(·, 0)∥2 + β|||e(·, 0)|||2

+ Ch2k
(
∥u(·, 0)∥2k+1 + ∥u∥2k+1 +

∫ t

0

∥u∥2k+1ds+

∫ t

0

∥us∥2k+1ds

)
.

This completes the proof of the theorem. �
3. Full-discrete CDG scheme

This section is devoted to derive the full-discrete CDG scheme for the parabolic
equation (1).

Let τ > 0 be the time step, we define tn = nτ , 0 ≤ n ≤ N , and τ = T/N .
Besides, we introduce the backward Euler scheme as follows:

∂vn =
1

τ
(vn − vn−1),(29)

where vn = v(tn).
Letting Un := uh(tn) ∈ V 0

h and applying the backward Euler difference scheme
for time t in the semi-discrete method, we obtain the following full-discrete CDG
scheme.

Full-Discrete CDG Algorithm 1. The full-discrete CDG scheme for the para-
bolic equation (1) is given by: Seeking Un ∈ V 0

h (n = 1, 2, · · · , N) and U0 = Qhψ,
such that

(∂Un, v) + a(Un, v) = (f(tn), v), ∀ v ∈ V 0
h .(30)

From the (30) and (29), it is easy to get the following equivalent scheme.

Full-Discrete CDG Algorithm 2. An equivalent full-discrete CDG scheme:
Find Un ∈ V 0

h (n = 1, 2, · · · , N) and U0 = Qhψ, such that

(Un, v) + τa(Un, v) = (Un−1 + τf(tn), v), ∀ v ∈ V 0
h .(31)

Theorem 3.1. The full-discrete CDG scheme (30) only has a unique solution.

Proof. Let Un
(1) and U

n
(2) be the two solutions of the full-discrete CDG scheme (30),

satisfying U0
(1) = U0

(2) = Qhψ and

(∂Un
(i), v) + a(Un

(i), v) = (f(tn), v), i = 1, 2; ∀ v ∈ V 0
h .

Letting En = Un
(1) − Un

(2), it follows that E
n ∈ V 0

h (E0 = 0) and

(∂En, v) + a(En, v) = 0, ∀ v ∈ V 0
h ,(32)

By taking v = En in (32), we have

(∂En, En) + a(En, En) = 0.(33)

Using (29), we get

(∂En, En) =
1

τ

(
En − En−1, En

)
=

1

2τ

(
(En, En)− (En−1, En−1) + (En − En−1, En − En−1)

)
≥ 1

2τ

(
∥En∥2 − ∥En−1∥2

)
.

(34)
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Substituting (34) into (33) yields

1

2τ

(
∥En∥2 − ∥En−1∥2

)
+ α|||En|||2 ≤ 0.(35)

By induction yields

∥En∥2 + 2τα
n∑

j=1

|||Ej |||2 ≤ 0,

which implies that |||Ej ||| = 0 (1 ≤ j ≤ n). From the definition of ||| · |||, we arrive at

Ej = 0, 1 ≤ j ≤ n,

which yields

Un
(1) = Un

(2).

The proof is completed. �

Lemma 3.1. [9, 11] For all v ∈ V 0
h , there holds

(36) ∥v∥2 ≤ C|||v|||2.

For the full-discrete CDG scheme (30), it is simple to get the following stabilized
conclusion.

Theorem 3.2. Let Un be the numerical solution of the full-discrete CDG scheme
(30) and assume ∥f(t)∥ is bound in J =

[
0, T

]
. Then, there holds

∥Un∥ ≤ ∥U0∥+ C sup
t∈[0,T ]

∥f(t)∥.(37)

Proof. By setting v = Un in (30), together with the Young inequality, (12) and
(36), we have

1

2
∥Un∥2 − 1

2
∥Un−1∥2 + 1

2
∥Un − Un−1∥2 + ατ |||Un|||2

≤τ(f(tn), Un)

≤ τ

α
∥f(tn)∥2 +

τα

4
|||Un|||2,

which yields

∥Un∥2 ≤ ∥Un−1∥2 + Cτ∥f(tn)∥2.
Summing the above inequality from 1 to n, we get

∥Un∥2 ≤ ∥U0∥2 + Cτ

n∑
j=1

∥f(tj)∥2

≤ ∥U0∥2 + CT sup
t∈[0,T ]

∥f(t)∥2.

This completes the proof of the theorem. �

Denote by en := Un − u(tn) be the error of the full-discrete CDG scheme (30).
We have the following error estimate results.

Theorem 3.3. Suppose that u ∈ C2(0, T ;Hk+1(Ω)), there hold

∥en∥2 +
n∑

j=1

ατ |||ej |||2 ≤ ∥e0∥2 + C

(
h2k∥u∥2k+1,∞ + τ2

∫ tn

0

∥uss∥2ds
)
,(38)



CONFORMING DG FOR SECOND-ORDER PARABOLIC EQUATION 441

and

|||en|||2 ≤C
{
∥e0∥2 + |||e0|||2 + h2k

(
∥u(·, 0)∥2k+1 + ∥u∥2k+1,∞

+ ∥ut∥2k+1,∞ + τ2
∫ tn

0

∥uss∥2k+1ds
)
+ τ2

∫ tn

0

∥uss∥2ds
}
,

(39)

where ∥u∥k+1,∞ = sup
t∈[0,T ]

∥u(t)∥k+1.

Proof. For any v ∈ V 0
h , we have

(f(tn), v)

=(ut(tn), v) +
∑
T∈Th

(a∇wu(tn),∇wv)T +
∑
T∈Th

⟨a (Rh∇u(tn)−∇u(tn)) · n, v − {v}⟩∂T .

(40)

From the full-discrete CDG scheme (30), we obtain(
∂Un, v

)
+ a (Un, v) = (f(tn), v) , ∀ v ∈ V 0

h .

Subtracting the two equations yields

(
∂Un − ut(tn), v

)
+ a(Un − u(tn), v) =

∑
T∈Th

⟨a(Rh∇u(tn)−∇u(tn)) · n, v − {v}⟩∂T ,
(41)

From (29), it follows that(
∂Un − ut(tn), v

)
=
(
∂(Un − u(tn)), v

)
+
(
∂u(tn)− ut(tn), v

)
.(42)

Substituting (42) into (41) yields(
∂(Un − u(tn)), v

)
+ a (Un − u(tn), v)

=
(
ut(tn)− ∂u(tn), v

)
−
∑
T∈Th

⟨a(∇u(tn)−Rh∇u(tn)) · n, v − {v}⟩∂T ,(43)

which leads to(
∂en, v

)
+ a(en, v)

=
(
ut(tn)− ∂u(tn), v

)
−
∑
T∈Th

⟨a(∇u(tn)−Rh∇u(tn)) · n, v − {v}⟩∂T .(44)

For the convenience of description, we define the following notations:

Wn
1 = ut(tn)− ∂u(tn),

Wn
2,T = (a (∇u(tn)−Rh∇u(tn)) · n) |∂T ,
enT = (e(tn)− {e(tn)}) |∂T .

Taking v = en in (44), we have(
∂en, en

)
+ a(en, en) = (Wn

1 , e
n)−

∑
T∈Th

⟨Wn
2,T , e

n
T ⟩∂T .



442 F. HUO, Y. SUN, J. WU, AND L. ZHANG

By using (12), the Cauchy-Schwarz inequality, and the Young inequality, we get

∥en∥2 + ατ |||en|||2 ≤ (en−1, en) + τ∥Wn
1∥ · ∥en∥+ τ

∣∣∣∣∣ ∑
T∈Th

⟨Wn
2,T , e

n
T ⟩∂T

∣∣∣∣∣
≤ 1

2
∥en−1∥2 + 1

2
∥en∥2 + τ∥Wn

1∥ · ∥en∥+ τ

∣∣∣∣∣ ∑
T∈Th

⟨Wn
2,T , e

n
T ⟩∂T

∣∣∣∣∣ .

(45)

From (36), it follows that

1

2
∥en∥2 + ατ |||en|||2 ≤ 1

2
∥en−1∥2 + τα

4
|||en|||2 + τ

α
∥Wn

1∥2

+
τ

α

∑
T∈Th

hT ∥a (∇u(tn)−Rh∇u(tn)) ∥2∂T +
τα

4
|||en|||2,

which implies that

1

2
∥en∥2 + 1

2
ατ |||en|||2

≤1

2
∥en−1∥2 + τ

α
∥Wn

1∥2 +
τ

α

∑
T∈Th

hT ∥a(Rh∇u(tn)−∇u(tn))∥2∂T .
(46)

Summing the above inequality from 1 to n, we have

∥en∥2 +
n∑

j=1

ατ |||ej |||2

≤∥e0∥2 + 2τ

α

n∑
j=1

∥Wj
1∥2 +

2τ

α

n∑
j=1

∑
T∈Th

hT ∥a(∇u(tj)−Rh∇u(tj))∥2∂T .
(47)

Noting that

1

τ

∫ tj

tj−1

(s− tj−1)ussds =
1

τ

∫ tj

tj−1

(s− tj−1)dus

=
1

τ

[
(s− tj−1)ut

∣∣∣tj
tj−1

−
∫ tj

tj−1

usds

]

=
1

τ

[
(tj − tj−1)ut(tj)− (u(tj)− u(tj−1))

]
= ut(tj)−

u(tj)− u(tj−1)

τ
,

then we get

Wj
1 = ut(tj)−

u(tj)− u(tj−1)

τ
=

1

τ

∫ tj

tj−1

(s− tj−1)ussds.

Therefore, we obtain

∥Wj
1∥2 =

∫
Ω

(
1

τ

∫ tj

tj−1

(s− tj−1)ussds

)2

dx

≤ 1

τ2

∫
Ω

∫ tj

tj−1

(s− tj−1)
2ds

∫ tj

tj−1

u2ssdsdx

≤ Cτ

∫ tj

tj−1

∥uss∥2ds.

(48)
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From the estimate (16), it follows that∑
T∈Th

hT ∥a(Rh∇u(tj)−∇u(tj))∥2∂T ≤ Ch2k∥u(tj)∥2k+1.(49)

Substituting (48) and (49) into (47) yields (38).
To get (39), we take v = ∂en in (44). It follows that

(∂en, ∂en) + a(en, ∂en) = (Wn
1 , ∂e

n)−
∑
T∈Th

⟨Wn
2,T , ∂e

n
T ⟩∂T ,

where

⟨Wn
2,T , ∂e

n
T ⟩ = ∂⟨Wn

2,T , e
n
T ⟩+ ⟨(Wn

2 )t − ∂Wn
2,T , e

n−1
T ⟩ − ⟨(Wn

2 )t, e
n−1
T ⟩,

(Wn
2 )t = a(∇ut(tn)−Rh∇ut(tn)) · n|T .

Then we arrive at

∥∂en∥2 + 1

τ
a(en, en)− 1

τ
a(en, en−1)

=(Wn
1 , ∂e

n)−
∑
T∈Th

{
∂⟨Wn

2,T , e
n
T ⟩+ ⟨(Wn

2 )t − ∂Wn
2,T , e

n−1
T ⟩ − ⟨(Wn

2 )t, e
n−1
T ⟩

}
,

i.e.

τ∥∂en∥2 + a(en, en)

=a(en, en−1) + τ(Wn
1 , ∂e

n)

− τ
∑
T∈Th

{
∂⟨Wn

2,T , e
n
T ⟩+ ⟨(Wn

2 )t − ∂Wn
2,T , e

n−1
T ⟩ − ⟨(Wn

2 )t, e
n−1
T ⟩

}
.

Using the Cauchy-Schwarz inequality, the Young inequality, and the trace inequal-
ity, we get

τ∥∂en∥2 + a(en, en)

≤1

2
a(en, en) +

1

2
a(en−1, en−1) +

τ

4
∥Wn

1∥2 + τ∥∂en∥2

− τ

(∑
T∈Th

∂
⟨
Wn

2,T , e
n
T

⟩)
+ τ

∑
T∈Th

(
1

2
hT ∥(Wn

2 )t − ∂Wn
2,T ∥2∂T +

1

2
h−1
T ∥en−1

T ∥2∂T
)

+ τ
∑
T∈Th

(
1

2
hT ∥(Wn

2 )t∥2∂T +
1

2
h−1
T ∥en−1

T ∥2∂T
)

≤1

2
a(en, en) +

1

2
a(en−1, en−1) +

τ

4
∥Wn

1∥2 + τ∥∂en∥2 − τ

(∑
T∈Th

∂⟨Wn
2,T , e

n
T ⟩

)
+
τ

2

∑
T∈Th

hT
(
∥(Wn

2 )t − ∂Wn
2,T ∥2∂T + ∥(Wn

2 )t∥2∂T
)
+ τ |||en−1|||2,

(50)

where

∥Wj
2,T ∥

2
∂T = ⟨a (∇u(tj)−Rh∇u(tj)) , a (∇u(tj)−Rh∇u(tj))⟩∂T .

From the Cauchy-Schwarz inequality and the estimate (23), we obtain∑
T∈Th

hT ∥Wj
2,T ∥

2
∂T
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=
∑
T∈Th

hT ∥a (∇u(tj)−Rh∇u(tj)) ∥2∂T

≤
∑
T∈Th

C∥a (∇u(tj)−Rh∇u(tj)) ∥2T + h2T ∥∇ (a (∇u(tj)−Rh∇u(tj))) ∥2T

≤Ch2k∥u(tj)∥2k+1.

In a similar way, using the Cauchy-Schwarz inequality and the estimate (23), we
have∑
T∈Th

hT ∥(Wj
2)t−∂W

j
2∥2∂T ≤ Cτ

∑
T∈Th

hT

∫ tj

tj−1

∥(W2)ss∥2∂T ds ≤ Cτh2k
∫ tj

tj−1

∥uss∥2k+1ds.

Summing (50) from 1 to n, we have

1

2
a(en, en) ≤1

2
a(e0, e0)−

∑
T∈Th

(
⟨Wn

2,T , e
n
T ⟩ − ⟨W0

2,T , e
0
T ⟩
)

+
τ

4

n∑
j=1

∥Wj
1∥2 + τ

n∑
j=1

|||ej−1|||2

+ τ

n∑
j=1

∑
T∈Th

(
hT
2
∥(Wj

2)t − ∂Wj
2,T ∥

2
∂T +

hT
2
∥(Wj

2,T )t∥
2
∂T

)
.

From (12) and the Cauchy-Schwarz inequality, we have

α

2
|||en|||2 ≤β

2
|||e0|||2 + τ

4

n∑
j=1

∥Wj
1∥2 + τ

n∑
j=1

|||ej−1|||2

+
4

α

∑
T∈Th

hT ∥Wn
2,T ∥2∂T +

α

4
|||en|||2 + 1

2β

∑
T∈Th

hT ∥W0
2,T ∥2∂T +

β

2
|||e0|||2

+ τ
n∑

j=1

∑
T∈Th

hT ∥(Wj
2)t − ∂Wj

2,T ∥
2
∂T + τ

n∑
j=1

∑
T∈Th

hT ∥(Wj
2,T )t∥

2
∂T .

(51)

Combining the above estimates, we arrive at

|||en|||2 ≤C
{
∥e0∥2 + |||e0|||2 + h2k

(
∥u(·, 0)∥2k+1 + ∥u∥2k+1,∞

+ ∥ut∥2k+1,∞ + τ2
∫ tn

0

∥uss∥2k+1ds
)
+ τ2

∫ tn

0

∥uss∥2ds
}
.

This completes the proof of the theorem. �
4. Optimal order error estimate

Theorem 2.2 and Theorem 3.3 show that the L2 errors of both the semi-discrete
and full-discrete schemes have not reached the optimal order. To derive optimal
order error estimate, the elliptic projection method is used for analysis.

Definition 4.1. For any u ∈ H1
0 (Ω), we define the elliptic projection Eh : H1

0 (Ω) →
Vh satisfying

a(Ehu, χ) = (−∇ · (a∇u), χ), ∀χ ∈ Vh.(52)

Then Ehu can be seen as a CDG numerical solution of the elliptic problem:{
−∇ · (a∇u) = f, in Ω,

u = 0, on ∂Ω.
(53)
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Regarding elliptical projection Eh, the following error estimates are presented [26].

Lemma 4.1. [26] Let u ∈ Hk+1(Ω), there holds

|||Ehu− u||| ≤ Chk∥u∥k+1,(54)

∥Ehu− u∥ ≤ Chk+1∥u∥k+1.(55)

4.1. Optimal order error estimate for the semi-discrete CDG scheme.
This section mainly derives the error estimate of optimal order in L2-norm for the
semi-discrete CDG scheme (7). This section also provides the H1 error estimate
based on elliptic projection for the article’s completeness.

Theorem 4.1. Let u ∈ C1
(
0, T ;Hk+1(Ω)

)
be exact solution of the (1) and uh(t) ∈

C1
(
0, T ;V 0

h

)
be the numerical solution of the semi-discrete CDG scheme (7), there

holds

∥uh(t)− u(t)∥ ≤ ∥uh(0)− u(0)∥+ Chk+1

(
∥ψ∥k+1 +

∫ t

0

∥us∥k+1ds

)
.(56)

Proof. Let ζ = uh − Ehu and ϑ = Ehu− u, then

uh(t)− u(t) = ζ(t) + ϑ(t).(57)

From Lemma 4.1, we have

∥ϑ∥ ≤ Chk+1∥u∥k+1 ≤ Chk+1

(
∥ψ∥k+1 +

∫ t

0

∥us∥k+1ds

)
.(58)

According to the definition of the Eh, we get

(ζt, χ) + a(ζ, χ) = ((uh)t, χ)− (Ehut, χ) + a (uh, χ)− a (Ehu, χ)
= (f, χ)− (Ehut, χ)− a(Ehu, χ)
= (f, χ)− (Ehut, χ) + (∇ · (a∇u), χ)
= (ut, χ)− (Ehut, χ)
= −(ϑt, χ).

(59)

Since ζ ∈ Vh and χ ∈ Vh, we take χ = ζ in (59) and obtain

(ζt, ζ) + a(ζ, ζ) = −(ϑt, ζ), t > 0.

From the coercive of the bilinear form a(·, ·) as (12), we get

(ζt, ζ) =
1

2

d

dt
∥ζ∥2 = ∥ζ∥ d

dt
∥ζ∥ ≤ ∥ϑt∥∥ζ∥,

which yields
d

dt
∥ζ∥ ≤ ∥ϑt∥.

Integrating the above equation with respect to t, we arrive at∫ t

0

d

dt
∥ζ∥ds ≤

∫ t

0

∥ϑs∥ds,

which leads to

∥ζ(t)∥ ≤ ∥ζ(0)∥+
∫ t

0

∥ϑs∥ds.(60)

According to Lemma 4.1, we get

∥ζ(0)∥ = ∥uh(0)− Ehu(0)∥
≤ ∥uh(0)− u(0)∥+ ∥Ehu(0)− u(0)∥

≤ ∥uh(0)− u(0)∥+ Chk+1∥ψ∥k+1,

(61)
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and

∥ϑt∥ ≤ Chk+1∥ut∥k+1.(62)

Combining above estimates yields

∥uh(t)− u(t)∥ = ∥ζ(t) + ϑ(t)∥
≤ ∥ζ(t)∥+ ∥ϑ(t)∥

≤ ∥uh(0)− u(0)∥+ Chk+1

(
∥ψ∥k+1 +

∫ t

0

∥us∥k+1ds

)
.

This completes the proof. �

Theorem 4.2. Assume that u ∈ C1
(
0, T ;Hk+1(Ω)

)
is exact solution of the (1) and

uh(t) ∈ C1
(
0, T ;V 0

h

)
is the numerical solution of the semi-discrete CDG scheme

(7), we have

|||uh(t)− u(t)|||2

≤2β

α
|||uh(0)− u(0)|||2 + Ch2k

(
∥ψ∥2k+1 + ∥u∥2k+1

)
+ Ch2(k+1)

∫ t

0

∥us∥2k+1ds.
(63)

Proof. From Lemma 4.1, we have

|||ϑ(t)||| = |||Ehu(t)− u(t)||| ≤ Chk∥u∥k+1.(64)

Letting χ = ζt in (59) yields

(ζt, ζt) + a(ζ, ζt) = −(ϑt, ζt).(65)

Using the Young inequality, we get

∥ζt∥2 +
1

2

d

dt
a(ζ, ζ) = −(ϑt, ζt) ≤

1

2
∥ϑt∥2 +

1

2
∥ζt∥2,(66)

which leads to
d

dt
a(ζ, ζ) ≤ ∥ϑt∥2.

Integrating the above equation with respect to t, we arrive at

a(ζ, ζ) ≤ a (ζ(0), ζ(0)) +

∫ t

0

∥ϑs∥2ds,(67)

where

a (ζ(0), ζ(0)) =
∑
T∈Th

(
a∇w(uh(0)− Ehu(0)),∇w(uh(0)− Ehu(0))

)
T
.(68)

From Lemma 4.1, it follows that

α|||ζ|||2 ≤a(ζ(0), ζ(0)) +
∫ t

0

∥ϑs∥2ds

≤2a (uh(0)− u(0), uh(0)− u(0))

+ 2a (Ehu(0)− u(0), Ehu(0)− u(0)) +

∫ t

0

∥ϑs∥2ds

≤2β
(
|||uh(0)− u(0)|||2 + |||Ehu(0)− u(0)|||2

)
+

∫ t

0

∥ϑs∥2ds

≤2β|||uh(0)− u(0)|||2 + Ch2k∥ψ∥2k+1 + Ch2(k+1)

∫ t

0

∥us∥2k+1ds.

(69)
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Combining the above estimates gives

|||uh(t)− u(t)|||2 ≤2β

α
|||uh(0)− u(0)|||2 + Ch2k

(
∥ψ∥2k+1 + ∥u∥2k+1

)
+ Ch2(k+1)

∫ t

0

∥us∥2k+1ds.

The proof is completed. �

4.2. Optimal order error estimate for the full-discrete CDG scheme. This
section primarily establishes the optimal convergence order in L2-norm concerning
the full-discrete CDG scheme (30). Moreover, it offers an analysis of the H1 error
estimate employing elliptic projection, thus contributing to the overall comprehen-
siveness and rigor of the research article.

Theorem 4.3. Let u ∈ C2
(
0, T ; Hk+1(Ω)

)
be the exact solution of the parabolic

equation (1), Un be the CDG solution of the full-discrete CDG scheme (30). There
exists a constant C > 0, such that

∥Un − u(tn)∥

≤∥U0 − u(0)∥+ Chk+1

(
∥ψ∥k+1 +

∫ tn

0

∥us∥k+1ds

)
+ Cτ

∫ tn

0

∥uss∥ds.
(70)

Proof. Let

Un − u(tn) = (Un − Ehu(tn)) + (Ehu(tn)− u(tn)) = ζn + ϑn.(71)

From Lemma 4.1, we have

∥ϑn∥ = ∥Ehu(tn)− u(tn)∥ ≤ Chk+1

(
∥ψ∥k+1 +

∫ tn

0

∥us∥k+1ds

)
.(72)

According to the definition of the Eh, it follows that
(∂ζn, χ) + a(ζn, χ) =

(
∂Un, χ

)
−
(
∂Ehu(tn), χ

)
+ a (Un, χ)− a (Ehu(tn), χ)

= (f(tn), χ)−
(
∂Ehu(tn), χ

)
− a (Ehu(tn), χ)

= (f(tn), χ)−
(
∂Ehu(tn), χ

)
+ (∇ · (a∇u(tn)))

= (ut(tn), χ)−
(
∂Ehu(tn), χ

)
=
(
ut(tn)− ∂u(tn), χ

)
+
(
∂u(tn)− ∂Ehu(tn), χ

)
,

(73)

which leads to (
∂ζn, χ

)
+ a (ζn, χ) = (Wn

1 , χ) + (Wn
3 , χ) = (Wn, χ) ,(74)

with

Wn
1 = ut(tn)− ∂u(tn),

Wn
3 = ∂u(tn)− ∂Ehu(tn).

Taking χ = ζn in (74), we obtain(
∂ζn, ζn

)
+ a(ζn, ζn) = (Wn, ζn),(75)

which yields (
∂ζn, ζn

)
≤ ∥Wn∥ · ∥ζn∥.

Then we get

1

τ

(
∥ζn∥2 − (ζn−1, ζn)

)
≤ ∥Wn∥ · ∥ζn∥,
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which implies that

∥ζn∥ ≤ τ∥Wn∥+ ∥ζn−1∥.
Using induction, it is simple to get that

∥ζn∥ ≤ τ
n∑

j=1

∥Wj∥+ ∥ζ0∥ ≤ τ
n∑

j=1

∥Wj
1∥+ τ

n∑
j=1

∥Wj
3∥+ ∥ζ0∥.(76)

According to Theorem 3.3, we get

τ

n∑
j=1

∥Wj
1∥ ≤ τ

∫ tn

0

∥uss∥ds.(77)

Note that

Wj
3 =

1

τ
(I − Eh)

∫ tj

tj−1

usds =
1

τ

∫ tj

tj−1

(I − Eh)usds,

then we obtain

τ
n∑

j=1

∥Wj
3∥ ≤ Chk+1

∫ tn

0

∥us∥k+1ds.(78)

Combining above estimates, we arrive at

∥Un − u(tn)∥ ≤∥ζn∥+ ∥ϑn∥

≤∥ζ0∥+ τ

∫ tn

0

∥uss∥ds+ Chk+1

∫ tn

0

∥us∥k+1ds

+ Chk+1

(
∥ψ∥k+1 +

∫ tn

0

∥us∥k+1ds

)
≤∥U0 − u(0)∥+ Chk+1

(
∥ψ∥k+1 +

∫ tn

0

∥us∥k+1ds

)
+ Cτ

∫ tn

0

∥uss∥ds.

The proof is completed. �

Theorem 4.4. Let u ∈ C2
(
0, T ;Hk+1(Ω)

)
be the exact solution of the parabolic

equation (1), Un be the CDG solution of the full-discrete CDG scheme (30). There
exists a constant C > 0, such that

|||Un − u(tn)|||2 ≤2|||U0 − u(0)|||2 + C
{
h2k

(
∥ψ∥2k+1 +

∫ tn

0

∥u∥2k+1ds

)
+ h2(k+1)

∫ tn

0

∥u∥2k+1ds+ τ2
∫ tn

0

∥uss∥2ds
}
.

(79)

Proof. According to Theorem 4.3, we have Un − u(tn) = ζn + ϑn. From Lemma
4.1, it follows that

|||ϑn|||2 ≤ Ch2k∥u∥2k+1.(80)

By taking χ = ∂ζn in (74), we obtain

∥∂ζn∥2 + τ

2
a
(
∂ζn, ∂ζn

)
+

1

2
∂a(ζn, ζn) =

(
Wn, ∂ζn

)
≤ 1

2
∥Wn∥2 + 1

2
∥∂ζn∥2.(81)

Using the coercive of the bilinear form a(·, ·) as (12), we get

α∂|||ζn|||2 ≤ ∥Wn∥2,(82)
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then we obtain

|||ζn|||2 ≤ τ

α
∥Wn∥2 + |||ζn−1|||2.(83)

By induction, then we get

|||ζn|||2 ≤ τ

α

n∑
j=1

∥Wj∥2 + |||ζ0|||2 ≤ 2τ

α

n∑
j=1

∥Wj
1∥2 +

2τ

α

n∑
j=1

∥Wj
3∥2 + |||ζ0|||2.(84)

Similar to (77) and (78), it is easy to get that

τ

n∑
j=1

∥Wj
1∥2 ≤ τ2

∫ tn

0

∥uss∥2ds,(85)

and

τ
n∑

j=1

∥Wj
3∥2 = τ

n∑
j=1

∫
Ω

(
1

τ

∫ tj

tj−1

ϑsds

)2

dx

≤
n∑

j=1

∫
Ω

∫ tj

tj−1

ϑ2sdsdx

≤
n∑

j=1

∫ tj

tj−1

∥ϑs∥2ds

≤
∫ tn

0

∥ϑs∥2ds

≤ Ch2(k+1)

∫ tn

0

∥u∥2k+1ds.

(86)

According to Lemma 4.1, we obtain

|||ζ0|||2 ≤ 2
(
|||U0 − u(0)|||2 + Ch2k∥ψ∥2k+1

)
,

Combining above yields

|||Un − u(tn)|||2 ≤ 2|||U0 − u(0)|||2 + C
{
h2k

(
∥ψ∥2k+1 +

∫ tn

0

∥u∥2k+1ds

)
+ h2(k+1)

∫ tn

0

∥u∥2k+1ds+ τ2
∫ tn

0

∥uss∥2ds
}
.

This completes the proof of the Theorem. �

Remark 4.1. According to Theorem 4.3 and Theorem 4.4, the errors are O(τ +
hk) in the H1 norm and O(τ + hk+1) in the L2 norm with Pk CDG elements,
respectively.

Remark 4.2. (a) For simplicity, we only considered the results for the two -
dimensional case. This result can be readily extended to three-dimensional situ-
ations.
(b) In this paper, we use the CDG method to solve the second-order parabolic equa-
tion with homogeneous Dirichlet boundary conditions. What’s more, the CDG ap-
proach used in this manuscript can be readily generalized to nonhomogeneous Dirich-
let and mixed Dirichlet-Neumann boundary conditions. Nonhomogeneous Dirichlet
boundary conditions require modification solely in the approximation function space.
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Mixed Dirichlet-Neumann boundary conditions require adjustments to both the ap-
proximation function space and the right-hand side of the numerical scheme. The
analysis of well-posedness and error estimates follows a similar way.

5. Numerical experiments

In this section, we give some numerical experiments to validate the effectiveness
of the CDG scheme.

Example 5.1. (Constant Coefficients) Consider the parabolic equation (1) in a
square domain Ω = (0, 1)× (0, 1). The exact solution is choose as follows

u = e−t sin(πx) sin(πy).

where the coefficient matrix a =

(
1 0
0 1

)
, and the final time T = 1.

In this example, we use triangular meshes. The numerical results of Example
5.1 are shown in Tables 1-3. As evidenced by the results presented in Tables 1-3,
it is apparent that the numerical results attained the optimal convergence order on
triangular meshes, which is compatible with the theoretical analysis.

Table 1. Numerical results by the P1 CDG element with τ = 2h2

on triangular meshes in Example 5.1.

1/h |||u− uh||| order ∥u− uh∥ order
4 8.2193E-01 – 2.2944E-02 –
8 2.9045E-01 1.5007 4.1023E-03 2.4836
16 1.1455E-01 1.3423 8.1499E-04 2.3316
32 4.9838E-02 1.2007 1.7803E-04 2.1946
64 2.3151E-02 1.1062 4.1438E-05 2.1031

Table 2. Numerical results by the P2 CDG element with τ =
(
√
2h)3 on triangular meshes in Example 5.1.

1/h |||u− uh||| order ∥u− uh∥ order
4 1.4282E-01 – 2.9235E-03 –
8 3.8847E-02 1.8784 3.8294E-04 2.9325
16 7.2408E-03 2.4236 3.5685E-05 3.4237
32 1.5490E-03 2.2249 3.8027E-06 3.2302

Table 3. Numerical results by the P3 CDG element with τ =
( 1
512 )

2 on triangular meshes in Example 5.1.

1/h |||u− uh||| order ∥u− uh∥ order
2 1.2087E-01 – 3.5326E-03 –
4 1.2313E-02 3.2952 1.8198E-04 4.2789
8 1.2767E-03 3.2697 9.5109E-06 4.2580
16 1.5209E-04 3.0693 5.4159E-07 4.1343
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Figure 1. The polygonal meshes with h = 1
4 ,

1
8 ,

1
16 .

Example 5.2. (Constant Coefficient) In this example, we consider the same prob-
lem as Example 5.1. This example focus shifts towards investigating the convergence
order with respect to time step τ . In this example, computations are conducted us-
ing triangular, rectangular, and polygonal meshes. The polygonal meshes are shown
in Figure 1.

We fix the mesh size h = 1/32 and obtain the convergence order with respect
to time step τ . Tables 4-6 present the errors and the convergence orders about H1

and L2 norms with respect to temporal discretization, showing a convergence rate
of O(τ), thus verifying the consistency with theoretical analysis.

Table 4. Numerical results by the P2 CDG element with h = 1/32
on triangular meshes in Example 5.2.

1/τ |||u− uh||| order ∥u− uh∥ order
4 6.4027E-01 – 1.3368E-03 –
8 3.0465E-01 1.0715 6.3606E-04 1.0715
16 1.4744E-01 1.0470 3.0785E-04 1.0470
32 7.1467E-02 1.0448 1.4923E-04 1.0447
64 3.4139E-02 1.0658 7.1290E-05 1.0657
128 1.5681E-02 1.1224 3.2743E-05 1.1225

Table 5. Numerical results by the P2 CDG element with h = 1/32
on rectangular meshes in Example 5.2.

1/τ |||u− uh||| order ∥u− uh∥ order
4 5.5196E-01 – 1.3313E-03 –
8 2.6149E-01 1.0778 6.3067E-04 1.0779
16 1.2544E-01 1.0597 3.0250E-04 1.0600
32 5.9711E-02 1.0710 1.4395E-04 1.0714
64 2.7454E-02 1.1210 6.6157E-05 1.1216
128 1.1613E-02 1.2413 2.7982E-05 1.2414

Example 5.3. (Variable Coefficient) Consider the parabolic equation (1) in a
square domain Ω = (0, 1) × (0, 1) with the final time T = 1. The exact solution is
given by

u = e−t sin(πx) cos(πy),
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Table 6. Numerical results by the P2 CDG element with h = 1/32
on polygonal meshes in Example 5.2.

1/τ |||u− uh||| order ∥u− uh∥ order
4 6.5313E-01 – 1.3348E-03 –
8 3.1029E-01 1.0738 6.3415E-04 1.0738
16 1.4970E-01 1.0515 3.0595E-04 1.0515
32 7.2104E-02 1.0540 1.4736E-04 1.0540
64 3.3989E-02 1.0850 6.9466E-05 1.0849
128 1.5173E-02 1.1636 3.1032E-05 1.1625

where the coefficient matrix

a =

(
x2 + y2 + 1 xy

xy x2 + y2 + 1

)
.

In this example, we use rectangular meshes and polygonal meshes.

The errors and corresponding convergence orders are listed in Tables 7-10. From
Tables 7-10, it can be seen that within rectangular or polygonal meshes and under
the H1-norm, the convergence order manifests as O(h1) when employing the P1

CDG element and as O(h2) when using the P2 CDG element. Under the L2-norm,
Tables 7-10 indicate that the P1 CDG element achieves the convergence order of
O(h2), while the P2 CDG element exhibits the convergence order of O(h3). This is
consistent with the previous theoretical analysis results.

Table 7. Numerical results by the P1 CDG element with τ = h
on rectangular meshes in Example 5.3.

1/h |||u− uh||| order ∥u− uh∥ order
4 2.1814E+00 – 3.9742E-02 –
8 8.4981E-01 1.3601 8.2486E-03 2.2684
16 3.8689E-01 1.1352 1.9423E-03 2.0864
32 1.8797E-01 1.0414 4.7756E-04 2.0240
64 9.3188E-02 1.0123 1.1864E-04 2.0091

Table 8. Numerical results by the P2 CDG element with τ = h2

on rectangular meshes in Example 5.3.

1/h |||u− uh||| order ∥u− uh∥ order
4 2.3221E-01 – 2.8743E-03 –
8 6.0912E-02 1.9306 4.0236E-04 2.8366
16 1.5031E-02 2.0188 5.0694E-05 2.9886
32 3.7012E-03 2.0219 6.2652E-06 3.0164
64 9.1333E-04 2.0188 7.7411E-07 3.0168

Example 5.4. (L-Shaped Domain) Consider the parabolic equation (1) in the L-
shaped domain Ω = (0, 1)2 \ (0.5, 1)× (0, 0.5) with the final time T = 1. The exact
solution is

u = e−t sin(πx) sin(πy),
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Table 9. Numerical results by the P1 CDG element with τ = h
on polygonal meshes in Example 5.3.

1/h |||u− uh||| order ∥u− uh∥ order
4 1.8855E+00 – 2.2140E-02 –
8 1.1208E+00 0.7504 8.1353E-03 1.4444
16 5.7714E-01 0.9575 2.3167E-03 1.8122
32 2.8597E-01 1.0131 6.0110E-04 1.9464
64 1.3990E-01 1.0314 1.5026E-04 2.0001

Table 10. Numerical results by the P2 CDG element with τ = h2

on polygonal meshes in Example 5.3.

1/h |||u− uh||| order ∥u− uh∥ order
2 5.5330E-01 – 9.6754E-03 –
4 1.5312E-01 1.8537 1.5492E-03 2.6427
8 3.8764E-02 1.9794 1.9462E-04 2.9907
16 8.4499E-03 2.1990 2.0800E-05 3.2288
32 1.9146E-03 2.1454 2.4092E-06 3.1095

where the coefficient matrix a =

(
2 1
1 3

)
.

In this example, we use triangular meshes shown in Figure 2. Tables 11-12
present errors and convergence rates. The results indicate that the CDG scheme
with Pk elements obtains convergence rates of O(hk+1) and O(hk) in the L2 and
H1 norms, respectively. These results align with theoretical analyses.

Figure 2. The triangular meshes on L-shaped domain with h = 1
4 ,

1
8 ,

1
16 .

Table 11. Numerical results by the P1 CDG element with τ =
h/2 on triangular meshes in Example 5.4.

1/τ |||u− uh||| order ∥u− uh∥ order
4 1.9614E+00 – 2.6564E-02 –
8 1.2062E+00 0.7014 8.3570E-03 1.6684
16 6.4091E-01 0.9123 2.2393E-03 1.9000
32 3.2651E-01 0.9730 5.7191E-04 1.9692
64 1.6449E-01 0.9892 1.4417E-04 1.9880



454 F. HUO, Y. SUN, J. WU, AND L. ZHANG

Table 12. Numerical results by the P2 CDG element with τ = h2

on triangular meshes in Example 5.4.

1/τ |||u− uh||| order ∥u− uh∥ order
2 8.5413E-02 – 1.3811E-03 –
4 2.0892E-02 2.0307 1.9529E-04 2.8231
8 5.0655E-03 2.0434 2.5626E-05 2.9293
16 1.2906E-03 1.9746 3.3506E-06 2.9339
32 3.3632E-04 1.9408 4.4002E-07 2.9286

Example 5.5. (Low regularity) Consider the parabolic equation (1) in a square
domain Ω = (0, 1)× (0, 1) with the final time T = 1 and the coefficient matrix

a =

(
x2 + y2 + 1 xy

xy x2 + y2 + 1

)
.

Choose initial values ψ and source terms f such that the exact solution is [8]

u = e−tx(1− x)y(1− y)
(√

x2 + y2
)−2+γ

, 0 < γ ≤ 1.

For any 0 < ε < γ, let δ = γ − ε > 0. It is known from [8] that the exact solution
has low regularity, i.e. u(·, t) ∈ H1+δ(Ω)∩H0

1 (Ω), 0 < δ < 1,and u(·, t) /∈ H1+γ(Ω).

We provide the error and spatial convergence order for γ = 0.25 and γ = 0.75 in
Tables 13-15. Tables 13-15 show that for γ = 0.25, the spatial convergence order is
1.25, and for γ = 0.75, it is 1.75, consistent with the regularity of the exact solution.

Table 13. Numerical results by the P1 CDG element with τ = h
on triangular meshes in Example 5.5.

1/h
γ = 0.25 γ = 0.75

∥u− uh∥ order ∥u− uh∥ order
4 4.3737E-02 – 1.0192E-02 –
8 1.9430E-02 1.1706 3.2865E-03 1.6328
16 8.2544E-03 1.2350 9.7724E-04 1.7498
32 3.4587E-03 1.2549 2.8133E-04 1.7964
64 1.4457E-03 1.2585 8.0469E-05 1.8058

Table 14. Numerical results by the P1 CDG element with τ = h
on rectangular meshes in Example 5.5.

1/h
γ = 0.25 γ = 0.75

∥u− uh∥ order ∥u− uh∥ order
4 5.3701E-02 – 1.2453E-02 –
8 2.3526E-02 1.1907 3.8357E-03 1.6990
16 9.8953E-03 1.2494 1.0869E-03 1.8193
32 4.1358E-03 1.2586 3.0855E-04 1.8166
64 1.7292E-03 1.2580 8.9445E-05 1.7864
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Table 15. Numerical results by the P1 CDG element with τ = h
on polygonal meshes in Example 5.5.

1/h
γ = 0.25 γ = 0.75

∥u− uh∥ order ∥u− uh∥ order
4 2.7957E-02 – 3.8524E-03 –
8 1.1619E-02 1.2667 1.1134E-03 1.7907
16 4.8574E-03 1.2582 3.2496E-04 1.7767
32 2.0380E-03 1.2530 9.5927E-05 1.7603
64 8.5577E-04 1.2519 2.8718E-05 1.7409

In the following example, we consider the the second-order parabolic equation
with a mixed Dirichlet-Neumann boundary condition: Find u satisfies

ut −∇ · (a∇u) = f, x ∈ Ω, t ∈ J,
u(·, 0) = ψ, x ∈ Ω,

u = ĝ, x ∈ ΓD, t ∈ J,

(a∇u) · n = t̂, x ∈ ΓN , t ∈ J,

(87)

where ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, and |ΓD| > 0.

Example 5.6. (Mixed Dirichlet-Neumann boundary condition) Consider problem
(87) in a square domain Ω = (0, 1)2 with the final time T = 1 and the coefficient
matrix

a =

(
x2 + y2 + 1 xy

xy x2 + y2 + 1

)
.

Choose initial values ψ and source terms f such that the exact solution is

u = e−tx(1− x)y(1− y),

where ΓN = {(x, y) : y = 1}. In the example, we use triangular meshes and
rectangular meshes.

We list the errors and the numerical convergence orders in Tables 16-19. Tables
16-19 show that all convergence orders obtain the optimal order, consistent with
our theoretical analysis.

Table 16. Numerical results by the P1 CDG element with τ =
h/2 on triangular meshes in Example 5.6.

1/h |||u− uh||| order ∥u− uh∥ order
4 1.2690E-01 – 2.0062E-03 –
8 7.2148E-02 0.8147 5.6540E-04 1.8271
16 3.8331E-02 0.9124 1.4889E-04 1.9250
32 1.9998E-02 0.9387 3.8701E-05 1.9438
64 9.9946E-03 1.0013 9.6199E-06 2.0083

6. Conclusion

This paper uses the conforming discontinuous Galerkin (CDG) finite elemen-
t method to solve the second-order parabolic equation. Compared to the weak
Galerkin (WG) finite element method, employing the average of the interior func-
tion in place of the boundary function reduces the number of degrees of freedom.



456 F. HUO, Y. SUN, J. WU, AND L. ZHANG

Table 17. Numerical results by the P2 CDG element with τ = h2

on triangular meshes in Example 5.6.

1/h |||u− uh||| order ∥u− uh∥ order
4 1.0855E-02 – 1.3421E-04 –
8 3.0288E-03 1.8415 1.9017E-05 2.8191
16 7.6566E-04 1.9840 2.3827E-06 2.9966
32 1.8176E-04 2.0747 2.7784E-07 3.1003
64 4.5424E-05 2.0013 3.4729E-08 3.0012

Table 18. Numerical results by the P1 CDG element with τ = h
on rectangular meshes in Example 5.6.

1/h |||u− uh||| order ∥u− uh∥ order
4 1.1427E-01 – 2.1893E-03 –
8 6.1037E-02 0.9047 5.9557E-04 1.8782
16 2.7172E-02 1.1675 1.3549E-04 2.1361
32 1.2023E-02 1.1764 3.0438E-05 2.1542
64 5.3621E-03 1.1649 6.8002E-06 2.1622

Table 19. Numerical results by the P2 CDG element with τ = h2

on rectangular meshes in Example 5.6.

1/h |||u− uh||| order ∥u− uh∥ order
4 9.1664E-03 – 1.9417E-04 –
8 3.2712E-03 1.4865 2.8914E-05 2.7475
16 9.2522E-04 1.8220 3.7761E-06 2.9368
32 2.2585E-04 2.0344 4.4122E-07 3.0973
64 5.0689E-05 2.1556 4.7861E-08 3.2046

Eliminating the stabilizer further simplifies the numerical computations, decreas-
ing the overall computational complexity. We have successfully devised a CDG
method based on the backward Euler difference technique for the second-order par-
abolic equation. Additionally, we have rigorously derived the optimal order error
estimates for the CDG numerical scheme. The validity and accuracy of the theory
are confirmed through numerical experiments.
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