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ON A 1/2-EQUATION MODEL OF TURBULENCE
RUI FANG*, WEI-WEI HAN, AND WILLIAM J LAYTON

Abstract. In l-equation URANS models of turbulence, the eddy viscosity is given by vy =
0.550(x,t)\/k(x,t). The length scale | must be pre-specified and k(z,t) is determined by solving
a nonlinear partial differential equation. We show that in interesting cases the spacial mean of
k(z,t) satisfies a simple ordinary differential equation. Using its solution in vy results in a 1/2-
equation model. This model has attractive analytic properties. Further, in comparative tests in
2d and 3d the velocity statistics produced by the 1/2-equation model are comparable to those of
the full 1-equation model.
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1. Introduction

Unsteady Reynolds-averaged Navier-Stokes (URANS) models can be developed
in several ways. Here we adopt finite time averaging that does not require assump-
tions of ergodicity. Other approaches, leading to the same models, are common, e.g.
Wilcox [34], Mohammadi and Pironneau [24], Chacon-Rebollo and Lewandowski [6].
URANS models can be viewed as approximating time averages

1t
(1) u(w,t) = f/ u(z,t')dt" with fluctuation v'(z,t) := (u — u)(z,t)
T Jit—r

of solutions of the Navier-Stokes equations (NSE)
(2) V-u=0,u +u-Vu—vAu+ Vp= f(z,t),

with the domain, kinematic viscosity, and initial and boundary conditions (BC-
s) specified. There are a variety, 0-equation, l-equation, 2-equation, and more-
equation, of useful URANS models with (generally) increasing predictive ability as
model complexity (e.g., number of equations and calibration parameters) increases.
This report studies the extent flow statistics predicted by l-equation models can
be captured by a 1/2-equation model (derived in Section 2) which has 0-equation
complexity.
The standard URANS approach is to model u(z,t) by eddy viscosity

1 t
ve+v-Vo—V-(2v+vr] V) + Vg= ;/ f(z,t)dt', and V - v = 0.
t—7

Here vp = 0.55[vk is the eddy viscosity. The model representation of the turbu-
lence length scale [(x,¢) and turbulent kinetic energy (TKE) k(z,t) ~ 3[u/(z,t)|?
must be specified. In Section 2 we show that with kinematic | = v/2k7 the time
evolution of the space-average of k(z,t)

1 1 l————
- ~— | 2Ty 2
k(t) Q) /Qk(x,t)d:c ~ Q) /Q 2|u (z,t)|]?dx.
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can be captured by a single ordinary differential equation (ODE) in time

d 2 1

(3) ak(t) + grflk‘(t) = ), vr|Viv|2de.

Using k(¢) rather than k(z, t) in vy reduces model complexity to that of a 0-equation
model. Section 2.3 proves the positivity of k(¢) and the boundedness of the 1/2-
equation model’s kinetic energy and energy dissipation rate. Proposition 1 in Sec-
tion 2.3 shows that when the time window 7 is sufficiently small k(¢) — 0 (and thus
vp also) reducing the model to the NSE. The other natural limit is whether the
model solution converges to a Reynolds-averaged Navier-Stokes (RANS) approxi-
mation as 7 — oo. Analysis of this question is an open problem but our preliminary,
heuristic analysis suggests it does hold.

The goal of URANS simulations is to give acceptable accuracy at a modest cost.
One requirement for this is that the model’s eddy viscosity does not over-dissipate.
In Theorem 1, Section 2 we prove that for 7 smaller than a specific value the
model’s time-averaged energy dissipation rate €mode; is bounded by the O(U3/L)
energy input rate
U3

T

This proof of non-over dissipation is given for turbulence in a box in Section
2.4. Section 3 directly addresses accuracy, comparing 1/2-equation model velocity
statistics with those of l-equation models. Since simulations of the 1/2-equation
model have reduced complexity compared to 1-equation models, the tests in Section
3 indicate that the 1/2-equation model’s comparable accuracy makes it worthy of
further study.

Related work. Finite time averaging (1) is one of the various averages, sur-
veyed by Denaro [9], used to develop URANS models. We select it because it is
analytically coherent and computationally feasible. The equation (3) is derived
by space averaging the TKE equation developed by Prandtl [28] and Kolmogorov
[21]. The equation for the spaced average TKE has the simpler form (3) due to the
kinematic turbulence length | = v/2k7, Section 2.2. This [(x,t) was mentioned by
Prandtl, Section 2.1, but developed much later. Our previous work [19], [20], [22]
has found it to be effective when boundary layers are not primary and it has been
used successfully by Teixeira and Cheinet [32], [33] in geophysical fluid dynamics
(GFD) simulations. Our approach to 1/2-equation models is inspired by the pio-
neering work of Johnson and King [17], see also Wilcox [34] Section 3.7, Johnson
[16]. This work captured variations of model parameters along a body or channel
by deriving and solving an ODE in x, the streamwise direction. We also note that
(1) means that there is not a sharp separation between our approach to URANS
herein and time-filtered large eddy simulation (LES), reviewed in Pruett [30].

The analysis of energy dissipation rates in Section 2 builds on the important,
fundamental, and compelling analysis of Doering and Foias [11] and Constantin and
Doering [10]. A common failure mode of eddy viscosity models is over-dissipation
(even predicting a laminar solution). Thus energy dissipation analysis, inspired by
[11, 10], directly addresses the practical issues of turbulence modeling, e.g. [19, 20,
23].

T— 00

1 /7
lim sup T / €model (1) dt < (1+Re™ )
0

2. The 1/2-equation model

The 1-equation model is reviewed in Section 2.1 followed by the derivation of
the 1/2-equation model studied herein in Section 2.2. Analytical properties of the
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model are developed in Sections 2.3 and 2.4. Hereafter, we will redefine the body
force to simplify notation, replacing %j;; f(z, tdt' by f(x,t).

2.1. Background on 1l-equation models. Averaging the incompressible NSE
(2) by (1) leads to the exact but non-closed equations for u:

V-u=0,7+u-Vu—vAu+Vp+ V- R(u,u) = f(x,t),
where R(u,u) :=u®@u — T Q.

With few exceptions, URANS models are based on the Boussinesq assumption (that
the action of R(u,u) on @ is dissipative, [5]) and the eddy viscosity hypothesis (that
this dissipation can be represented by an enhanced viscosity v, [15]). These yield
the model for v ~ 7,

(4) V-v=0,v+v -Vv—vAv—V-(vrV°v)+ Vq= f(z,t),

where ¢ is a pressure and V®v is the symmetric part of the gradient tensor. Com-
putational experience (now with rigorous mathematical support [19], [20]) is that

the near wall behavior R(u,u) = O ([wall distance]2) must be replicated in vp

to preclude model over-dissipation. The turbulent viscosity v is an expression of
the observed increase of mixing with “the intensity of the whirling agitation”, [31],
[5], [8], p- 235. This results in the dimensionally consistent, Prandtl-Kolmogorov
formula

vr = 0.55Ivk, where I(x,t) = turbulence length scale,
1
k(xz,t) ~ §|u’(x,t)\2 = turbulent kinetic energy.

0-equation models specify | and relate k back to local changes in v(z,t). For ex-
ample, the Baldwin-Lomax [3] model uses k(z,t) ~ 2|V x v(x,t)[?. 2-3-...URANS
models solve the k-equation below for k(x,t). Then they determine [(z,t) indirectly
through the solution of added nonlinear partial differential equations (PDEs) for
dimensionally related turbulent flow statistics.

1-equation models, with the notable exception of the Spalart-Alamaras model,
specify [ and solve the associated nonlinear PDE for k(z,t)

1
ke +v-Vk—V-(vpVk) + 7k:\/E = vp| V02,

This is derived by plausible closures of an exact equation for ||, [6] p. 99,
Section 4.4, [7], [24] p. 60, Section 5.3 or [26] p. 369, Section 10.3. Prandtl gave
two descriptions of the physical meaning of I(x,t), e.g. [28], [32]. The first is that
I[(z,t) is an average distance turbulent eddies must go to interact. Walls constrain
this distance, leading to | = Ky, where k is the von Karman constant, Prandtl
[27], and y is the wall-normal distance. The second, kinematic, specification is
the distance a fluctuating turbulent eddy travels in 1 time unit. Their rate is
|u'| ~ \/2k(z,t) leading to a kinematic length scale of

(Kinematic I(z,t)) l(x,t) = \/2k(x,t)T, T = time scale of (1).
This is the choice herein and by Kolmogorov, [21] for his 2-equation model. With
| = v/2kt, the 1-equation model becomes vy = py/2k(z, )7 and
(5) ve+v-Vo—V-([2v+vp] Vo) + Vg = f(z,t) and V-v =0,
ki +v-Vk—V - (vpVE) + L2771k = vg| V5|2,

2
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where vy = 0.551vk and | = v/2kr. At t = 0 the velocity is initialized by v(x,0) =
vo(x). At some t* > 0 the equation for k(x,t) is initialized by k(x,t*) = ko(x). We
impose standard no-slip BCs' at walls: v(x,t) = 0, k(x,t) = 0 on 9.

2.2. Derivation of the 1/2-equation model. We select the kinematic length
scale | = 2kt yielding vy = v/2uk(x,t)7 and (5). The 1/2-equation model begins
with the space average of the k-equation in (5). Let

k(t) = |Q|/ (z,t)dx and (1) : |Q|/VT|V51)2d(E

Averaging the k-equation over {2 gives

V2 1
dt\Q|/kd +|Q|/V (vk) (VTVk)d.'L‘-F?T @/dex—e(t)
The second and third terms vanish since k(z,t) = 0 on 92 :
(6) Jo V- (k)de = [,o(v-n)kdo =0,
Jo V- (wrVk)de = [0, V2uk(z,t)TVE - ndo = 0.

In more detail, both integrals are zero for internal flows (v =0 and k = 0 on 99Q),
shear flows (v-n =0 and k = 0 on J2) and under periodic BCs. For these 3 cases,
k(t) satisfies exactly

d V2

(7) gk(t) + 7T—lkz(t) = e(t) with k(t*) # 0 given.

One further model refinement is needed near walls. With k = k(t), vr = V2uk(t)T
does not vanish at walls. Recall y = wall normal distance and k = von Karman-like
constant. Since vr should replicate the O(y?) near wall asymptotics of R(u,u), we
adjust vy at walls with a multiplier (ky/L)*. We thus have the 1/2-equation model

vr = V2uk(t)T for periodic boundaries,

2
v = \/iuk(t) (/{%) 7 for no-slip and shear boundaries,
v 4v-Vo—=V-(2v+vp] V) +Vg= f(z,t) and V- v =0,

(8) jtk( t) + ?r*lk(t) =e(t) .

Remark 1. Channel flows have walls but also inflow and outflow boundaries.
Outflow BCs are non-physical and selected to do minimal harm to the upstream

approzimation. Inflow values for v(x,t),k(z,t) are needed and must be specified
from measurements

ven=vnN ,v-7T=0, k=krn on inflow boundary I';n.
With these known the volume-averaged inflow part of the convection integral is

calculable:
1

1

€2 Joq 1€

The volume-averaged diffusion integral becomes me kin(xz)VEk-ndo and is not ex-
actly calculable due to VE being unknown on I'yy. When diffusion of TKE across

(v-n)kdo = vin kin do + outflow integral.

Tin

"When vy = O ([Wall distance]2> there is a serious analytical question in Muckenhoupt theory
[36, 35], see Amrouche, Leloup and Lewandowski [37] for interesting recent developments about
the meaning of traces of k(z,t) on the domain boundary. This technically difficult question does
not arise for the 1/2-equation model.
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the inflow boundary is much smaller than convection (a plausible but untested hy-
pothesis), the second integral is negligible. Under these conditions the 1/2-equation
model for channel flow is
d V2 1
dtk( )+ 5 T k(t) = e(t) PN
Remark 2 (URANS not RANS). RANS models aim at approzimating a turbulent
flow at statistical equilibrium through (via an ergodic assumption) closure of an in-
finite time average of the NSE. The approach to replacing k(x,t) with k(t) means
that the model so derived is essentially a URANS model not a RANS model. Never-
theless, one can ask what happens for flows at statistical equilibrium. At statistical
equilibrium, and under periodic BCs k(t) approximately satisfies

\/i )
7 k(¢ k(t)T|Vou|d
5 T |Q| / V2uk(t)T| V|2 de,
and k(t) can be approzimately canceled from the equation. However, implicit k

dependence remains since v = v(x,t; k). At statistical equilibrium the value of k is
thus (approzimately) determined by

urn krny do — outflow integral.

solve for k: ﬁ Jo IVou(z, t; k) [Pda ~ inz
subject to: { vt Vu—V- ([ZVVJF \U[_WST} Vo) + Vg = f(),

2.3. 1/2-equation model: basic estimates. We assume here that under peri-
odic or no-slip BCs the model (8) has a solution that is smooth enough for standard
energy estimates. While proving this for the continuum model is an open problem,
existence certainly holds for its finite element method (FEM) discretization. We
establish positivity of k(¢) and model convergence to the NSE for small 7. Analysis
of model behavior for 7 — oo is an open problem.

Proposition 1. Consider the model (8) under no-slip or periodic boundary condi-
tions. The following hold:

Positivity: If k(t*) > 0 then k(t) > 0 for all t > t*.

Model convergence to NSE: There is a 1o = 79(data) > 0 such that for
T < 70, k(t) = 0 and vy — 0 exponentially in t.

Proof. The k-equation can be rewritten as

d
k(D) + alt)k(t) = 0, where
NI w1 s t
a(t):77 177@@ QyQ|V v(z,t)|*dz, and A(t):/o a(t')dt'.

Thus, [, |V*v[*dz € L'(0,T) implies k(t) > 0 for 0 <t < T because then A(t) €
L>(0,T) and k(t) = exp(—[A(t) — A(t*)])k(t*). Next, note that if k(t) > 0 for
0<t<T, vp >0 and the eddy viscosity term can be dropped in the standard
energy estimate for the momentum equation, implying [, |V*v|* dz € L'(0,T). To
combine these two observations and show k(t) > 0, suppose vy = /2u|k|r. Then
the two observations imply |k(t)| = k(t) so k(t) > 0. When A(t) > 0, which occurs
for T < 719, k(t) decays as claimed, completing the proof. |

Remark 3. Since |y/L| <1, it suffices to take

. ~1/2
= 5,12
/ |Q|/|v . d:c)dt] .

To = 271/4
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The quantity in brackets is bounded by data uniformly in T.

Next, we establish an energy equality suggested by the NSE’s kinetic energy
balance, rewritten in terms of [ 1|2+ 1|u’|?dz, and associated & priori bounds on
kinetic energy and energy dissipation.

Proposition 2. Consider the model (8) under no-slip or periodic BCs. Sufficiently
regular model solutions satisfy the energy equality

) % i [ 3ot 0Pas + ko] +

[Kl)'/z/Vs (z, t)\%ix—#?T*lk 1 |Q|/fgc t)-v(x, t)de

Let the initialization k(t*) be chosen so k(t*) > 0. With
C = C(data) = C(f,u(z,0), k(t"), v,7) < 0,

the following uniform in T bounds on energy and dissipation rates hold
(z,T)]*dx < C,
9] /

;/T{glu /[V+VT]|VS (z, t)lzdm} dt < O,
1 1

19 Jo 2

1/T 1/ ) V2 o,
— — | v|Vu(x,t)|*de + —71k(t) pdt < C .
To{m|ﬂ|< )Po -+ X2 k(1)

Proof. Take the inner product of the momentum equation with v(x,t), apply the
divergence theorem. This gives

d 1
at Q)

L s 20y = - x,t) - v(x, t)dr
ﬁ/ﬂ[””ﬂ'v o(, ) 2dz = |Q|/Qf( ) - v(w, t)da.

Since k(t) > 0, vp|Vov(x,t)|? > 0 and the vy term can be dropped (for the kinetic
energy bound) then reinserted (for the dissipation bound). Differential inequalities
imply that, uniformly in T,

slo(@ T)Pde + K(T) < C

1
| (z, t)|2d33+

v(z,T)|*dz < C(data 0,
a7 . 3l TP < Cdata) <

T
l/ ! [V 4 vr]|Vou(z, t)|? de dt < C(data) < oo.
T Jo 190 Ja

Adding the k-equation gives
dl1 1
(10) { / o £) 2 + k(e )}
€2 Jo 2

1 . V2
|Q|/VV v(z, t)\zd:c+7 Yk (t) 1 |Q|/fact v(x, t)dx

Let y(t) be the kinetic energy, y(t) = ﬁ Jo 3lv[? dz+k(t). Then, using the Cauchy-
Schwarz-Young and Poincaré inequalities shows y'(t) + ay(t) < F where a > 0 and
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F = |fllz>(0,00:2(02))- Using an integrating factor shows y(t) < C(a)F < oo for
all t. With the kinetic energy uniformly bounded, time average (10) over 0 <t <T.
This shows that the time average of the second bracketed term is bounded uniformly
in T. Then we have

Q|/ v(z, T)|?dz + k(T) < C < oo,

1/T 1/ ) V2
= — | v|Vu(x,t)|*de + —7 " k(t) p dt <C < 0,
To{m|ﬂ| (o 1) e+ 27 k(1)

completing the proof. O

Remark 4. Since v models u and k the kinetic energy in v, the form of the energy
inequality in Proposition 2 expresses compatibility of the model energy with the NSE.

One consequence is the following result on the time-averaged equilibrium of the
k-equation.

Corollary 1. As T — oo there holds

T 2 T
1 _nr _ Vot 1
/ i L rdeae= T/o Kyt = /Os(t)dH—O(T).

Proof. Time averaging the k—equation gives

) ko) + 4 [ ko= [ e aar

The first term is O (1/T) due to the d priori bounds. Rearranging this gives the

Cla@med 768ullf

Nl =

2.4. Energy dissipation rate: turbulence in a box. We show next that the
model does not over-dissipate body forced flow with periodic BCs, often called
turbulence in a box. These estimates use the & priori bounds in Section 2.3 but
require a small amount of extra notation.

Definition 1. The model energy dissipation rate is

1

Emodel(t) . |Q|
Q

2
v|Vou(z, t)|?dx + nglk(t).
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The scale of the body force F, large velocity scale U, length scale L and large scale
turnover time T are, respectively,

1 2
== d
Pl [ @
, 1 /T
U := \/hstEEOT/O [|Q|/Q U(x,t)|2dx} dt

L= min{|Q\1/3

SUpP,cq |vs \/\QI o |V f(z |2da:

—}
Vi JoAf@)Pda

L
T = —.
U
The large velocity scale U and length scale L are well defined due to Proposition
2.3.

Theorem 1. Consider the model (8) in 3d subject to periodic BCs and with V -
f(x) =0, f € HA(Q)OAWH®(Q), and vo(z) € L*(Q). The time-averaged energy

dissipation rate of the model satisfies

9 1 [T 3
{1 — \/i,u (L) } lim sup — Emodel(t)dt < 2(1 4+ Re*1)£
T* T— o0 0 L
With p = 0.55, if 7= < 0.8 then
I Us
lim sup — Emodel(t)dt < 4(1 + Re_l)—
T—o0 0 L

Proof. Let ¢(T) denote a generic, bounded, positive function with ¢(T) — 0 as
T — oo. Consider the energy estimate (9) above (which establishes that emodel(t)
is defined correctly). Time averaging (9) gives

(11) 1 [(Iflll/ 1| (2, T)2dx + k(T )> <|slz|/ 1| (z, 0)2d1+k(0))}+
f/o Emodel (1)dt = T/o {Iﬂl/f xtdx] dt.

From the d priori bounds in Proposition 2.3, the first term is O (1/T); the second
term is the time average of €model- We thus have

[, ettt =0 (7)1 [ [ [ 0ot

(12) <0 <;> +UF + ¢(T).
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Next take the inner product of (8) with f(x), integrate by parts, use V- f =0 and
time average over 0 <t < T. This gives

(13) F? = ;,/OT (|(12| /Q[v(x,T) —v(z,0)] - f(m)d;v) dt

;/OT <|§12|/Qv(:v,t) ®v(x,t) : Vf(x)dx) dt+

;/OT [;”/Q[MVT]VSU(M);VSf(z)dx} dt.

The first two terms on the right-hand side (RHS) are shared with the NSE. Standard
estimates for those terms shared with the NSE from the pioneering work of Doering,
Foias, and Constantin [11], [10] are O (3) + £U? + ¢(T). Consider the last term
on the RHS. Application of the space-time Cauchy-Schwarz-Young inequality, with

multipliers HTT* and QﬁlT* (T*=LJU), to it gives, for any 0 < 8 < 1,

T
(14) l/ [1 / v+ vr]Viu(x,t) : st(m)dm} dt =
T Jo L9 Jo
—1/T1 —I/U'Afdxdt—l—l/Tl/l/ Vv : Vifdxdt
ST Qe Tom\QT '
vUF B F T()dt+1UF 1
=712 T 2uT 28T Jy 19] Jo
Inserting the estimate of the time average of k( ) from Corollary 2.1 in (14) gives

;/OT Lfln/ v+ vr]Viuta, ) Wf(x)dx] dt < VU1t

BF 1 /T V2ur? /T 1
——— model ()dt U tydt+ O | = T).
557 [ emenatar+ SEU L [ a0 (5 ) +otm)
Use this and the previously derived, O (T) + %UQ + ¢(T), estimates for the RHS
terms in the equation for F? (13). This gives, for any 0 < B < 1,

F F BF1 (T
2< — L
F UL2 + LU + 2UT/O Emodel ()dt
V2ur? F 1 /T 1
+ U—— | elt)dt+0 () + ¢(T).
26 L2T J, T (T)

Therefore, we have the key inequality i estimating % fOT Emodel (t)dt:

U? 1
UF <v ﬁ + T + g?/ Emodel(t)dt

2 U?%1 1
+ C’g T, 5(t)dt+ 0 (> + o(T).

uUd_ —1U3
= Re T -

pk(t)T dedt + ¢(T).

The first term on the RHS VL2 18 rewritten as ng = A Insert
this on the RHS of the above and replace UF in (12) by the last bound. This yields
LU B

U3
T moetdtgi Re T o T moetdt
T/OE del (t) T+ L+2T/€ del(t)dt+

\;“ { 2U2} ;/OTs(t)dt+(9 <;) +o(T).




148 R. FANG, W.W. HAN, AND W. LAYTON

The multiplier in braces TQLT = (TT )2. Pick 8 =1 and use

1 (7 1 (T2 e
T/(; E(t)df = TA gTﬁlk(t)dt‘FO(l) S T/O €mode1(t)dt+¢(T)-

Proposition 2.3 shows that % fOT Emodel(t)dt is bounded uniformly in T. Thus its
limit superior as T — oo exists. This (plus an arithmetic calculation) completes
the proof:

) 1T 3
{1 —V2pu (%) } lim Sup ; Emodel (1)dt < 2(1 + Refl)%-
—00

3. Testing the 1/2-equation model

We test how close the 1/2-equation model velocity statistics are to volume-
averaged velocity statistics produced by the 1-equation model with Prandtl’s clas-
sical I = 0.41y and with the kinematic turbulence length scale | = +/2k(x,t)7.
Since the 1/2-equation model’s k(t) allows temporal variations, our intuition is
that a time-independent body force, leading to a flow where statistical equilibrium
is expected, is a non-trivial test.

3.1. Flow statistics. Evaluation of flow statistics means comparing plots of 1d
curves of aggregate velocity-based quantities. We calculate the time evolution of
the four velocity statistics: the Taylor microscale (an average velocity length scale),
the kinetic energy of the mean flow, enstrophy (aggregate vorticity), and the model
approximation to the turbulent intensity:

. L ((F e |V v 172
Taylor Microscale : /\Taylor =15 oy TR
Kinetic Energy/Volume : = f 3lv(z, )2 dx
Enstrophy/Volume : Ens(t ) 1 f 1V x v(z,t)|?dx
L k(z,t)dz
Turbulence Intensity — : Lnodel (t) = o Jg 2k (:0)

- ﬁfn 2k(z,t)+|v(z,t)|?2dx

3.2. The 3d test problem. We examined the classical Taylor-Couette flow be-
tween counter-rotating cylinders with no-slip BCs. We used FEniCSx with the
computational environment DOLFINx/0.5.2. We compared three models: the 1/2-
equation model in Section 2.3, the 1-equation model in equation (5), and Prandtl’s
classical model with [ = 0.41y, where y is the wall-normal distance. The x multi-
plier in (xy/L)? is a von Karman-like constant whose best values are unknown. We
do not know if 0.41 is the correct calibration in the multiplier (ky/L)%. In the 3d
test we tested x = 1 in the multiplier (ky/L)? = (y/L)?. We used the backward
Euler time discretization for both the momentum and k-equation plus a time filter
from [13] for the momentum equation to increase time accuracy and anti-diffuse
the implicit method. We used the Taylor-Hood (P2 — P1) element pair for the
momentum equation in all cases. For the 1-equation model simulations, we used
P1 Lagrange elements for the k-equation. The unstructured mesh was generated
with GMSH, with GMSH target mesh size parameter lc = 0.04. The domain is
given by
Q= {(x7y’z) *Tinner < ‘T + y < Touteﬂo S Z S Zma$}7

with 7ipner = 0.833 and router = 1 and zmee = 2.2, see Figures 1 and 2. Periodic
BCs were imposed in the z direction. The outer cylinder remained stationary,
while the inner cylinder rotation drove the flow. The angular velocity of the inner
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cylinder, wjpner, started at 0 at ¢ = 0 and gradually increased until fully turned

on with wWipner = 9 at time ¢ = 5. We chose the final time 7" = 30. The time

scale was set to be 7 = 0.1, and timestep At = 1072, We set v = 1073, took

U = inner cylinder speed and L = 1.0 — 0.833 = 0.167, the cylinder gap, yielding

Re = 1.5 x 103. The radius ratio  and Taylor number Ta are

L0 g 10,
+n

n:i= Vinner _ 0.833 and Ta := 4Re>

Touter 1
Figure 1, p. 156 in [1] (see also [12]) indicates the physical flow is expected to have
turbulent Taylor cells for these parameters.

FiGURE 2. The mesh
viewed from the top.

FIGURE 1. The domain €.

3.2.1. 3d Statistical result analysis. We first compared the 1/2-equation veloc-
ity to both 1l-equation velocities. All 3 models gave a time-averaged kinetic energy
(to 2 digits) of 3.6. The L? norms of time-averaged differences |[v12¢gn — Viegnll,
[V1/2eqn — Viegnai=ry|| Were (to 2 digits) 0.17 and 0.14 respectively. (These norm-
s were calculated using nodal values in a standard way and are known in finite
element theory [4] to be equivalent to the continuous L? norms.) This yielded a
percent difference of respectively 4.7% and 3.9%, in Figure 3:

||U1/2eqn - Uleqn||L2 ||Ul/26qn - Uleqn&lzf*iy”L2

~ (0.047 and
||UleanL2 Hvleqn&l:NyHLQ

~ 0.039.
Given the 1/2-equation model parameters were non-calibrated, these velocity dif-
ferences seem acceptable.

The tests did show k-value differences between the non-calibrated 1/2-equation
k(t) and the space average of k(x,t) for the 2 models. These differences are also
reflected in the computed approximations of the turbulent intensities (as these
depend on the k values). In the 2d tests below a well-resolved NSE simulation
is available for comparison. The 2d results suggest that here the k value of the
l-equation model is too large due to v being too large in the near wall region.
This suggests the 1/2-equation model results for k(¢) and the turbulent intensity,
being closer to the model with [ = 0.41y, are again acceptable, Figure 4, Figure 5.

The Taylor microscale Arqyor depends on velocity gradients more sensitive to
model parameters and mesh than velocities. Predictions of Arqyior are very similar
in all models from 1073 to 1.5 x 1073, Figure 6. For this problem, we believe the
model with | = 0.41y is more accurate than the other l-equation model due to
its near-wall asymptotics being closer to that of the Reynolds stress. Thus, the
1/2-equation model’s closeness to the former is another model success.
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Relative 12 difference of velocity
between 1/2-equation model and classical URNAS models
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FI1GURE 5. The turbulence intensity.

The enstrophy values indicate significant rotational motions. The previous re-
sults suggest the k(x,t) values for the l-equation model with I = v/2k7 are too
large for this problem. This makes v too large and the model velocity over-
diffused. Thus lower enstrophy is expected. In Figure 7, the 1/2-equation model
has enstrophy close to the model solution with [ = ky and above the 1-equation
model with | = v/2k7. The magnitude of velocity at time ¢ = 10 for all the models
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Taylor microscale
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FIGURE 6. The Taylor microscale.
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FIGURE 7. The enstrophy over volume.

is presented in Figure 8. The z components of the models’ velocity are plotted in
Figure 9. In these, we can see vertical rotations consistent with irregular Taylor
cells.

L2 norm of velocity

mHHH (N
N
n
>
>
3

FIGURE 8. The L? norm of the velocity on right half of the slice
z = 1.1 at t = 10 on a log scale ranging from 7.5e¢ — 3 to 7.5.
In the figure from left to right: classical URANS models kinetic
turbulence length scale and Prandtl, and 1/2-equation model.
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velocity in z-axis
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FIGURE 9. The velocity magnitude in the z-axis at ¢ = 10 on a
log scale ranging from 2.5e — 6 to 2.5e¢ — 2. In the figure from left
to right: classical URANS models kinetic turbulence length scale
and Prandtl, and 1/2-equation model. We observe that vertical
rotations are consistent with irregular Taylor cells.

3.3. The 2d test problem. Recall that s in | = ky is the traditional von Karman
constant with traditional value x = 0.41. In the model, the  in (ky/L)? is a von
Karman-like constant whose optimal value is not (yet) known. We test here (this
k) k= 0.41 and test x = 1.0 in 3d in Section 3.2. For the 2d tests of flow between
offset circles, we selected £ = 0.41 in the multiplier (ky/L)?. Since this problem
is 2d, we were able to perform a well-resolved NSE simulation for comparison.
We compared the 1/2-equation model velocity statistics to the l-equation model
statistics with v = v2uk(x,t)7 and with velocity statistics computed from the
well-resolved NSE simulation. The other details of the 2d tests are as follows. The
computational domain is a disk with a smaller off-center obstacle inside.

Q={(z,y):2® +y* <riN(z— 1)’ + (y — 2)* > 13},

where we set 11 = 1, ro = 0.1, ¢ = (c1,c2) = (3,0). No-slip BCs are im-
posed on both circles. The flow is driven by a counterclockwise force f(x,y,t) =
(—4ymin (t,1) (1 — 2% — y?),4zmin (¢,1) (1 — 2% — y?)). We set 7 = 0.1, u = 0.55,
v=10"%L=1,Unax = 1 and Re = % The final time is T' = 15. The k-equation
is initialized at t* = 1.

Initial and boundary conditions: For the l-equation model and the 1/2-
equation model, we choose initialization for the 2 k—equations as in [20]: ¢* =
and

1
k(x,1) = —1%(x),l (x) = min {my, 0.082Re_1/2} , and

272
11 )
k()= —— [ I dx.
()= g 1) ds

The boundary condition for the k-equation is homogeneous Dirichlet.
Discretization: We employ the Taylor-Hood (P2 — P1) finite element pair for
approximating the velocity and pressure and P1 Lagrange element for the TKE
equation. We choose the timestep At = 0.01 and use the backward Euler time
discretization. The mesh is generated by the Delaunay triangular method with
40 mesh points on the outer circle and 20 mesh points on the inner circle. This
mesh has the longest edge max, h, = 0.208201 and the shortest edge min, he =
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0.0255759. For the well-resolved NSE solve, we use a finer mesh with 80 mesh points
on the outer circle and 60 mesh points on the inner circle, extended by a Delaunay
triangulation. This mesh has the longest edge max. h. = 0.108046 and the shortest
one min, h, = 0.0110964. The 2d tests were performed with FreeFEM++, Hecht
[14].

3.3.1. 2d Statistical result analysis. The space average of the 1-equation mod-
el’s k(x,t) was larger than the 1/2-equation model’s k(t) as in 3d. This is likely
because of the difference between the sizes of the two models v values near the
inner disk?. This led to the question of which model’s velocity statistics were more
accurate. For this reason, we performed the well-resolved NSE simulation.

Figures 10, 11, and 12 present the comparison of the evolution of the respective
kinetic energies, enstrophy, and Taylor microscales. We observe that the kinetic
energy of the 1/2-equation model is slightly less than that of the well-resolved
NSE test but closely tracks its behavior. The 1-equation model’s kinetic energy is
incorrect. The same behavior was observed for the enstrophy and Taylor microscales
in Figures 11, and 12.

energy/vol

time

FI1GURE 10. The kinetic energy over volume.
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1000 -

500 -

time

FIGURE 11. The enstrophy over volume.

20ptions to correct the 1-equation model include near wall clipping [19] or rescaling [20] or
damping functions [25]. These were not done because we test here the 1/2 equation model.
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Taylor microscale

0012 v ‘ N 1/2-equation
=+ 1-equation

F1GURE 12. The Taylor microscale.

4. Conclusions

Due to the computational costs of Direct Numerical Simulation (DNS) and LES,
RANS and URANS models are still widely used. This suggests two fruitful direc-
tions of URANS research: lowering simulation costs preserving current accuracy and
raising accuracy at current simulation costs. The 1/2-equation model herein aims
at the former. The model derivation, analysis, and tests indicate the 1/2-equation
model is worthy of further study and the idea behind it of further development.
The 1/2-equation model (8) produced velocity statistics comparable to the same
velocity statistics for 1-equation models in our tests. No model is perfect so further
tests delineating failure modes would be useful. The next interesting tests include
flows with time-varying body forces and with interior shear layers. There are also
many parallel analytical questions.

Our longer-term motivation was to use a similar idea to simplify more complex
models such as 2-equation models. In these, the TKE equation is well grounded in
mechanics, but the second equation, used to determine the turbulence length scale
indirectly, is often a product of optimism, data fitting, and experience-informed
intuition. For these a simplified model for [(¢) (thus a 3/2-equation model) is an
interesting possibility to explore, building on work here in the most basic case.

The existence of solutions to the model (8) is a non-trivial open problem.

Acknowledgement

This research herein of William Layton and Rui Fang was supported in part by
the NSF under grant DMS 2110379 and DMS 2410893. We also gratefully acknowl-
edge the support of the University of Pittsburgh Center for Research Computing
through the resources provided on the SMP cluster. The author Wei-Wei Han was
partially supported by the Innovative Leading Talents Scholarship established by
Xi’an Jiaotong University.

References

[1] C.D. Andereck, S.S. Liu, S.S. and H.L. Swinney, Flow regimes in a circular Couette system
with independently rotating cylinders, Journal of Fluid Mechanics, 164 (1986) 155-183.

[2] F. Brossier and R. Lewandowski, Impact of the variations of the mixing length in a first
order turbulent closure system, ESAIM: Mathematical Modelling and Numerical Analysis,
36 (2002) 345-372.

[3] Baldwin, B.S. and Lomax, H. Thin Layer Approximation and Algebraic Model for Separated
Turbulent Flows, ATAA Paper, 78-0257, 1978.



(4]
(5]
(6]

23]

24]
[25]

[26]
27]

(28]
29]
30]

(31]

ON A 1/2-EQUATION MODEL OF TURBULENCE 155

S.C. Brenner and L.R. Scott.The Mathematical Theory of Finite Element Methods, Springer-
Verlag, New York, 2008.

J. Boussinesq, Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants
a ’Académie des Sciences 23 (1877): 1-680

T. Chacon-Rebollo and R. Lewandowski, Mathematical and numerical foundations of turbu-
lence models and applications, Springer, New York, 2014.

P. Davidson, Turbulence: an introduction for scientists and engineers. Oxford Univ. Press,
2015.

O. Darrigol, Worlds of flow, Oxford, 2005.

F.M. Denaro, A critical review of the Reynolds Averaged formulations for steady and unsteady
turbulence. Statistical or local averaging?, technical report, 2023.

C.R. Doering and P. Constantin, Energy dissipation in shear driven turbulence, Physical
Review Letters, 69 (1992) 1648.

C. Doering and C. Foias, Energy dissipation in body-forced turbulence, Journal of Fluid
Mechanics, 467 (2002) 289-306.

S. Grossmann, D. Lohse and C. Sun, High-Reynolds number Taylor-Couette turbulence.
Annual Review of Fluid Mechanics, 48, (2016) 53-80.

A. Guzel and W. Layton, Time filters increase accuracy of the fully implicit method. BIT
Numerical Mathematics, 58 (2018) 301-315.

F. Hecht, New development in FreeFEM++, Journal of Numerical Mathematics, 20 (2012)
251-66

Nan Jiang, W. Layton, M. McLaughlin, Yao Rong and Haiyun Zhao, On the foundations of
eddy viscosity models of turbulence, Fluids, 5(2020), p. 167.

D.A. Johnson, Transonic flow predictions with an Eddy Viscosity/Reynolds-stress closure
model, ATAA Journal, 25(1987) 252-259.

D.A. Johnson and L.S. King, A mathematically simple turbulence closure model for attached
and separated boundary layers, ATAA Journal, 23(1985) 1684-1692.

F.T. Johnson, E.N. Tinoco and N.J. Yu, Thirty years of development and application of CFD
at Boeing Commercial Airplanes, Seattle, Computers & Fluids, 34 (2005) 1115-1151.

K. Kean, W. Layton, and M. Schneier. Clipping over dissipation in turbulence models Inter-
national Journal of Numerical Analysis & Modeling, 19 (2022) 424-438.

K. Kean, W. Layton, and M. Schneier, On the Prandtl-Kolmogorov l-equation model of
turbulence, Philosophical Transactions of the Royal Society A, 380 (2022) 20210054.

A.N. Kolmogorov, Equations of turbulent motion in an incompressible fluid, Izv. Akad. Nauk
SSSR, Seria fizicheska, 6 (1-2) (1942) 56-58.

W. Layton and M. McLaughlin. On URANS Congruity with Time Averaging: Analytical laws
suggest improved models. pp. 85-108 in: : Pinelas, S., Kim, A., Vlasov, V. (eds) Mathemat-
ical Analysis With Applications: In Honor of the 90th Birthday of Constantin Corduneanu,
Ekaterinburg, Russia, July 2018, CONCORD-90, Springer Proc. in Math. and Stat., v. 318.
https://doi.org/10.1007/978-3-030-42176-210

W. Layton and M. Schneier. Diagnostics for eddy viscosity models of turbulence includ-
ing data-driven/neural network based parameterizations, Results in Applied Mathematics, 8
(2020) 100099.

B. Mohammadi and O. Pironneau, Analysis of the K-Epsilon Turbulence Model, Masson,
Paris, 1994.

A. Pakzad, Damping Functions correct over-dissipation of the Smagorinsky Model, Mathe-
matical Methods in the Applied Sciences, 40 (2017) 5933-5945.

S. Pope, Turbulent Flows, Cambridge Univ. Press, Cambridge, 2000.

L. Prandtl, The Mechanics of Viscous Fluids. In: W.F., D. (ed.), Aerodynamic Theory III.
Berlin: Springer, 1935.

L. Prandtl, Uber ein nenes Formelsystem fiir die ausgebildete Turbulenz, Nacr. Akad. Wiss.
Gottingen, Math-Phys. K., (1945) 6-16.

L. Prandtl, On fully developed turbulence, in: Proceedings of the 2nd International Congress
of Applied Mechanics, Zurich, (1926) 62-74.

C.D. Pruett, 2008. Temporal large-eddy simulation: theory and implementation. Theoretical
and Computational Fluid Dynamics, 22 (2008) 275-304.

A.J.C. Saint-Venant (Barré), Note & joindre au Mémoire sur la dynamique des fluides, CRAS,
17(1843) 1240-1243.



156 R. FANG, W.W. HAN, AND W. LAYTON

[32] J. Teixeira and S. Cheinet, A New Mixing Length Formulation for the Eddy-Diffusivity
Closure, Naval Research Laboratory Memorandum Report NRL/MR/7532-01-7244, NRL,
Monterrey, CA, May 2001, 25 pp.

[33] J. Teixeira and S. Cheinet, A Simple Mixing Length Formulation for the Eddy-Diffusivity
Parameterization of Dry Convection, Boundary-Layer Meteorology 110 (2004) 435-453.

[34] D.C. Wilcox, Turbulence Modeling for CEFD, DCW Industries, La Canada, 2006.

[35] J. Scott Bradley, Hardy Inequalities with Mixed Norms, Canadian Mathematical Bulletin,
21 (1978) 405-408.

[36] B. Muckenhoupt, Hardy’s Inequality with Weights, Studia Mathematica, 44 (1972) 31-38.

[37] C. Amrouche, G. Leloup, and R. Lewandowski, TKE Model Involving the Distance to the
WallPart 1: The Relaxed Case, Journal of Mathematical Fluid Mechanics, 26 (2024) 58.

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA
E-mail: ruf10@pitt.edu
URL: https://ruf10.github.io

School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaan Xi 710049,
China
E-mail: hanweiwei@stu.xjtu.edu.cn

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA
E-mail: wjl@pitt.edu



