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THE NAVIER-STOKES-ω/NAVIER-STOKES-ω MODEL FOR

FLUID-FLUID INTERACTION USING AN UNCONDITIONALLY

STABLE FINITE ELEMENT SCHEME

QINGHUI WANG, PENGZHAN HUANG∗, AND YINNIAN HE

Abstract. In this article, for solving fluid-fluid interaction problem, we consider a Navier-Stokes-

ω/Navier-Stokes-ω model, which includes two Navier-Stokes-ω equations coupled by some nonlin-
ear interface conditions. Based on an auxiliary variable, we propose a fully discrete, decouple finite
element scheme. We adopt the backward Euler scheme and mixed finite element approximation

for temporal-spatial discretization, and explicit treatment for the interface terms and nonlinear
terms. Moreover, the proposed scheme is shown to be unconditionally stable. Then, we estab-
lish error estimate of the numerical solution. Finally, with a series of numerical experiments we
illustrate the stability and effectiveness of the proposed scheme and its ability to capture basic

phenomenological features of the fluid-fluid interaction.

Key words. Navier-Stokes-ω model, fluid-fluid interaction, auxiliary variable, unconditional
stability.

1. Introduction

In many scientific fields and practical applications, numerical simulation is an
important aspect for multi-physics and multi-domain of one immiscible fluid with
another fluid, such as simulations of atmosphere-ocean interaction problem [1, 2,
3, 4] in environmental engineering and so on. Herein, we will consider a fluid-fluid
interaction problem with some nonlinear interface conditions, which are known as
the rigid-lid condition (e.g. approximate the atmosphere-ocean surface as flat). It
allows for the energy to transfer back and forth across the interface, while the global
energy of the system remains conserved [5].

At the time of writing, numerous works are devoted to fluid-fluid interaction
models with nonlinear interface condition [6, 7]. Bernardi et al. [8, 9, 10] have
studied two immiscible turbulent fluids on adjacent subdomains, but it limits the
effectiveness of calculations because of a large and decoupled system. Connors et al.
[11] have proposed two decoupled time stepping methods based on the partitioned
time stepping methods. One of them is the geometric averaging method, whose key
benefit is the unconditional stability. This method has further developed in [12, 13,
14, 15, 16, 17]. Recently, Aggul et al. [18] have proposed a large eddy simulation
with correction model, which used the defect correction to control efficiently the
model error.

When at least one of the flow enters the turbulent state in subdomain, we need to
choose a turbulence model. Recently, the approximate deconvolution model of tur-
bulence is considered for fluid-fluid interaction [19]. In this paper, we will consider
the Navier-Stokes-ω model, which has non-filtered velocity on the interface. In fact,
Layton et al. [20] showed that the discrete Navier-Stokes-ω simulation had greater
accuracy at less cost and required significantly fewer degrees of freedom than a
comparable Navier-Stokes-α simulation. In [21], the authors proved existence and
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uniqueness of strong solutions of Navier-Stokes-ω model and gained convergence to
a weak solution of the Navier-Stokes equations as the averaging radius decreased
to zero. Furthermore, Manica et al. [22] used van Cittert approximate deconvo-
lution to improve accuracy and Scott-Vogelius elements to provide pointwise mass
conservative solutions, and removed the dependence of the Bernoulli pressure error
on the velocity error for Navier-Stokes-ω model. Recently, with help of the geo-
metric averaging approach, Aggul et al. [23] considered the Navier-Stokes-ω model
for fluid-fluid interaction problem, which was showed to be unconditionally stable.
Further, based on large eddy simulation with correction, the authors designed a
second-order scheme in time [18].

In this article, we will design a fully explicit treatment to decouple nonlinear
interface conditions and also obtain the unconditional stability. From the point of
view of numerical discretization for partial differential equations, it is natural to
hope that nonlinear terms can be treated explicitly. In the meantime, the uncondi-
tional stability will be kept. The scalar auxiliary variable has been initially applied
to the gradient flow problem in [24, 25], which can keep unconditional energy stabil-
ity. Inspired by this idea, Li et al. [26] have solved the magnetohydrodynamic by an
exponential scalar auxiliary variable method. Jiang and Yang [27] have developed
two decoupled ensemble schemes for the Stokes-Darcy system, by combining the
scalar auxiliary variable idea with the ensemble time step method. Additionally, Li
et al. [28] have further established an unconditionally energy stable finite element
scheme for a nonlinear fluid-fluid interaction model. A generalized scalar auxiliary
variable approach has been considered for the Navier-Stokes-ω/Navier-Stokes-ω e-
quations based on the grad-div stabilization [29].

In current work, we introduce an auxiliary variable in exponential function to
deal with the Navier-Stokes-ω/Navier-Stokes-ω model, where nonlinear terms and
nonlinear interface terms are treated explicitly. The proposed scheme enjoys the
following features: (i) it is unconditionally stable; (ii) unlike the geometric averaging
scheme, explicit treatment is considered for the interface terms. The structure of
this paper is arranged as follows: In Section 2, we will introduce some notations
and function spaces. In Section 3, the Navier-Stokes-ω/Navier-Stokes-ω model is
showed. Moreover, a fully discrete finite element scheme based on an auxiliary
variable is designed, and unconditional stability is obtained. Section 4 develops
the theory for the scheme, showing analysis of convergence. In Section 5, we use
several numerical experiments to test the stability and convergence of the proposed
scheme, and to show its ability to capture basic phenomenological features of the
fluid-fluid interaction. We close with some concluding remarks in Section 6.

2. Preliminary

This section summarizes some necessary notations and inequalities.
Consider the spatial domain Ω ⊂ Rd (d = 2, 3) that consists of two subdomains

Ω1 and Ω2 coupled across their shared interface I $ ∂Ω. Next, ∥·∥0 and (·, ·) are
represented as L2 (Ωi) (i = 1, 2) norm and its inner product. Additionally, ∥·∥Lp

and ∥·∥Wm,p are expressed as the Lebesgue space Lp (Ωi) norms and the Sobolev
space Wm,p (Ωi) norms for m ∈ N+, 1 6 p 6 ∞. Besides, for Xi being a normed
function space in Ωi, L

p (0, T,Xi) is the space of all functions defined on [0, T ]×Ωi

and it’s norm represents

∥u∥Lp(0,T,Xi)
=

(∫ T

0

∥u∥pXi
dt

) 1
p

, p ∈ [1,∞) .
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Moreover, we introduce the velocity and pressure spaces

Xi =
{
vi ∈ W 1,2 (Ωi)

d
; vi|∂Ωi\I = 0; vi · ni = 0 on I

}
,

Mi =
{
qi ∈ L2 (Ωi) ; (qi, 1) = 0

}
.

For space Xi, its dual space is defined by X′
i and the norm is denoted as

∥fi∥−1 = sup
vi∈Xi

|(fi,vi)|
∥∇vi∥0

,

where fi is an element in the dual space of Xi.
For each subdomain Ωi it is regular partitioned into a mesh πh

i and πh = πh
1 ∪πh

2 ,
which comprises of K that is triangle for d = 2 and tetrahedral element for d = 3.
We assume that h is the largest diameter of the element in πh. According, we define
the finite element spaces on πh

i by Xh
i ⊂ Xi and Mh

i ⊂ Mi. Suppose that the finite
element spaces Xh

i and Mh
i satisfy the discrete LBB condition

βi ∥qi,h∥0 6 sup
vi,h∈Xh

i

|(∇ · vi,h, qi,h)|
∥∇vi,h∥0

, ∀qi,h ∈ Mh
i ,

where βi > 0 is only dependent on Ωi. In this paper, we apply the MINI element
for the velocity and pressure.

We introduce the following trilinear form on ui,vi,wi ∈ Xi by

bω (ui,vi,wi) = ((∇× ui)× vi,wi) .

This rotation version of the trilinear term satisfies some properties listed in the
following lemma.

Lemma 2.1. [20, 23] For ui,vi,wi ∈ Xi, i = 1, 2, bω (ui,vi,wi) satisfies

bω (ui,vi,wi) 6 c ∥∇ × ui∥0 ∥∇vi∥0 ∥∇wi∥0 ,

bω (ui,vi,wi) 6 c ∥ui∥
1
2
0 ∥∇ui∥

1
2
0 ∥∇vi∥0 ∥∇wi∥0 ,

where c are some positive constants and only related to Ω.

In this paper we use c (with or without a subscript) to denote a generic positive
constant, which is possibly different at different occurrences but always independent
of mesh size and time step.

Next, some commonly useful inequalities are introduced as follows.

Lemma 2.2. [30] There exist some constants c = c (Ωi) > 0, satisfying

∥vi∥L2(I) 6 c ∥vi∥
1
2
0 ∥∇vi∥

1
2
0 , ∥vi∥L4(I) 6 c ∥∇vi∥0 .

Lemma 2.3. [31] For vi,h ∈ Xh
i , then there hold

∥∇vi,h∥0 6 c1h
−1 ∥vi,h∥0 .

Lemma 2.4. [32] Let c, k and an, bn, dn, for integers n1 6 n 6 m, be nonnegative
numbers such that

am + k
m∑

n=n1

bn 6 k
m−1∑
n=n1

andn + c, ∀m > n1.

Then, one has

am + k

m∑
n=n1

bn 6 exp

(
k

m−1∑
n=n1

dn

)
c, ∀m > n1.
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3. A Navier-Stokes-ω/Navier-Stokes-ω model

In this section, we show the Navier-Stokes-ω/Navier-Stokes-ω model for resolu-
tion of fluid-fluid interaction problem, then propose a fully discrete finite element
scheme for the equivalent system of the considered model, and finally prove uncon-
ditional stability of the scheme.

Firstly, for i, j = 1, 2, i ̸= j, we recall the governing equations of the fluid-fluid
interaction problem, called the Navier-Stokes/Navier-Stokes model, as follows [11]:

(1)

ui,t − νi∆ui = fi − (ui · ∇)ui −∇pi, ∇ · ui = 0, in Ωi,

−νini · ∇ui · τ = κ |ui − uj | (ui − uj) · τ , ui · ni = 0, on I,

ui (0,x) = ui,0 (x) , in Ωi,

ui = 0, on Γi := ∂Ωi\I,

where the vector field ui are the velocities of the fluid, and pi stand for the pressures
in Ωi. The positive parameters νi represent the kinematic viscosity, and κ is the
friction coefficient. Besides, fi are the given body forces. | · | is the Euclidean norm,
the vectors ni are the unit normals on ∂Ωi, and τ represents any vector on I such
that τ · ni = 0.

Secondly, based on the Navier-Stokes-ω model proposed and studied in [20, 21],
for i, j = 1, 2, i ̸= j, we consider the following Navier-Stokes-ω/Navier-Stokes-ω
model for the fluid-fluid interaction problem

(2)

ui,t − νi∆ui = fi − (∇× ūi)× ui −∇pi, ∇ · ui = 0, in Ωi,

ūi − δ2i∆ūi = ui, in Ωi,

−νini · ∇ui · τ = κ |ui − uj | (ui − uj) · τ , ui · ni = 0, on I,

ui (0,x) = ui,0 (x) , in Ωi,

ui = 0, on Γi,

where the vector fields ūi are the filtered velocities, and δi are given filtering radii.
From (2) and (1), we notice that the nonlinear term in (1) is convective form

while the one in (2) is rotational form. In fact, if the divergence constraint ∇·ui =
0 holds pointwise, then these formulations are equivalent by modifying pressure
(the pressure here is the dynamic pressure, rather than the usual pressure in (1),
although we use the same notation pi). Besides, if δi = 0, then (2) and (1) are the
same. In fact, according to [33] one has ūi = ui +O(δ2i ).

Note that from [20, 23], for vi ∈ Xi, we have the following inequalities

∥v̄i∥0 6 ∥vi∥0 , ∥∇v̄i∥0 6 ∥∇vi∥0 , ∥∇ × v̄i∥0 6
√
2 ∥∇vi∥0 .(3)

Next, based on exponential function of t, we introduce an auxiliary variable
Q (t) = exp

(
− t

T

)
. Then, we obtain equivalent equations of (2), i.e., for i, j = 1, 2,

i ̸= j,

(4)

ui,t − νi∆ui = fi − exp

(
t

T

)
Q (∇× ūi)× ui −∇pi, ∇ · ui = 0, in Ωi,

ūi − δ2i∆ūi = ui, in Ωi,

νini · ∇ui · τ = exp

(
t

T

)
Qκ |uj − ui| (ui − uj) · τ , ui · ni = 0, on I,

ui (0,x) = ui,0 (x) , in Ωi,

ui = 0, on Γi.
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In addition, we need the following ordinary differential equation, which is equivalent
to the derivative of the auxiliary variable Q with respect to t.

dQ

dt
=− 1

T
Q+ exp

(
t

T

) 2∑
i=1

bω (ūi,ui,ui)

+ exp

(
t

T

) 2∑
i=1,i̸=j

∫
I

κ |ui − uj | (ui − uj) · uids

+ exp

(
2t

T

)
Q

2∑
i=1,i̸=j

∫
I

κ |ui − uj | (uj − ui) · uids.(5)

In fact, it is easy to verify that bω (ūi,ui,ui) = 0 and

exp

(
t

T

) 2∑
i=1,i̸=j

∫
I

κ |ui − uj | (ui − uj) · uids

+ exp

(
2t

T

)
Q

2∑
i=1,i̸=j

∫
I

κ |ui − uj | (uj − ui) · uids = 0.

Then, the corresponding variational formulation of (4) is given as follows: find
(ui, pi, ūi) ∈ L2 (0, T,Xi) × L2 (0, T,Mi) × L2 (0, T,Xi) for all (vi, qi, v̄i) ∈ Xi ×
Mi ×Xi, i, j = 1, 2 and i ̸= j such that

(6)

(ui,t,vi) + νi (∇ui,∇vi)− (∇ · vi, pi) + exp

(
t

T

)
Qbω (ūi,ui,vi)

+ (∇ · ui, qi) + exp

(
t

T

)
Q

∫
I

κ |ui − uj | (ui − uj) · vids = (fi,vi) ,

δ2i (∇ūi,∇v̄i) + (ūi, v̄i) = (ui, v̄i) .

Now, let ∆t > 0 and N := T
∆t for N an integer, and tn = n∆t with n =

0, 1, . . . , N . Denote (un+1
i,h , pn+1

i,h ) the fully discrete approximation to the solution

(ui(tn+1), pi(tn+1)) of the problem (1) at t = tn. Next, involving the backward
Euler scheme, a fully discrete finite element scheme for the equivalent system (6)
of the considered model (2).

Given un
i,h ∈ Xh

i andQn ∈ R, find
(
un+1
i,h , ūn

i,h, p
n+1
i,h , Qn+1

)
∈ Xh

i ×Xh
i ×Mh

i ×R,
satisfying that for all (vi,h, v̄i,h, qi,h) ∈ Xh

i ×Xh
i ×Mh

i , with i, j = 1, 2, i ̸= j,

(7)

(
un+1
i,h − un

i,h

∆t
,vi,h

)
+ exp

(
tn+1

T

)
Qn+1bω

(
ūn
i,h,u

n
i,h,vi,h

)
+ exp

(
tn+1

T

)
Qn+1

∫
I

κ
∣∣un

i,h − un
j,h

∣∣ (un
i,h − un

j,h

)
· vi,hds

+ νi

(
∇un+1

i,h ,∇vi,h

)
−
(
∇ · vi,h, p

n+1
i,h

)
+
(
∇ · un+1

i,h , qi,h

)
= (fi(tn+1),vi,h) ,

δ2i
(
∇ūn

i,h,∇v̄i,h

)
+
(
ūn
i,h, v̄i,h

)
=
(
un
i,h, v̄i,h

)
,
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and

(8)

Qn+1 −Qn

∆t
= − 1

T
Qn+1 + exp

(
tn+1

T

) 2∑
i=1

bω

(
ūn
i,h,u

n
i,h,u

n+1
i,h

)
+ exp

(
tn+1

T

) 2∑
i=1

∫
I

κ
∣∣un

i,h − un
j,h

∣∣ (un
i,h − un

j,h

)
· un+1

i,h ds

+ exp

(
2tn+1

T

)
Qn+1

2∑
i=1

∫
I

κ
∣∣un

i,h − un
j,h

∣∣ (un
j,h − un

i,h

)
· un

i,hds,

where we pick Q0 = exp(0) = 1.
In last part of this section, the stability of the fully discrete finite element scheme

(7)-(8) is explored.

Theorem 3.1. Let un+1
i,h and Qn+1 be the solution of the scheme (7)-(8). If we

assume that the initial values and body forces have the following bound ∥u0
i,h∥0 +

∥fn+1
i ∥−1 6 c, then the fully discrete scheme (7)-(8) is unconditionally stable, and

the solution has the following bound

2∑
i=1

(∥∥uN
i,h

∥∥2
0
+

N−1∑
n=0

∥∥∥un+1
i,h − un

i,h

∥∥∥2
0
+ νi∆t

N−1∑
n=0

∥∥∥∇un+1
i,h

∥∥∥2
0

)

+
∣∣QN

∣∣2 + N−1∑
n=0

∣∣Qn+1 −Qn
∣∣2 + 2∆t

T

N−1∑
n=0

∣∣Qn+1
∣∣2

+ 2∆t
N−1∑
n=0

exp

(
2tn+1

T

) ∣∣Qn+1
∣∣2 ∫

I

κ
∣∣un

1,h − un
2,h

∣∣3ds
6

2∑
i=1

∥∥u0
i,h

∥∥2
0
+
∣∣Q0
∣∣2 + 2∑

i=1

∆tν−1
i

N−1∑
n=0

∥∥fn+1
i

∥∥2
−1

=: c2.

Proof. Choosing (vi,h, qi,h) = 2∆t
(
un+1
i,h , pn+1

i,h

)
in (7), then using the polarization

identity and finally adding up the ensuing equation from i = 1 to 2, we arrive at

(9)

2∑
i=1

(∥∥∥un+1
i,h

∥∥∥2
0
−
∥∥un

i,h

∥∥2
0
+
∥∥∥un+1

i,h − un
i,h

∥∥∥2
0
+ 2νi∆t

∥∥∥∇un+1
i,h

∥∥∥2
0

)

+ 2∆t exp

(
tn+1

T

)
Qn+1

2∑
i=1

bω

(
ūn
i,h,u

n
i,h,u

n+1
i,h

)
+ 2∆t exp

(
tn+1

T

)
Qn+1

2∑
i=1

∫
I

κ
∣∣un

i,h − un
j,h

∣∣ (un
i,h − un

j,h

)
· un+1

i,h ds

= 2∆t
2∑

i=1

(
fn+1
i ,un+1

i,h

)
.
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In (9), we remark that j = 2 for i = 1 and j = 1 for i = 2. Next, multiply (8) by
2∆tQn+1 to get

(10)

∣∣Qn+1
∣∣2 − |Qn|2 +

∣∣Qn+1 −Qn
∣∣2 + 2∆t

T

∣∣Qn+1
∣∣2

= 2∆t exp

(
tn+1

T

)
Qn+1

2∑
i=1

bω

(
ūn
i,h,u

n
i,h,u

n+1
i,h

)
+ 2∆t exp

(
tn+1

T

)
Qn+1

2∑
i=1

∫
I

κ
∣∣un

i,h − un
j,h

∣∣ (un
i,h − un

j,h

)
· un+1

i,h ds

+ 2∆t exp

(
2tn+1

T

) ∣∣Qn+1
∣∣2 2∑

i=1

∫
I

κ
∣∣un

i,h − un
j,h

∣∣ (un
j,h − un

i,h

)
· un

i,hds.

Now, combining (9) with (10) and utilizing the Young inequality lead to

(11)

2∑
i=1

(∥∥∥un+1
i,h

∥∥∥2
0
−
∥∥un

i,h

∥∥2
0
+
∥∥∥un+1

i,h − un
i,h

∥∥∥2
0
+ νi∆t

∥∥∥∇un+1
i,h

∥∥∥2
0

)
+
∣∣Qn+1

∣∣2 − |Qn|2 +
∣∣Qn+1 −Qn

∣∣2 + 2∆t

T

∣∣Qn+1
∣∣2

+ 2∆t exp

(
2tn+1

T

) ∣∣Qn+1
∣∣2 ∫

I

κ
∣∣un

1,h − un
2,h

∣∣3ds
6

2∑
i=1

∆tν−1
i

∥∥fn+1
i

∥∥2
−1

.

Summing (11) with respect to n from 0 to N − 1 and applying the assumptions on
the body forces and initial values, we arrive at the desired result. �

4. Error analysis

In this section, we mainly analyze the fully discrete error between the numerical
solution of the proposed scheme (7)-(8) and the true solution of the original problem
(1), i.e., the error coming from discretization of the Navier-Stokes-ω/Navier-Stokes-
ω equations (2) for approximating the fluid-fluid interaction problem (1).

Here, for i = 1, 2, we denote eni = ui (tn) − un
i,h, eni,p = pi (tn) − pni,h and

enQ = Q (tn)−Qn as the velocity, pressure and auxiliary variable errors, respectively.
Then, the velocity and pressure errors are decomposed as follows:

eni = ηn
i + ϕn

i , eni,p = θni + ζni ,

where ηn
i = ui (tn)−Ihui, ϕ

n
i = Ihui−un

i,h and θni = pi (tn)−ρhpi, ζ
n
i = ρhpi−pni,h

with the Stokes-Stokes projection [34]: find (Ihui, ρhpi) ∈ Xh
i ×Mh

i such that

(12)
νi (∇ (ui − Ihui) ,∇vi)− (∇ · vi, pi − ρhpi) = 0, ∀vi ∈ Xh

i ,

(∇ · (ui − Ihui) , qi) = 0, ∀qi ∈ Mh
i ,

whose approximation properties are listed as follows:
(13)
∥ui − Ihui∥0 + h (∥∇ (ui − Ihui)∥0 + ∥pi − ρhpi∥0) 6 ch2 (∥ui∥W 2,2 + ∥pi∥W 1,2) .

Moreover, in order to obtain the error equation, setting (vi, qi) = (vi,h, qi,h) in
(6) with t = tn+1 and replacing the trilinear term bω (ūi (tn+1) ,ui (tn+1) ,vi,h) by
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bω (ui (tn+1) ,ui (tn+1) ,vi,h), we get
(14)(

ui (tn+1)− ui (tn)

∆t
,vi,h

)
+ νi (∇ui (tn+1) ,∇vi,h)− (∇ · vi,h, pi (tn+1))

+ (∇ · ui (tn+1) , qi,h) + exp

(
tn+1

T

)
Q (tn+1) bω (ui (tn+1) ,ui (tn+1) ,vi,h)

+ exp

(
tn+1

T

)
Q (tn+1)

∫
I

κ |ui (tn+1)− uj (tn+1)| (ui (tn+1)− uj (tn+1)) · vi,hds

=
(
fn+1
i ,vi,h

)
+

(
ui (tn+1)− ui (tn)

∆t
− ui,t (tn+1) ,vi,h

)
.

Note that the pressure in the proposed scheme (7) is the dynamic pressure, rather
than the usual pressure in the original problem (1). Hence, in order to gain the
reasonable error equation, we modify the usual pressure in the original problem (1)
as the dynamic pressure by rewriting the nonlinearity in the rotational form, and
obtain (14) as the continuous equation.

Next, subtracting (7) from (14), we give the error equation

(
en+1
i − eni

∆t
,vi,h

)
+ νi

(
∇en+1

i ,∇vi,h

)(15)

+ exp

(
tn+1

T

)
Q (tn+1) bω (ui (tn+1) ,ui (tn+1) ,vi,h)

− exp

(
tn+1

T

)
Qn+1bω

(
ūn
i,h,u

n
i,h,vi,h

)
−
(
∇ · vi,h, e

n+1
i,p

)
+
(
∇ · en+1

i , qi,h
)

+ exp

(
tn+1

T

)
Q (tn+1)

∫
I

κ |ui (tn+1)− uj (tn+1)| (ui (tn+1)− uj (tn+1)) · vi,hds

− exp

(
tn+1

T

)
Qn+1

∫
I

κ
∣∣un

i,h − un
j,h

∣∣ (un
i,h − un

j,h

)
· vi,hds =

(
Tn+1

i ,vi,h

)
,

where

Tn+1
i =

ui (tn+1)− ui (tn)

∆t
− ui,t (tn+1) =

1

∆t

∫ tn+1

tn

(tn − t)ui,ttdt.

Now, we derive the main error estimate result in following theorem.

Theorem 4.1. Under the assumptions of Theorem 3.1, if ∆t, h and δi satisfy the
following bound
(16)

c5
(
ν−1
i

(
1 + κ2

)
+ c4κ

2
)
c3 exp (TN1)

(
∆t+ h+ δ2i

) (
∆t

1
2

(
ν
− 1

2
i + ν

− 1
2

j

)
+ c1

)
6 min

{νi
6
,
νj
6

}
,

where N1 is defined in (36) and c3 = c3 (ν1, ν2, κ, c2, T ) , c4 =
(
ν−1
i + ν−1

j

)
c2 and

c5 = c5 (c2), and the true solution of (1) is smooth, then we have

2∑
i=1

∥∥ui (tN )− uN
i,h

∥∥2
0
+∆t

2∑
i=1

N−1∑
n=0

νi

∥∥∥∇(ui (tn+1)− un+1
i,h

)∥∥∥2
0

+
∣∣Q (tN )−QN

∣∣2 + N−1∑
n=0

∆t

T

∣∣Q (tn+1)−Qn+1
∣∣2 6 c

(
∆t2 + h2 + δ4i

)
.
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Proof. Selecting (vi,h, qi,h) = 2∆t
(
ϕn+1

i , ζn+1
i

)
in (15), we get

∥∥ϕn+1
i

∥∥2
0
− ∥ϕn

i ∥
2
0 +

∥∥ϕn+1
i − ϕn

i

∥∥2
0
+ 2

(
ηn+1
i − ηn

i ,ϕ
n+1
i

)
+ 2∆tbω

(
ui (tn+1) ,ui (tn+1) ,ϕ

n+1
i

)
+ 2∆tνi

∥∥∇ϕn+1
i

∥∥2
0

− 2 exp

(
tn+1

T

)
Qn+1∆t

∫
I

κ
∣∣un

i,h − un
j,h

∣∣ (un
i,h − un

j,h

)
· ϕn+1

i ds

+ 2∆t

∫
I

κ |ui (tn+1)− uj (tn+1)| (ui (tn+1)− uj (tn+1)) · ϕn+1
i ds

− 2 exp

(
tn+1

T

)
Qn+1∆tbω

(
ūn
i,h,u

n
i,h,ϕ

n+1
i

)
= 2∆t

(
Tn+1

i ,ϕn+1
i

)
.(17)

Then, set [u (tn+1)] = ui (tn+1)−uj (tn+1) ,
[
un+1
h

]
= un+1

i,h −un+1
j,h and [Ihu (tn+1)]

= Ihui (tn+1)− Ihuj (tn+1). The interface terms in (17) are rewritten as follows:

(18)

interface term = 2∆t

∫
I

κ (|[u (tn+1)]| [u (tn+1)]− |[u (tn)]| [u (tn)]) · ϕn+1
i ds

+ 2∆t

∫
I

κ (|[u (tn)]| [u (tn)]− |[un
h]| [un

h]) · ϕn+1
i ds

+ 2∆t exp

(
tn+1

T

)
en+1
Q

∫
I

κ |[un
h]| [un

h] · ϕn+1
i ds =:

3∑
k=1

Ak.

Using the Hölder inequality, Young inequality and Lemma 2.2, we arrive at

(19)

A1 +A2

6ε1νi∆t
∥∥∇ϕn+1

i

∥∥2
0
+ ε2νi∆t

∥∥∇ϕn
i,u

∥∥2
0
+ ε3νj∆t

∥∥∇ϕn
j,u

∥∥2
0

+ cν−1
i κ2∆t2 ∥[ut]∥2L2(tn,tn+1,W 1,2(Ωi)

d)

(
∥∇ [u (tn+1)]∥20 + ∥∇ [u (tn)]∥20

)
+ cν−1

i κ2∆t ∥∇ [ηn
u ]∥

2
0

(
∥∇ [u (tn)]∥20 + ∥∇ [un

h]∥
2
0

)
+ cκ4

(
ν−3
i + ν−2

i ν−1
j

)
∆t ∥[ϕn

u]∥
2
0

(
∥∇ [u (tn)]∥40 + ∥∇ [Ihu (tn)]∥40

)
+ cν−1

i κ2∆t ∥[ϕn
u]∥0 ∥∇ [ϕn

u]∥0 ∥∇ [ϕn
u]∥

2
0 .

Moreover, we rewrite the nonlinear terms in (17).
(20)

nonlinear term

= 2∆tbω
(
ui (tn+1) ,ui (tn+1)− ui (tn) ,ϕ

n+1
i

)
+ 2∆tbω

(
ui (tn+1) ,η

n
i + ϕn

i ,ϕ
n+1
i

)
+ 2∆tbω

(
ui (tn+1)− ui (tn) ,u

n
i,h,ϕ

n+1
i

)
+ 2∆tbω

(
ui (tn)− ūi (tn) ,u

n
i,h,ϕ

n+1
i

)
+ 2∆tbω

(
ūi (tn)− ūn

i,h,u
n
i,h,ϕ

n+1
i

)
+ 2∆t exp

(
tn+1

T

)
en+1
Q bω

(
ūn
i,h,u

n
i,h,ϕ

n+1
i

)
=:

6∑
k=1

Bk.
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Then, based on Lemma 2.1 and the Cauchy-Schwarz inequality, the Young inequal-
ity, each Bk except B6 is estimated
(21)

B1 6ε4νi∆t
∥∥∇ϕn+1

i

∥∥2
0
+ cν−1

i ∆t2 ∥∇ui,t∥2L2(tn,tn+1,W 1,2(Ωi)
d) ∥∇ui (tn+1)∥20 ,

B2 6ε5νi∆t
∥∥∇ϕn+1

i

∥∥2
0
+ ε6νi∆t ∥∇ϕn

i ∥
2
0 + cν−1

i ∆t ∥∇ηn
i ∥

2
0 ∥∇ui (tn+1)∥20

+ cν−3
i ∆t ∥∇ui (tn+1)∥40 ∥ϕ

n
i ∥

2
0 ,

B3 6ε7νi∆t
∥∥∇ϕn+1

i

∥∥2
0
+ ε8νi∆t ∥∇ϕn

i ∥
2
0

+ cν−1
i ∆t2 ∥∇ui,t∥2L2(tn,tn+1,W 1,2(Ωi)

d) ∥∇Ihui (tn)∥20

+ cν−3
i ∆t

(
∥∇ui (tn+1)∥40 + ∥∇ui (tn)∥40

)
∥ϕn

i ∥
2
0 ,

B4 6ε9νi∆t
∥∥∇ϕn+1

i

∥∥2
0
+ cν−1

i ∆tδ4i ∥∇∆ūi (tn)∥20
∥∥∇un

i,h

∥∥2
0
,

B5 6ε10νi∆t
∥∥∇ϕn+1

i

∥∥2
0
+ ε11νi∆t ∥∇ϕn

i ∥
2
0 + cν−1

i ∆t ∥∇ηn
i ∥

2
0

∥∥∇un
i,h

∥∥2
0

+ cν−3
i ∆t ∥∇Ihui (tn)∥40 ∥ϕ

n
i ∥

2
0 + cν−1

i ∆t ∥ϕn
i ∥0 ∥∇ϕn

i ∥0 ∥∇ϕn
i ∥

2
0 ,

where for B4 we have noticed the fact that ui(tn)− ūi(tn) = −δ2i∆ūi(tn) from (2).
Next, applying the Young inequality for the remaining terms of (17) yields

(22)
2
(
ηn+1
i − ηn

i ,ϕ
n+1
i

)
6 ε12νi∆t

∥∥∇ϕn+1
i

∥∥2
0
+ cν−1

i ∥ηi,t∥2L2(tn,tn+1,X′
i)
,

2∆t
(
Tn+1

i ,ϕn+1
i

)
6 ε13νi∆t

∥∥∇ϕn+1
i

∥∥2
0
+ cν−1

i ∆t2 ∥ui,tt∥2L2(tn,tn+1,X′
i)
.

Now, picking ε1+ε4+ε5+ε7+ε9+ε10+ε12+ε13 = 2
9 and ε2+ε6+ε8+ε11 = 1

9 ,
we get

∥∥ϕn+1
i

∥∥2
0
− ∥ϕn

i ∥
2
0 +

∥∥ϕn+1
i − ϕn

i

∥∥2
0
+

5

3
∆tνi

∥∥∇ϕn+1
i

∥∥2
0

(23)

+
1

9
∆tνi

(∥∥∇ϕn+1
i

∥∥2
0
− ∥∇ϕn

i ∥
2
0

)
+A3 +B6

6 ε3νj∆t
∥∥∇ϕn

j,u

∥∥2
0
+ cν−1

i ∆tδ4i ∥∇∆ūi (tn)∥20
∥∥∇un

i,h

∥∥2
0
+ cν−1

i ∥ηi,t∥2L2(tn,tn+1,X′
i)

+ cν−1
i ∆t2 ∥ui,tt∥2L2(tn,tn+1,X′

i)
+ cν−1

i ∆t2 ∥∇ui,t∥2L2(tn,tn+1,W 1,2(Ωi)
d)

×
(
∥∇ui (tn+1)∥20 + ∥∇Ihui (tn)∥20

)
+ cν−1

i ∆t ∥∇ηn
i ∥

2
0

(
∥∇ui (tn+1)∥20

+
∥∥∇un

i,h

∥∥2
0

)
+ cν−1

i κ2∆t ∥∇ [ηn
u ]∥

2
0

(
∥∇ [u (tn)]∥20 + ∥∇ [un

h]∥
2
0

)
+ cν−1

i κ2∆t2 ∥[ut]∥2L2(tn,tn+1,W 1,2(Ω)d)

(
∥∇ [u (tn+1)]∥20 + ∥∇ [u (tn)]∥20

)
+ cκ4

(
ν−3
i + ν−2

i ν−1
j

)
∆t ∥[ϕn

u]∥
2
0

(
∥∇ [u (tn)]∥40 + ∥∇ [Ihu (tn)]∥40

)
+ cν−1

i κ2∆t ∥[ϕn
u]∥0 ∥∇ [ϕn

u]∥0 ∥∇ [ϕn
u]∥

2
0 + cν−1

i ∆t ∥ϕn
i ∥0 ∥∇ϕn

i ∥0 ∥∇ϕn
i ∥

2
0

+ cν−3
i ∆t

(
2 ∥∇ui (tn+1)∥40 + ∥∇Ihui (tn)∥40 + ∥∇ui (tn)∥40

)
∥ϕn

i ∥
2
0 .

Setting ε3 = 1
9 and adding up (23) from i = 1, 2, i ̸= j and n = 0, 1, 2, · · · ,m

(0 6 m 6 N − 1), and then using the projection properties (13), Theorem 3.1, we
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arrive at
(24)

2∑
i=1

∥∥ϕm+1
i

∥∥2
0
+

2∑
i=1

m∑
n=0

∥∥ϕn+1
i − ϕn

i

∥∥2
0
+

2

9
∆t

2∑
i=1

νi
∥∥∇ϕm+1

i

∥∥2
0

+
14

9
∆t

2∑
i=1

m∑
n=0

νi
∥∥∇ϕn+1

i

∥∥2
0
+

2∑
i=1

m∑
n=0

(A3 +B6)

6 c3
(
∆t2 + h2 + δ4i

)
+ c∆t

2∑
i=1

m∑
n=0

(
ν−3
i ∥ϕn

i ∥
2
0 + κ4

(
ν−3
i + ν−2

i ν−1
j

)
∥[ϕn

u]∥
2
0

+ν−1
i ∥ϕn

i ∥0 ∥∇ϕn
i ∥0 ∥∇ϕn

i ∥
2
0 + ν−1

i κ2 ∥[ϕn
u]∥0 ∥∇ [ϕn

u]∥0 ∥∇ [ϕn
u]∥

2
0

)
.

On the other hand, subtracting (8) from (5) at t = tn+1, and then multiplying
the ensuing equation by 2∆ten+1

Q , we have

(25)

∣∣∣en+1
Q

∣∣∣2 − ∣∣enQ∣∣2 + ∣∣∣en+1
Q − enQ

∣∣∣2 + 2
∆t

T

∣∣∣en+1
Q

∣∣∣2
= 2 exp

(
tn+1

T

)
∆ten+1

Q

2∑
i=1

(
bω (ūi (tn+1) ,ui (tn+1) ,ui (tn+1))

− bω(ū
n
i,h,u

n
i,h,u

n+1
i,h )

+

∫
I

κ |[u (tn+1)]| [u (tn+1)] · ui (tn+1) ds−
∫
I

κ |[un
h]| [un

h] · un+1
i,h ds

)
+ 2 exp

(
2tn+1

T

)
∆ten+1

Q

2∑
i=1

(
Qn+1

∫
I

κ |[un
h]| [un

h] · un
i,hds

−Q (tn+1)

∫
I

κ |[u (tn+1)]| [u (tn+1)] · ui (tn+1) ds

)
+ 2∆ten+1

Q Tn+1
Q ,

where

Tn+1
Q =

Q (tn+1)−Q (tn)

∆t
−Qt (tn+1) =

1

∆t

∫ tn+1

tn

(tn − t)Qttdt.

Note that the rotation version of the trilinear term holds
(26)

2 exp

(
tn+1

T

)
∆ten+1

Q

(
bω (ūi (tn+1) ,ui (tn+1) ,ui (tn+1))− bω(ū

n
i,h,u

n
i,h,u

n+1
i,h )

)
=2 exp

(
tn+1

T

)
∆ten+1

Q

(
bω
(
ūi (tn+1) ,ui (tn+1) ,η

n+1
i

)
+ bω

(
ūi (tn+1) ,ui (tn+1)− un

i,h, Ihui (tn+1)
)

+ bω
(
ūi (tn+1)− ūn

i,h,u
n
i,h, Ihui (tn+1)

)
+ bω

(
ūn
i,h,u

n
i,h,ϕ

n+1
i

))
=:

4∑
k=1

Dk.
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Then, based on Lemma 2.1, Theorem 3.1, (3) and the Young inequality and Poincaré
inequality, we arrive at
(27)

D1 6 ε14
∆t

T

∣∣∣en+1
Q

∣∣∣2 + c∆t ∥∇ui (tn+1)∥20 ∥∇ui (tn+1)∥20
∥∥∇ηn+1

i

∥∥2
0
,

D2 6 ε15
∆t

T

∣∣∣en+1
Q

∣∣∣2 + ε16νi∆t ∥∇ϕn
i ∥

2
0

+ c∆t2 ∥∇ui (tn+1)∥20 ∥∇ui,t∥2L2(tn,tn+1,W 1,2(Ωi)
d) ∥∇Ihui (tn+1)∥20

+ c∆t ∥∇ui (tn+1)∥20 ∥∇ηn
i ∥

2
0 ∥∇Ihui (tn+1)∥20

+ cν−1
i ∆t ∥ϕn

i ∥
2
0 ∥∇ui (tn+1)∥40 ∥∇Ihui (tn+1)∥40 ,

D3 6 ∆t

16c4

∣∣∣en+1
Q

∣∣∣2 ∥∥∇un
i,h

∥∥2
0
+ cc4∆t2 ∥∇ūi,t∥2L2(tn,tn+1,W 1,2(Ωi)

d) ∥∇Ihui (tn+1)∥20

+ cc4∆t ∥∇ηn
i ∥

2
0 ∥∇Ihui (tn+1)∥20 + ε17νi∆t ∥∇ϕn

i ∥
2
0

+ cc24ν
−1
i ∆t ∥ϕn

i ∥
2
0 ∥∇Ihui (tn+1)∥40 .

Additionally, we consider the interface terms in (25).

2 exp

(
tn+1

T

)
∆ten+1

Q

∫
I

κ |[u (tn+1)]| [u (tn+1)] · ui (tn+1) ds

(28)

− 2 exp

(
tn+1

T

)
∆ten+1

Q

∫
I

κ |[un
h]| [un

h] · un+1
i,h ds

6 2 exp

(
tn+1

T

)
∆ten+1

Q

(∫
I

κ |[u (tn+1)]| [u (tn+1)] · ηn+1
i ds

+

∫
I

κ (|[u (tn+1)]| − |[un
h]|) [u (tn+1)] · Ihui (tn+1) ds

+

∫
I

κ |[un
h]| ([u (tn+1)]− [un

h]) · Ihui (tn+1) ds+

∫
I

κ |[un
h]| [un

h] · ϕn+1
i ds

)
=:

4∑
k=1

Ek.

Using the Cauchy-Schwarz inequality and Young inequality, we get
(29)

E1 + E2 6ε18
∆t

T

∣∣∣en+1
Q

∣∣∣2 + ε19νi∆t ∥∇ϕn
i ∥

2
0 + ε20νj∆t

∥∥∇ϕn
j

∥∥2
0

+ cκ2∆t ∥∇ [u (tn+1)]∥40
∥∥∇ηn+1

i

∥∥2
0

+ cκ2∆t ∥∇ [ηn]∥20 ∥∇ [u (tn+1)]∥20 ∥∇Ihui (tn+1)∥20
+ cκ2∆t2 ∥[ut]∥2L2(tn,tn+1,W 1,2(Ωi)

d) ∥∇ [u (tn+1)]∥20 ∥∇Ihui (tn+1)∥20

+ cκ4
(
ν−1
i + ν−1

j

)
∆t ∥[ϕn]∥20 ∥∇ [u (tn+1)]∥40 ∥∇Ihui (tn+1)∥20 ,

E3 6 ∆t

32c4

∣∣∣en+1
Q

∣∣∣2 ∥∇ [un
h]∥

2
0 + ε21νi∆t ∥∇ϕn

i ∥
2
0 + ε22νj∆t

∥∥∇ϕn
j

∥∥2
0

+ cc4κ
2∆t ∥∇ [ηn]∥20 ∥∇Ihui (tn+1)∥20

+ cc4κ
2∆t2 ∥[ut]∥2L2(tn,tn+1,W 1,2(Ωi)

d) ∥∇Ihui (tn+1)∥20

+ cc24κ
4
(
ν−1
i + ν−1

j

)
∆t ∥[ϕn]∥20 ∥∇Ihui (tn+1)∥40 .
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Besides, rewrite the last two interface terms in (25).
(30)

2 exp

(
2tn+1

T

)
∆ten+1

Q

(
Qn+1

∫
I

κ |[un
h]| [un

h] · un
i,hds

−Q (tn+1)

∫
I

κ |[u (tn+1)]| [u (tn+1)] · ui (tn+1) ds

)
=2 exp

(
2tn+1

T

)
Qn+1∆ten+1

Q

(∫
I

κ |[un
h]| [un

h] ·
(
un
i,h − ui (tn+1)

)
ds

+

∫
I

κ |[un
h]| ([un

h]− [u (tn+1)]) · ui (tn+1) ds

+

∫
I

κ (|[un
h]| − |[u (tn+1)]|) [u (tn+1)] · ui (tn+1) ds

)
− 2 exp

(
2tn+1

T

)
∆t
∣∣∣en+1

Q

∣∣∣2 ∫
I

κ |[u (tn+1)]| [u (tn+1)] · ui (tn+1) ds =:
4∑

k=1

Fk.

Then, using the Young inequality and Lemma 2.3, we arrive at
(31)

F1 + F2 6 ∆t

16c4

∣∣∣en+1
Q

∣∣∣2 ∥∇ [un
h]∥

2
0 + ε23νi∆t ∥∇ϕn

i ∥
2
0 + ε24νj∆t

∥∥∇ϕn
j

∥∥2
0

+ cc4
∣∣Qn+1

∣∣2 κ2∆t
(
∥∇ [ηn]∥20 ∥∇ui (tn+1)∥20 + ∥∇ηn

i ∥
2
0 ∥∇ [un

h]∥
2
0

+∆t ∥ui,t∥2L2(tn,tn+1,W 1,2(Ωi)
d) ∥∇ [Ihu (tn)]∥20

+∆t ∥[ut]∥2L2(tn,tn+1,W 1,2(Ωi)
d) ∥∇ui (tn+1)∥20 + ∥ϕn

i ∥0 ∥∇ϕn
i ∥0 ∥∇ [ϕn]∥20

)
+ cc24

∣∣Qn+1
∣∣4 κ4

(
ν−1
i + ν−1

j

)
∆t
(
∥ϕn

i ∥
2
0 ∥∇ [Ihu (tn)]∥40

+∆t2 ∥[ϕn]∥20 ∥ui,t∥4L2(tn,tn+1,W 1,2(Ωi)
d) + ∥[ϕn]∥20 ∥∇ui (tn+1)∥40

)
,

F3 6ε25
∆t

T

∣∣∣en+1
Q

∣∣∣2 + ε26νi∆t ∥∇ϕn
i ∥

2
0 + ε27νj∆t

∥∥∇ϕn
j

∥∥2
0

+ c
∣∣Qn+1

∣∣2 κ2∆t
(
∥∇ [ηn]∥20 ∥∇ [u (tn+1)]∥20 ∥∇ui (tn+1)∥20

+∆t ∥[ut]∥2L2(tn,tn+1,W 1,2(Ωi)
d) ∥∇ [u (tn+1)]∥20 ∥∇ui (tn+1)∥20

+ c
∣∣Qn+1

∣∣4 κ4
(
ν−1
i + ν−1

j

)
∆t ∥[ϕn]∥20 ∥∇ [u (tn+1)]∥40 ∥∇ui (tn+1)∥40 .

Finally, to estimate the residual interaction term of (25), we apply the Cauchy-
Schwarz inequality

(32) 2∆ten+1
Q Tn+1

Q 6 ε28
∆t

T

∣∣∣en+1
Q

∣∣∣2 + c∆t2
∫ tn+1

tn

|Qtt|2 dt.

Now, setting ε14+ ε15+ ε18+ ε25+ ε28 = 1, ε16+ ε17+ ε19+ ε21+ ε23+ ε26 = 1
9 ,

ε20 + ε22 + ε24 + ε27 = 1
9 and combining (25) with (26)-(32), we get

∣∣∣en+1
Q

∣∣∣2 − ∣∣enQ∣∣2 + ∣∣∣en+1
Q − enQ

∣∣∣2 + ∆t

T

∣∣∣en+1
Q

∣∣∣2 − F4

(33)

6
2∑

i=1

(
∆t

4c4

∣∣∣en+1
Q

∣∣∣2 (∥∥∇un
i,h

∥∥2
0
+
∥∥∇un

j,h

∥∥2
0

)
+ c∆t

(
c4 ∥∇ηn

i ∥
2
0 ∥∇Ihui (tn+1)∥20
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+
∥∥∇ηn+1

i

∥∥2
0
∥∇ui (tn+1)∥20 ∥∇ui (tn+1)∥20

+ ∥∇ηn
i ∥

2
0 ∥∇ui (tn+1)∥20 ∥∇Ihui (tn+1)∥20

+ c∆t2 ∥∇ui,t∥2L2(tn,tn+1,W 1,2(Ωi)
d) ∥∇ui (tn+1)∥20 ∥∇Ihui (tn+1)∥20

+ cκ2∆t
(
∥∇ [u (tn+1)]∥40

∥∥∇ηn+1
i

∥∥2
0
+ ∥∇ [ηn]∥20 ∥∇ [u (tn+1)]∥20 ∥∇Ihui (tn+1)∥20

)
+ cκ2∆t2 ∥[ut]∥2L2(tn,tn+1,W 1,2(Ωi)

d)

(
∥∇ [u (tn+1)]∥20 + c4

)
∥∇Ihui (tn+1)∥20

+ cc4
∣∣Qn+1

∣∣2 κ2∆t
(
∥∇ [ηn]∥20 ∥∇ui (tn+1)∥20 + ∥∇ηn

i ∥
2
0 ∥∇ [un

h]∥
2
0

)
+ cc4

∣∣Qn+1
∣∣2 κ2∆t2 ∥ui,t∥2L2(tn,tn+1,W 1,2(Ωi)

d) ∥∇ [Ihu (tn)]∥20

+ cc4∆t2 ∥∇ūi,t∥2L2(tn,tn+1,W 1,2(Ωi)
d) ∥∇Ihui (tn+1)∥20 +D4 + E4

+ c
∣∣Qn+1

∣∣2 κ2∆t ∥∇ [ηn]∥20 ∥∇ [u (tn+1)]∥20 ∥∇ui (tn+1)∥20
+ c

∣∣Qn+1
∣∣2 κ2∆t2 ∥[ut]∥2L2(tn,tn+1,W 1,2(Ωi)

d)

(
∥∇ [u (tn+1)]∥20 + c4

)
∥∇ui (tn+1)∥20

+cc4κ
2∆t ∥∇ [ηn]∥20 ∥∇Ihui (tn+1)∥20

))
+ c∆t2

∫ tn+1

tn

|Qtt|2 dt

+ c∆t
2∑

i=1

(
ν−1
i ∥ϕn

i ∥
2
0 ∥∇ui (tn+1)∥40 ∥∇Ihui (tn+1)∥40

+ c24ν
−1
i ∥ϕn

i ∥
2
0 ∥∇Ihui (tn+1)∥40

+ κ4
(
ν−1
i + ν−1

j

)
∥[ϕn]∥20 ∥∇Ihui (tn+1)∥40

(
c24 + ∥[u (tn+1)]∥40

)
+ c24

∣∣Qn+1
∣∣4 κ4

(
ν−1
i + ν−1

j

) (
∆t2 ∥[ϕn]∥20 ∥ui,t∥4L2(tn,tn+1,W 1,2(Ωi)

d)

+ ∥[ϕn]∥20 ∥∇ui (tn+1)∥40
(
1 + ∥∇ [u (tn+1)]∥40

)
+ ∥ϕn

i ∥
2
0 ∥∇ [Ihu (tn)]∥40

))
+∆t

2∑
i=1

(
cc4
∣∣Qn+1

∣∣2 κ2 ∥ϕn
i ∥0 ∥∇ϕn

i ∥0 ∥∇ [ϕn]∥20 +
1

9
νi ∥∇ϕn

i ∥
2
0 +

1

9
νj
∥∥∇ϕn

j

∥∥2
0

)
.

Summing (33) from n = 0, 1, · · · , n∗, applying the projection properties (13) and
Theorem 3.1, and noticing that

∆t

4c4

2∑
i=1

n∗+1∑
n=0

(∣∣∣en+1
Q

∣∣∣2 (∥∥∇un
i,h

∥∥2
0
+
∥∥∇un

j,h

∥∥2
0

))
6 1

2

∣∣∣en∗+1
Q

∣∣∣2 ,
where we assume that

∣∣∣en∗+1
Q

∣∣∣2 is the maximum among all
∣∣enQ∣∣2, we discover that

1

2

∣∣∣en∗+1
Q

∣∣∣2 + n∗∑
n=0

∣∣∣en+1
Q − enQ

∣∣∣2 + n∗∑
n=0

∆t

T

∣∣∣en+1
Q

∣∣∣2
(34)

6 c∆t

2∑
i=1

n∗∑
n=0

((
ν−1
i + c24ν

−1
i

)
∥ϕn

i ∥
2
0 + κ4

(
ν−1
i + ν−1

j

) (
c24 + 1

)
∥[ϕn]∥20

+ c24c
2
2κ

4
(
ν−1
i + ν−1

j

) (
∆t2 ∥[ϕn]∥20 + ∥[ϕn]∥20 + ∥ϕn

i ∥
2
0

))
+ c3

(
h2 +∆t2

)
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+∆t
2∑

i=1

n∗∑
n=0

(
cc2c4κ

2 ∥ϕn
i ∥0 ∥∇ϕn

i ∥0 ∥∇ [ϕn]∥20 +
1

9
νi ∥∇ϕn

i ∥
2
0 +

1

9
νj
∥∥∇ϕn

j

∥∥2
0

)

+
n∗∑
n=0

2∑
i=1

(D4 + E4).

Combine (24) with m = n∗ and (34) to get
(35)

2∑
i=1

∥∥∥ϕn∗+1
i

∥∥∥2
0
+

2∑
i=1

n∗∑
n=0

∥∥ϕn+1
i − ϕn

i

∥∥2
0
+

4∆t

3

2∑
i=1

n∗∑
n=0

νi
∥∥∇ϕn+1

i

∥∥2
0

+
1

2

∣∣∣en∗+1
Q

∣∣∣2 + n∗∑
n=0

∣∣∣en+1
Q − enQ

∣∣∣2 + n∗∑
n=0

∆t

T

∣∣∣en+1
Q

∣∣∣2
6 ∆t

2∑
i=1

n∗∑
n=0

N1 ∥ϕn
i ∥

2
0 +∆t

2∑
i=1

n∗∑
n=0

Nn
2

(
∥∇ϕn

i ∥
2
0 +

∥∥∇ϕn
j

∥∥2
0

)
+ c3

(
h2 +∆t2 + δ4i

)
,

where
(36)

N1 = c
(
ν−3
i + ν−1

i + c24ν
−1
i + c22c

2
4

(
ν−1
i + ν−1

j

))
+ cκ4

2∑
i=1,i̸=j

(
ν−1
i ν−2

j + ν−3
i +

(
ν−1
i + ν−1

j

) (
1 + c24

(
c22
(
∆t2 + 1

)
+ 1
)))

,

and

Nn
2 = c

(
ν−1
i + c2c4κ

2
)
∥ϕn

i ∥0 ∥∇ϕn
i ∥0 + cκ2ν−1

i ∥[ϕn
u]∥0 ∥∇ [ϕn

u]∥0 .

Next, we will derive
∣∣∣en∗+1

Q

∣∣∣ 6 c
(
h+∆t+ δ2i

)
. To do that, we need to prove the

following bound by applying the inductive method

(37)

2∑
i=1

∥∥∥ϕn∗+1
i

∥∥∥2
0
+

2∑
i=1

n∗∑
n=0

∥∥ϕn+1
i − ϕn

i

∥∥2
0
+∆t

2∑
i=1

n∗∑
n=0

νi
∥∥∇ϕn+1

i

∥∥2
0

+
1

2

∣∣∣en∗+1
Q

∣∣∣2 + n∗∑
n=0

∣∣∣en+1
Q − enQ

∣∣∣2 + n∗∑
n=0

∆t

T

∣∣∣en+1
Q

∣∣∣2
6 c3 exp

(
∆t

n∗∑
n=0

N1

)(
∆t2 + h2 + δ4i

)
.

First, when n∗ = 0 in (35), we get

(38)

2∑
i=1

∥∥ϕ1
i

∥∥2
0
+

2∑
i=1

∥∥ϕ1
i − ϕ0

i

∥∥2
0
+∆t

2∑
i=1

νi
∥∥∇ϕ1

i

∥∥2
0
+

1

2

∣∣e1Q∣∣2
+
∣∣e1Q − e0Q

∣∣2 + ∆t

T

∣∣e1Q∣∣2 6 c3
(
∆t2 + h2 + δ4i

)
.
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Second, we assume that (37) holds at the case of k 6 n∗ − 1

(39)

2∑
i=1

∥∥ϕk+1
i

∥∥2
0
+

2∑
i=1

k∑
n=0

∥∥ϕn+1
i − ϕn

i

∥∥2
0
+∆t

2∑
i=1

k∑
n=0

νi
∥∥∇ϕn+1

i

∥∥2
0

+
1

2

∣∣∣ek+1
Q

∣∣∣2 + k∑
n=0

∣∣∣en+1
Q − enQ

∣∣∣2 + k∑
n=0

∆t

T

∣∣∣en+1
Q

∣∣∣2
6 c3 exp

(
∆t

k∑
n=0

N1

)(
∆t2 + h2 + δ4i

)
,

which, combines (16) to gain
(40)

Nk+1
2 = c

(
ν−1
i + c2c4κ

2
) ∥∥ϕk+1

i

∥∥
0

∥∥∇ϕk+1
i

∥∥
0
+ cκ2ν−1

i

∥∥[ϕk+1
u

]∥∥
0

∥∥∇ [ϕk+1
u

]∥∥
0

6 c5
(
ν−1
i

(
1 + κ2

)
+ c4κ

2
) (∥∥ϕk+1

i

∥∥
0
+
∥∥ϕk+1

j

∥∥
0

)(∥∥∇ϕk+1
i

∥∥
0
+
∥∥∇ϕk+1

j

∥∥
0

)
6 c5

(
ν−1
i

(
1 + κ2

)
+ c4κ

2
)
c3 exp (TN1)

·
(
∆t+ h+ δ2i

) (
∆t

1
2

(
ν
− 1

2
i + ν

− 1
2

j

)
+ c1

)
6 min

{νi
6
,
νj
6

}
,

c3 = c3 (ν1, ν2, κ, c2, T ) , c4 =
(
ν−1
i + ν−1

j

)
c2 and c5 = c5 (c2).

Hence, when n = n∗, the following inequality holds with help of (35) and (40)

(41)

2∑
i=1

∥∥∥ϕn∗+1
i

∥∥∥2
0
+

2∑
i=1

n∗∑
n=0

∥∥ϕn+1
i − ϕn

i

∥∥2
0
+∆t

2∑
i=1

n∗∑
n=0

νi
∥∥∇ϕn+1

i

∥∥2
0

+
1

2

∣∣∣en∗+1
Q

∣∣∣2 + n∗∑
n=0

∣∣∣en+1
Q − enQ

∣∣∣2 + n∗∑
n=0

∆t

T

∣∣∣en+1
Q

∣∣∣2
6 ∆t

2∑
i=1

n∗∑
n=0

N1 ∥ϕn
i ∥

2
0 + c3

(
∆t2 + h2 + δ4i

)
.

Applying Lemma 2.4 to (41), we complete the induction.
Besides, adding up (33) from n = 0, 1, · · · , N − 1, combining (24) with (33) at

the case of m = N −1 and applying Theorem 3.1 and the projection properties and∣∣∣en∗+1
Q

∣∣∣ 6 c
(
h+∆t+ δ2i

)
, we get

(42)

2∑
i=1

∥∥ϕN
i

∥∥2
0
+

4∆t

3

2∑
i=1

N−1∑
n=0

νi
∥∥∇ϕn+1

i

∥∥2
0
+
∣∣eNQ ∣∣2 + N−1∑

n=0

∆t

T

∣∣∣en+1
Q

∣∣∣2
6 ∆t

2∑
i=1

N−1∑
n=0

N1 ∥ϕn
i ∥

2
0 +∆t

2∑
i=1

N−1∑
n=0

Nn
2

(
∥∇ϕn

i ∥
2
0 +

∥∥∇ϕn
j

∥∥2
0

)
+ c3

(
h2 +∆t2 + δ4i

)
.
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Now, we use the induction method to prove

(43)

2∑
i=1

∥∥ϕN
i

∥∥2
0
+∆t

2∑
i=1

N−1∑
n=0

νi
∥∥∇ϕn+1

i

∥∥2
0
+
∣∣eNQ ∣∣2 + N−1∑

n=0

∆t

T

∣∣∣en+1
Q

∣∣∣2
6 c3 exp

(
∆t

N−1∑
n=0

N1

)(
∆t2 + h2 + δ4i

)
.

In fact, when N = 1, it follows (38) that (43) holds. Then we assume that (43)
holds for the case of k 6 N − 1:

(44)

2∑
i=1

∥∥ϕk
i

∥∥2
0
+∆t

2∑
i=1

k−1∑
n=0

νi
∥∥∇ϕn+1

i

∥∥2
0
+
∣∣ekQ∣∣2 + k−1∑

n=0

∆t

T

∣∣∣en+1
Q

∣∣∣2
6 c3 exp

(
∆t

k−1∑
n=0

N1

)(
∆t2 + h2 + δ4i

)
.

Finally, by a similar argument as (40) we get Nk
2 6 min

{
νi

6 ,
νj

6

}
. Applying Lem-

ma 2.4 to (42) finishes the induction, and then utilizing the triangle inequality
completes the proof. �

5. Numerical experiments

In this section, several numerical experiments are showed to test the scheme
presented herein. These examples will demonstrate its stability, convergence, and
numerical performance for some benchmark problems compared with the numerical
results of the Navier-Stokes/Navier-Stokes equations.

5.1. Stability. In this subsection, we will illustrate the stability by some numer-
ical examples. We consider the problem (1) on the domain Ω = Ω1 ∪ Ω2 with
Ω1 = [0, 1]× [0, 1] and Ω2 = [0, 1]× [−1, 0].

First, set f1,1 = f1,2 = cos (x) sin (y) and f2,1 = f2,2 = cos (y) sin (x) in (1).
Then, we choose the parameters κ = 100, ν1 = 0.05, ν2 = 0.5 and the initial
velocity u1,0 = u2,0 = 0. Next, we denote the energy by ∥un

1∥
2
0 + ∥un

2∥
2
0. Here,

we pick T = 5, h = 1
32 and N = 400, 600, 800, 1000. In addition, we set f1,1 =

f1,2 = f1,3 = cos (x) sin (y) cos (z), f2,1 = f2,2 = f2,3 = sin (x) cos (y) sin (z) and
pick κ = 1, ν1 = 0.05, ν2 = 0.5, T = 10, h = 1

10 with N = 20, 30, 40. In Figure 1,
we can see that the energy keeps bounded by a constant with different N .

Second, we consider numerical value of Q under different time step ∆t. Choose
the homogeneous Dirichlet boundary conditions and set zero forcing. Besides, the
initial value is presented as follows:

ui,1 = sin (2πy) sin2 (πx) , ui,2 = − sin (2πx) sin2 (πy) , i = 1, 2.

Moreover, set ν1 = 0.05, ν2 = 0.1, κ = 1, T = 1 and h = 1
32 . Figure 2 shows

some numerical results of the auxiliary variable Q for four different time steps
∆t = 0.1, 0.05, 0.01 and 0.005. We find that the numerical value is approximate to
the reference value. The large time step has little effect on the current scheme.

Finally, we will test the considered scheme with the problem at smaller viscosity.
In addition, a fully coupled, monolithic approximation will be taken as “truth”.
According to [35], we plot the ratio of Taylor microscale to mesh size with different
values of the viscosity in Figure 3. It is found that the result of the current scheme
is closer to the result of the coupled scheme at ν1 =5.0e-2, but there is a big error
between two schemes when ν1 =1.0e-6.
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Figure 1. Stability of the presented scheme for the 2D model (a)
and 3D model (b) with different values of N.
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Figure 3. Taylor microscale with different mesh sizes.
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5.2. Convergence. We consider a manufactured true solution in Ω = Ω1 ∪ Ω2

with Ω1 = [0, 1]× [0, 1] and Ω2 = [0, 1]× [−1, 0].

u1,1 (t, x, y) =x2 exp (−t) (x− 1)
2
(1− y) ,

u1,2 (t, x, y) =xy exp (−t)
(
6x+ y − 3xy + 2x2y − 4x2 − 2

)
,

u2,1 (t, x, y) =x exp (−t) (1− x)
(
x (x− 1) y2

(
ν1ν

−1
2 + 1

)
− ν

1/2
1 κ−1/2y2 exp (t/2)

−x (x− 1) + ν
1/2
1 κ−1/2 exp (t/2) + ν1ν

−1
2 xy (x− 1)

)
,

u2,2 (t, x, y) =
1

3
ν−1
2 κ− 1

2 y (1− 2x) exp (−t)
(
6ν2x

2κ1/2 − 6ν2xκ
1/2 − 3ν

1/2
1 ν2 exp (t/2)

− 2ν1x
2y2κ1/2 − 2ν2x

2y2κ1/2 + 3ν1xyκ
1/2 + 2ν1xy

2κ1/2

−3ν1x
2yκ1/2 + 2ν2xy

2κ1/2 + ν
1/2
1 ν2y

2 exp (t/2)
)
,

p1 (t, x, y) =p2 (t, x, y) = exp (−t) cos (πx) sin (πy) .

Additionally, we denote the errors

Err (ui) =

(
∆t

N∑
n=1

∥∇ (ui (tn)− un
i )∥

2
0

) 1
2

, Err (pi) =

(
∆t

N∑
n=1

∥pi (tn)− pni ∥
2
0

) 1
2

.

In the meantime, pick 256δ2 = h, ν1 = 0.05, ν2 = 0.5 and the coupling coefficient
κ = 100.

Table 1. Spatial errors and convergence rates of the velocities
and pressures with T = 0.01.

h−1 Err(u1) Rate Err(u2) Rate err(p1) Rate err(p2) Rate
4 2.72e-2 − 2.90e-2 − 6.00e-2 − 8.41e-2 −
8 1.28e-2 1.09 1.45e-2 1.00 1.50e-2 2.00 2.09e-2 2.01
16 5.93e-3 1.11 7.23e-3 1.00 3.70e-3 2.03 5.14e-3 2.02
32 2.83e-3 1.07 3.61e-3 1.00 9.18e-4 2.01 1.30e-3 1.99
64 1.39e-3 1.02 1.80e-3 1.00 2.31e-4 1.99 4.04e-4 1.68

Table 2. Temporal errors and convergence rates of the velocities
and pressures with T = 1.0.

∆t−1 Err(u1) Rate Err(u2) Rate err(p1) Rate err(p2) Rate
4 2.57e-1 − 2.56e-1 − 1.42e-2 − 3.05e-2 −
8 9.91e-2 1.37 1.12e-1 1.20 3.92e-3 1.85 1.28e-2 1.25
16 4.03e-2 1.30 4.93e-2 1.18 1.19e-3 1.72 5.23e-3 1.29
24 2.47e-2 1.21 3.10e-2 1.14 6.02e-4 1.69 3.14e-3 1.26
32 1.77e-2 1.15 2.25e-2 1.11 3.76e-4 1.64 2.30e-3 1.08

On the one hand, considering the convergence order with respect to h, we choose
a small time step ∆t = 0.001. Then pick five mesh sizes h = 1

4 ,
1
8 ,

1
16 ,

1
32 and 1

64 .

In Table 1, we list the convergence orders with respect to h in L2 norm for the
pressure and W 1,2 norm for the velocity, respectively. From this figure, we can see
that the current scheme works well and gain the right convergence order.
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On the other hand, considering the convergence order with respect to ∆t, we
choose ∆t = h = 1

4 ,
1
8 ,

1
16 ,

1
24 and 1

32 . Numerical results are collected in Table 2.
The first order temporal accuracy is obtained.

(a) Result of the Navier-Stokes-ω/Navier-Stokes-ω model with δ =
0.1

(b) Result of the Navier-Stokes-ω/Navier-Stokes-ω model with δ =
0.05

(c) Result of the Navier-Stokes-ω/Navier-Stokes-ω model with δ =

0.01

(d) Result of the Navier-Stokes-ω/Navier-Stokes-ω model with δ =
0.005

(e) Result of the Navier-Stokes/Navier-Stokes model

Figure 4. Contour plots of the velocity magnitudes.
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5.3. Flow past a cylinder problem. In this experiment, we test the presented
scheme for the equivalent form (4) of the Navier-Stokes-ω/Navier-Stokes-ω equa-
tions (2) by the flow past a cylinder problem. The physical background of this
problem describes a parabolic inflow in the top fluid domain that passes a cylindri-
cal obstacle before it meets the fluid domain below.

A parabolic inflow drives the flow in the upper rectangular domain 5×1 a circular
obstacle of radius 0.1 and centered at (1, 0.5).Meanwhile, the lower domain includes
two unit square region. Next, the parabolic flow’s inlet/outlet are

u1,1 (0, y, t) = u1,1 (5.0, y, t) = 2.0y(1− y),

u1,2 (0, y, t) = u1,2 (5.0, y, t) = 0.

Besides, the homogeneous Dirichlet boundary conditions are enforced on the rest of
the boundaries of the upper domain. Additionally, the no-slip boundary is enforced
on the walls of the lower domain.

The problem parameters are given as follows: ν1 = 0.001, ν2 = 1.0, κ = 0.01 and
T = 20.0. Also, ∆t = 0.01 and the mesh of the domain Ω1 and Ω2 consists of 8930
nodes and 2912 nodes, respectively. Figure 4 shows contour plots of the velocity
magnitudes with different δ. From this figure, we can find that decreasing δ val-
ue makes the solution approach that of the Navier-Stokes/Navier-Stokes equations
step by step. It is not surprising because when δi = 0 the Navier-Stokes-ω/Navier-
Stokes-ω equations and Navier-Stokes/Navier-Stokes equations are equivalent. Be-
sides, for the bigger value of δ, the Navier-Stokes-ω/Navier-Stokes-ω equations for
simulation this problem is too dissipative to yield reliable result.

5.4. Flow pass a backward-facing step. In the subsection, a flow pass a back-
ward-facing step is simulated by the current scheme for the Navier-Stokes-ω/Navier-
Stokes-ω model and the Navier-Stokes/Navier-Stokes model. The setup has been
proposed in the literature [19]. Most notably, it is pointed out that the real physical
phenomenon of this setup is a description of the coast mountain, cliff and so on.

From above subsection, we can see that the Navier-Stokes-ω/Navier-Stokes-ω
model with decreasing δ value gradually makes the solution approach that of the
Navier-Stokes/Navier-Stokes equations. Hence, it is natural to point out why we
still consider here the Navier-Stokes-ω/Navier-Stokes-ω model. In fact, the Navier-
Stokes-ω/Navier-Stokes-ω model can be considered as a sequel and a complement of
the Navier-Stokes/Navier-Stokes model for the simulation of turbulence. However,
in some extreme cases, the disadvantages of the Navier-Stokes/Navier-Stokes model
emerge.

The main goal of this test is to show that when the viscosity coefficient ν1
is moderate, both governing equations can capture the key features of physical
solution, but when ν1 is small, only the Navier-Stokes-ω/Navier-Stokes-ω model
simulates well.

The no-slip condition is imposed on the step, the oceanic wall and the top wall
of the atmosphere. Besides, the parabolic inflow with maximum inlet 10 drives
the flow in the atmosphere, and the “do-nothing” condition is applied to the out-
flow. We consider ν2 = 0.05, κ = 0.1, T = 15, ∆t = 0.01 and h = 1

10 with
varying ν1. The Figure 5 illustrates that both governing equations produce simi-
lar results with ν1 = 0.025. However, decreasing ν1 value results in a failure for
the Navier-Stokes/Navier-Stokes model. On the other hand, the Navier-Stokes-
ω/Navier-Stokes-ω model can still capture the key physical phenomenon.



NS-ω/NS-ω MODEL USING UNCONDITIONALLY STABLE FE SCHEME 199

(a) Result of the Navier-Stokes-ω/Navier-Stokes-ω model with ν1 =

0.025

(b) Result of the Navier-Stokes/Navier-Stokes model with ν1 = 0.025

(c) Result of the Navier-Stokes-ω/Navier-Stokes-ω model with ν1 =
0.00025

Figure 5. Velocity fields (the Navier-Stokes/Navier-Stokes model
with ν1 = 0.00025 fails).

6. Conclusions

In this work, we consider the Navier-Stokes-ω/Navier-Stokes-ω model for the
fluid-fluid interaction problem. Based on the auxiliary variable, we design the
fully discrete and decoupled scheme, which is unconditionally energy stable, and
is explicit treatment for the nonlinear terms and interaction terms. The proved
stability and accuracy and the ability to capture basic phenomenological features
of the proposed scheme are demonstrated by a series of numerical tests.

In [19], the authors find a model that avoids filtering in the interface but keeps
the unconditional stability. Then, in this work, we design another model which also
avoids filtering in the interface and obtains the unconditional stability. Compared
with the numerical scheme in [19], the presented scheme applies explicit treatment
for the nonlinear coupling conditions and nonlinear terms, and yields a linear system
with a constant coefficient matrix which is easy to solve.
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