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A DIFFERENCE VIRTUAL ELEMENT METHOD FOR THE

3D ELLIPTIC EQUATION WITH THE VARIABLE

COEFFICIENT ON GENERAL CYLINDRICAL DOMAINS

LULU LI, YINNIAN HE, AND XINLONG FENG

Abstract. In this paper, we present and analysis a difference virtual element method (DVEM) for

the three dimensional (3D) elliptic equation on general cylindrical domains. This method combines
the dimension splitting method and operator splitting technique to transform the virtual element
solution of 3D elliptic equation into a series of virtual element solution of 2D elliptic equation
based on (x, y) plane, where the central difference discretization is adopted in the z-direction.

This allows us to solve partial differential equations on cylindrical domains at the low cost in
mesh generation compared with 3D virtual element method. The H1-norm error estimation of
the DVEM is analysed in this paper. Finally, some numerical examples are performed to verify

the theoretical predictions and showcase the efficiency of the proposed method.

Key words. 3D elliptic equation, difference virtual element, virtual element, cylindrical domain,
error analysis.

1. Introduction

The development of the numerical methods for the 3D partial differential e-
quation on general polygonal (polyhedral) meshes has been drawn considerable
attention due to the extensive flexibility for the polygonal (polyhedral) meshes on
the mesh generation, mesh deformation, fracture, combination, topology optimiza-
tion, and mesh refinement and coarsening. In addition, the use of arbitrary-shape
meshes can have good flexibility in dealing with complex data features. With re-
gards to the spatial discretization, there exist many works devoted to treating the
general polygonal and polyhedral elements. These methods include the finite vol-
ume method [1, 2], weak Galerkin finte element method, mimetic finite difference
method [3] and the virtual element method (VEM) [4, 5, 6, 7].

The virtual element method was originally proposed in [8] to solve the Poisson
equation and later has been successfully applied to a variety of partial differential e-
quations such as convection diffusion equation, Allen-Cahn equation, Cahn Hilliard
equation. More recently, mixed VEM was proposed for solving the fluid flow prob-
lems, see the Stokes problem [9, 10], Brinkman problem [11, 12], Stokes-Darcy
problem [13, 14], Stokes complex in the VEM framework [15, 16], the magnetohy-
drodynamics problems [17] and the steady quasi-geostrophic equation of the ocean
[18]. Several studies have contributed to the development and refinement of VEM
for elliptic interface problems. For instance, Cao et al. [19] introduced immersed
virtual element methods for two-dimensional elliptic interface problems. Chen et
al. [20] focused on an interface-fitted mesh generator and virtual element methods
for elliptic interface problems. Gómez et al. [21] explored space-time virtual ele-
ments for the heat equation. Their work extended the concept of VEM to evolve
problems in time, which is particularly useful for capturing the temporal behavior
of interfaces. Tushar et al. [22] investigated virtual element methods for general
linear elliptic interface problems on polygonal meshes with small edges. Wang et
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al. [23] introduced a conforming virtual element method based on unfitted meshes
for the elliptic interface problem.

The finite difference method, as an important numerical method, plays a crucial
role in scientific calculating [24, 25, 26, 27]. However, the finite difference method
is not easy to discretize the complex domain,especially in high dimensional space.
Dimension splitting method [28, 29, 30, 31, 32, 30] and operator splitting method
are two popular strategies to reduce the high dimensional problem into a series of
low-dimensional problems. Based on the idea of dimension splitting method and
operator splitting technique, He and Feng proposed the difference finite element
method (DFEM) for solving 3D partial differential equations. In [33], the author
used the DFEM based on P1-P1 conforming elements to solve the 3D Poisson e-
quation and obtained the H1 superconvergence results of this method by quadratic
interpolation. In addition, Feng and his collaborators applied the DFEM to solve
the 3D heat conduction equation [34] and obtained the H1-superconvergence re-
sults. Later in [35, 36, 37] , they proceeded the DFEM to solve the 3D continuous
incompressible Stokes equations and Navier-Stokes equations and obtained the ex-
istence, uniqueness and stability of the finite element solution as well as the optimal
convergence.

For L3 > 0, let Ω = ω × (0, L3) where ω ⊂ R2. We consider the following 3D
elliptic equation with Dirichlet boundary condition:{

−∇̃ · (Ã∇̃u) := −∂zzu−∇ · (A(x, y)∇u) = f in Ω,

u = 0 on ∂Ω,
(1)

where ∇̃ = (∂x, ∂y, ∂z) = (∇, ∂z) and Ã ∈ [L∞(Ω)]3×3 is the symmetric matrix-
value function of form

Ã =

(
A(x, y) 0

0 1

)
.

Here A(x, y) ∈ [L∞(ω)]2×2 =

(
A11(x, y) A12(x, y)
A21(x, y) A22(x, y)

)
is assumed to be uniformly

elliptic and continuous in the sense that there exist two positive constants 0 < α∗ ≤
α∗ < +∞ such that

α∗|ξ|2 ≤
2∑

i,j=1

Aij(x, y)ξiξj ≤ α∗|ξ|2 ∀(x, y) ∈ ω,

for any ξ = (ξ1, ξ2)
⊤ ∈ R2.

This manuscript introduces a novel DVE approach grounded in lower-order ele-
ments for resolving 3D elliptic equations. By preserving the virtues of the virtual
element method, the computational demands of intricate 3D scenarios are substan-
tially reduced. The underlying principle of this DVE strategy involves utilizing
finite difference method discretization in the z-direction to convert the 3D model
into a collection of 2D elliptic equations, which are then approximated using the
low-order virtual element method in the (x, y) plane. Consequently, the numerical
solution to a complex 3D problem can be obtained by combining the numerical
solutions of several 2D problems. Although the dimension of the coefficient matrix
presented by the difference virtual element method remains unchanged, the stiffness
matrix can be reused at each z-grid point without the need for reassembly, thereby
conserving computational resources.

The structure of this article is as follows. In the next section, we introduce the
virtual element space and the method of virtual elements in the 2D domain. In
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Section 3, we introduce the DVE methods for the 3D elliptic equation. Then the
stability and error results of the DVE methods are given. Finally, numerical results
validate the error order and effectiveness of the DVE.

2. Virtual element method for 2D elliptic equation

In this section, we consider the following 2D elliptic equation with Dirichlet
boundary condition defined in convex polygon domain ω ⊂ R2,

(2)

{
−∇ · (A(x, y)∇u) = f in ω,

u = 0 on ∂ω.

The variational form of ((2)) is to find u ∈ H1
0 (ω) := {w ∈ H1(ω) : w = 0 on ∂ω}

by solving

a(u, v) = (f, v)0,ω ∀v ∈ H1
0 (ω),(3)

where a(u, v) is the bilinear form defined by

a(u, v) = (A(x, y)∇u,∇v)0,ω(4)

and (·, ·)0,ω denotes the L2 inner product on ω with the induced norm ∥ · ∥0,ω. Al-
ternatively, we denote by ∥·∥m,ω the norm defined in the Hilbert space Hm(ω)(m ∈
Z+) with the corresponding seminorm | · |m,ω.

2.1. Virtual element space. Considering a partition Th of ω into non-overlapping
polygonal meshes with a maximum diameter of h, we assume the presence of a pos-
itive constant ρ, independent of E, that fulfills the following criteria: (i) every
element E is star-shaped with respect to every point inside a disk with a radius of
at least ρhE ; (ii) the length of every edge e within E is greater than or equal to ρhE .
For each element E in Th, xE represents the centroid, hE denotes the diameter, and
|E| indicates the measure of E. Let Ps(E) be the space of polynomials of degree
less than or equal to s in E with the dimension

ns := dimPs(E) =
(s+ 1)(s+ 2)

2
.

In this paper, we restrict our focus on the case s = 1, i.e., the lower-order
polynomials. In classical finite element methods, it is not easy to find explicit
expressions for low order basis functions on more general polyhedral elements. The
virtual element method circumvents this difficulty, and ultimately lists computable
stiffness matrices. Inspired by [8], we define a local finite dimensional space Wh(E)
on each polygon E:

Wh(E) =
{
vh ∈ H1(E) : vh|∂E ∈ C0(∂E) : vh|e ∈ P1(e), ∀e ∈ ∂E,∆vh ∈ P1(E)

}
.

It is easy to see that P1(E) ⊂ Wh(E). Then we provide a computable basis
function, namely the scaled:

M1(E) := {1, x− xE

hE
,
y − yE
hE

},

where xE = (xE , yE) is the centroid of E. Obviously, M1(E) is a set of basis
functions for P1(E).

Due to the low order virtual element method used in this article, only the element
nodes are required for the degrees of freedom. According to [8], we introduce the
degree of freedom in V E

h (E): The value of vh at the vertices of E.
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Next, we define the projection operator Π∇
E : Wh(E) → P1(E):{

(A(x, y)∇(Π∇
Evh − vh),∇p)0,E = 0 ∀p ∈ P1(E),

Π∇
Evh = vh,

(5)

where vh := 1
nE

nE∑
i=1

vh(xi) denotes the average value of wh at the vertices of the

polygon element E with nE being the number of the vertices of polygon element E.
The second equation is used to fix the constant part of Π∇

Evh. Noting that Π∇
Evh

can be indeed calculated from its degrees of freedom. Obviously, according to the
divergence theorem, there holds that for any vh ∈ Wh and p ∈ P1(E),

(A(x, y)∇Π∇
Evh,∇p)0,E = (A(x, y)∇vh,∇p)0,E =

∑
e∈∂E

∫
e

A(x, y)vhne · ∇pds,

(6)

where we have used that the Laplacian value of a linear function vanishes. ne is
the unit normal vector to the edge e pointing out of the element E. It follows
from the definition of the local virtual element space Wh that we can calculate the
right-hand end of equation (6) exactly, since the gradient of the linear polynomial
p is a known constant.

Next the local and global conforming virtual element spaces can be defined as
follows:

V E
h (E) :=

{
vh ∈ Wh(E) :

∫
E

vhpdx =

∫
E

Π∇
Evhpdx, ∀p ∈ P1(E)

}
,

Vh(Ω) :=
{
vh ∈ H1

0 (Ω) : vh|E ∈ V E
h (E), ∀E ∈ Th

}
.

2.2. Discrete scheme. Define the bilinear form aE : H1(E)×H1(E) → R

a(u, v) :=
∑
E∈Th

aE(u, v),

following [8], we introduce the discrete counterpart aEh : V E
h × V E

h → R of aE :

aEh (vh, wh) := (A(x, y)∇Π∇
Evh,∇Π∇

Ewh) + SE(vh −Π∇
Evh, wh −Π∇

Ewh),

where SE is a symmetric bilinear form called the stabilization term and satisfies
that there exist two uniform constants α∗ and α∗ such that

α∗|vh|2 ≤ SE(vh, vh) ≤ α∗|vh|2, ∀vh ∈ Vh(E) with Π∇
Evh = 0.

Thus SE can be approximated by

SE(vh, wh) :=

nE∑
r=1

dofr(vh)dofr(wh),(7)

where dofr(vh) denotes the value of vh ∈ V E
h in the r-th local degree of freedom.

Therefore, (7) can be calculated directly from the degrees of freedom. To this end,
aEh (·, ·) preserves the stability, there exist two positive constants α1, α2 independent
of h and E such that

α1a
E(vh, vh) ≤ aEh (vh, vh) ≤ α2a

E(vh, vh) ∀vh ∈ V E
h (E).

Finally, we define

ah(vh, wh) :=
∑
E∈Th

aEh (vh, wh),

to be the global approximate form of a(·, ·).
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Denote by Π1
E : V E

h (E) → P1(E) the L2-orthogonal projection onto P1(E)

(vh, p)0,E = (Π1
Evh, p)0,E , ∀p ∈ P1(E).

Note that when s = 1, Π1
E = Π∇

E for the enhanced virtual element space

Ṽ E
h =

{
w ∈ H1(E) : w|∂E ∈ P1(∂E), ∆w ∈ P1(E)

}
,

which has the same degrees of freedom as in V E
h , thus Π1

Evh is also computable.
Then we define the discrete counterpart of local L2 inner produce in E

(vh, wh)h,E := (Π1
Evh,Π

1
Ewh)0,E + h2

ES
E(vh −Π1

Evh, wh −Π1
Ewh),

where SE is defined in (7). Next we obtain a computable global approximate L2

form of (vh, wh)0,ω,

(vh, wh)h,ω =
∑
E∈Th

(vh, wh)h,E .

Accordingly, the right-hand side of the variational problem (3) is discretised by

(f, vh)h,ω =
∑
E∈Th

(f, vh)h,E =
∑
E∈Th

(Π0
Ef, vh)h,E ,

where Π0
E : V E

h (E) → P0(E) denotes the L2-orthogonal projection onto constants
defined by ∫

E

(vh −Π0
Evh)pdx = 0, ∀vh ∈ V E

h (E), p ∈ P0(E),

which in turn implies that

(Π0
Ef, vh)h,E =

1

nE

∫
E

Π0
Ef =

|E|
nE

f(xE).

Then we can write a computable discrete problem of (3): find uh ∈ Vh such that

ah(uh, vh) = (f, vh)h,ω, ∀vh ∈ Vh.

3. Difference virtual element method for 3D elliptic equation

In this section, we present the DVEM method for the 3D elliptic equation with
the finite difference solution in the z direction. For convenience, we denote u(x, y, z)
by u(z) if there is no confusion. The three-dimensional elliptic equation can be
written in the following form:

(8)

{
−∂zzu−∇ · (A(x, y)∇u) = f, in Ω,

u = 0, on ∂Ω.

In the z-direction, (0, L3) is divided into l3 equal portions for the 3D domain Ω
with the uniform mesh size τ , i.e., zk = kτ, k = 0, ..., l3. For the sake of simplicity,
we consider Thτ = ∪l3

k=0Thk as a quasi-regular cylindrical mesh with a mesh size of
τ in the z-direction. Denote by Zτ the continuous piecewise linear function space
expressed by

Zτ = {vh(z) | vh(z) =
l3∑
i=0

viφi(z)},



VIRTUAL ELEMENT METHOD FOR 3D ELLIPTIC EQUATION 101

where φi denotes the corresponding 1D piecewise linear basis function, i.e., for
k = 1, 2, ..., l3 − 1,

φk(z) =


z − zk−1

τ
, z ∈ [zk−1, zk],

zk+1 − z

τ
, z ∈ [zk, zk+1],

0, z /∈ [zk−1, zk+1],

for z /∈ [zk−1, zk+1], there are ϕk(z) = 0, k = 1, · · · , l3 − 1. Define

ϕ0(z) =


z1 − z

τ
, z ∈ [z0, z1],

0, z /∈ [z0, z1],

and

ϕl3(z) =


z − zl3−1

τ
, z ∈ [zl3−1, zl3 ],

0, z /∈ [zl3−1, zl3 ].

Thus we can succinctly define the 3D finite dimensional subspace Xhτ = Vh×Zτ ⊂
H1

0 (Ω). Hereafter, c and ci will denote some needed generic positive constant
independent of h and τ with different meaning in different situations.

3.1. Finite difference discretization in the z-direction. Introducing the sub-
space H1

τ of L2(ω) in the z-direction,

H1
τ := {vτ =

l3∑
k=0

vk(x, y)φk(z); v
k ∈ L2(ω), k = 0, ..., l3},

We define the continuous L2 inner product

(uτ , vτ )0,Ω =

∫ L3

0

(u(z), v(z))0,ωdz,

with the induced norm ∥·∥20,Ω = (·, ·)0,Ω and the corresponding discrete counterpart
as

(uτ , vτ )0,ω =

l3∑
k=0

τ(uk, vk)0,ω,

with the induced norm ∥ · ∥2l2 = (·, ·)0,ω.
Define the finite difference solution uτ

uτ =

l3−1∑
i=1

uk(x, y)φk(z),

where uk = uk(x, y) ∈ H2(ω) is solved by

−dzzu
k −∇ · (A(x, y)∇uk) = fk, k = 1, ..., l3 − 1,(9)

with uk|∂ω = 0, u0(x, y) = ul3(x, y) = 0, ∀(x, y) ∈ ω, and

−dzzu
k =

1

τ
(dzu

k+1 − dzu
k), dzu

k =
1

τ
(uk − uk−1).

For the purpose of subsequent theoretical proof, we introduce the commonly
used discrete Green formula [33, 38].
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Lemma 3.1. Assume ak, bk ∈ L2(ω), k = 1, ..., l3 and b0 = bl3 = 0, then there
holds that

−
l3−1∑
k=1

(ak+1 − ak, bk)0,ω =

l3∑
k=1

(ak, bk − bk−1)0,ω.(10)

Furthermore, if ak, bk ∈ H1(ω) for k = 1, ..., l3 and b0 = bl3 = 0, we have

−
l3−1∑
k=1

(∇ak+1 −∇ak,∇bk)0,ω =

l3∑
k=1

(∇ak,∇bk −∇bk−1)0,ω.

Assuming u ∈ H3(Ω)∩H1
0 (Ω) and ∂zzf ∈ L2((0, L3);H

−1(ω)), where L2((0, L3);
H−1(ω)) represents a space of functions that are square-integrable over the interval
(0, L3) and have a distributional derivative that belongs to H−1(ω). Now, in order
to analyze the approximate properties of uk regarding u(zk), we consider z = zk in
(1), we have

−dzzu(zk)−∇ · (A(x, y)∇u(zk)) = fk + Ek,(11)

where

Ek = −dzzu(zk)−∇ · (A(x, y)∇u(zk)) +
1

τ

∫ zk

zk−1

∂zzu(z)dz

+
1

τ

∫ zk

zk−1

∇ · (A(x, y)∇u(z))dz

= −1

τ
(dzu(zk+1)− ∂zu(zk)) +

1

τ
(dzu(zk)− ∂zu(zk−1))

−1

τ

∫ zk

zk−1

(z − zk−1)∂z∇ · (A(x, y)∇u(z))dz.

For convenience, we set

Gk = −1

τ

∫ zk

zk−1

(z − zk)∂zzu(z)dz,

Ek can be expressed as:

Ek = −1

τ
(Gk+1 −Gk)− 1

τ

∫ zk

zk−1

(z − zk−1)∂z∇ · (A(x, y)∇u(z))dz.

Setting ek = u(zk)−uk and subtracting (8) from (11), we obtain error equation:

−1

τ

(
dze

k+1 − dze
k
)
−∇ · (A(x, y)∇ek) = Ek.(12)

It follows from (12) that

l3∑
k=1

τ∥dzek∥20,ω +

l3−1∑
k=1

τ(A(x, y)∇ek,∇ek)0,ω

=

l3−1∑
k=1

τ(Ek, ek)0,ω

=

l3∑
k=1

τ(Gk, dze
k)0,ω +

l3−1∑
k=1

(

∫ zk

zk−1

(z − zk−1)A(x, y)∇∂zu(z),∇ek)0,ωdz.
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Based on the assumption of matrix A and Young’s inequality, we have

l3∑
k=1

τ∥dzek∥20,ω + α∗

l3−1∑
k=1

τ∥∇ek∥20,ω

≤
l3∑

k=1

τ∥Gk∥20,ω + α∗
l3−1∑
k=1

(

∫ zk

zk−1

(z − zk−1)∥∇∂zu(z)∥20,ωdz

≤ Cτ2(∥∂zzu∥20,Ω + ∥∇∂zu∥20,Ω).

Introducing the following interpolation operator Iτ : H1
0 ((0, L3);L

2(ω)) → Xhτ

such that

Iτv(x, y, z) =

l3−1∑
k=1

v(x, y, zk)ϕk(z) ∀v ∈ H1
0 ((0, L3);L

2(ω)),

we have the following lemma.

Lemma 3.2. [35] If v(x, y, z) ∈ H2(Ω), then there holds:

∥v − Iτv∥20,Ω ≤ cτ4∥v∥22,Ω,(13)

∥∂z(v − Iτv)∥20,Ω ≤ cτ2∥v∥22,Ω.(14)

Moreover, we have

∥∇(v − Iτv)∥20,Ω ≤ cτ2∥v∥22,Ω.(15)

3.2. Difference virtual element method discretization 3D elliptic equa-
tion. Now, we define the DVE solution for 3D elliptic equation as follows:

uh(x, y, z) =

l3−1∑
i=1

uk
h(x, y)φk(z),

where uk
h(x, y) ∈ Vh is the virtual element approximation of uk(x, y). Expanding

the virtual element solution uk
h(x, y) as

uk
h(x, y) =

l3−1∑
i=1

uiϕi,

we get a computable form of (9):

−(dzzu
k
h, vh)h,ω + ah(u

k
h, vh) = (fk, vh)h,ω, ∀vh ∈ Vh,(16)

for k = 1, .., l3 − 1.

4. Convergence analysis

In this section, we perform the convergence analysis of the DVEM for the 3D
elliptic equation. Firstly, we introduce the H1 projection operators Rh: H1

0 (ω) →
Vh,

(A(x, y)∇Rhu,∇vh)0,ω = (A(x, y)∇u,∇vh)0,ω ∀vh ∈ Vh.

Then for any u ∈ H1
0 (Ω) where Ω = ω × [0, L3], we define 3D finite dimensional

interpolation as

Ihτu = Rh(Iτu).

Lemma 4.1. The projection operators Rh satisfies the following properties:

∥∇Rhu∥0,ω ≤ ∥∇u∥0,ω ∀u ∈ H1
0 (ω),

∥u−Rhu∥0,ω + h∥∇(u−Rhu)∥0,ω ≤ ch2∥u∥2,ω ∀u ∈ H2(ω) ∩H1
0 (ω).
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We present some useful preliminary results in the sequel, starting with the fol-
lowing approximate lemma.

Lemma 4.2. Assume ϕ ∈ H2(E) for any E ∈ Th, then it holds

||ϕ−Π0
Eϕ||0,E + h||∇(ϕ−Π0

Eϕ)||0,E ≤ ch2
E |ϕ|2,E ,

||ϕ−Π1
Eϕ||0,E + h||∇(ϕ−Π1

Eϕ)||0,E ≤ ch2
E |ϕ|2,E ,

||ϕ−Π∇
Eϕ||0,E + h||∇(ϕ−Π∇

Eϕ)||0,E ≤ ch2
E |ϕ|2,E .

Lemma 4.3. If u ∈ H2(Ω), the interpolation Ihτu satisfies the following error
estimate:

∥∇(Iτu− Ihτu)∥20,Ω + ∥∂z(Iτu− Ihτu)∥20,Ω ≤ c(h2 + τ2)∥u∥20,Ω.(17)

Proof. According to the properties of the projection operators Rh and Lemma 3.2
and using integration by parts, we obtain∫ zk

zk−1

∥∇(Iτu− Ihτu)∥20,ωdz

≤
∫ zk

zk−1

∥∇(Iτu− u)∥20,ω + ∥∇Rh(Iτu− u)∥20,ω + ∥∇(u−Rhu)∥20,ωdz

≤ c1τ
2

∫ zk

zk−1

∥∂z∇u∥20,ωdx4 + c2h
2

∫ zk

zk−1

∥∆u∥20,ωdz,

and ∫ zk

zk−1

∥∂z(Iτu− Ihτu)∥20,ωdz ≤ ch2

∫ zk

zk−1

∥∇∂zIτu∥20,ωdz

≤ ch2

∫ zk

zk−1

∥∂z∇u∥20,ωdz.

Summing the above inequality from k = 1 to k = l3 yields (17). �

Recalling the definitions of the interpolation operation Iτ and the projection
operator Rh. Let u(zk)−uk

h = (I −Rh)u(zk)+Rhu(zk)−uk
h = ηkh + ekh, According

to the definition of projection operator Π∇
E , Π1

E and Π0
E , we can deduce from (11)

and (16) that

− (dzze
k
h, vh)0,ω + a(ekh, vh)

=(dzzη
k
h, vh)0,ω + (Ek, vh)0,ω + (Ik1 , vh)0,ω + (Ik2 , vh)0,ω,(18)

where

(Ik1 , vh)0,ω =
∑
E∈Th

((I −Π0
E)f(zk), vh)0,E ≤ ch2∥f(zk)∥2,ω∥vh∥1,ω,

(Ik2 , vh)0,ω =
∑
E∈Th

SE(uk
h −Π∇

Euk
h, vh −Π∇

Evh) + h2
ES

E(uk
h −Π1

Eu
k
h, vh −Π1

Evh)

≤ ch2∥uk
h∥1,ω∥vh∥1,ω.

Next, we setting vh = τekh to (18), we arrive at

−(dze
k+1
h − dze

k
h, e

k
h)0,ω + τa(ekh, e

k
h) = (dzη

k+1
h − dzη

k
h, e

k
h)0,ω + τ(Ek, ekh)0,ω

+τ(Ik1 , e
k
h)0,ω + τ(Ik2 , e

k
h)0,ω.

(19)
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Summing (19) from k = 1 to l3 − 1 and combining (10) in Lemma 3.1, we obtain

l3∑
i=1

τ∥dzekh∥20,ω +

l3−1∑
i=1

τa(ekh, e
k
h) =

l3−1∑
i=1

τ(Ek, ekh)0,ω +

l3∑
i=1

τ(dzη
k
h, dze

k
h)0,ω

+

l3−1∑
i=1

τ(Ik1 , e
k
h)0,ω + τ(Ik2 , e

k
h)0,ω.

(20)

Then, we need estimate the right hand of (20). According to Young’s inequality
and Lemma 4.1 and the discrete Green formula yields

∣∣∣∣∣
l3−1∑
i=1

τ(Ek, ekh)0,ω

∣∣∣∣∣
=

∣∣∣∣∣
l3−1∑
k=1

(

∫ zk

zk−1

(z − zk−1)∂zA(x, y)∇u(z)dz,∇ekh)0,ω +

l3∑
k=1

τ(Gk, dze
k
h)0,ω

∣∣∣∣∣
≤

l3∑
k=1

τ2
∫ zk

zk−1

∥∂zA(x, y)∇u(z)∥22,ωdz +
1

4

l3∑
k=1

τ∥∇ekh∥20,ω

+

l3∑
k=1

τ∥Gk∥20,ω +
1

4

l3∑
k=1

τ∥dzekh∥20,ω

≤ cτ2∥u∥22,Ω +
1

4

l3∑
k=1

τ∥∇ekh∥20,ω +
1

4

l3∑
k=1

τ∥dzekh∥20,ω,

(21)

and ∣∣∣∣∣
l3∑

k=1

τ(dzη
k
h, dze

k
h)0,ω

∣∣∣∣∣ ≤
l3∑

k=1

τ∥dzηkh ∥20,ω +
1

4

l3∑
k=1

τ ∥ dze
k
h∥20,ω

≤ h2
l3∑

k=1

τ∥∇dzu(zk) ∥20,ω +
1

4

l3∑
k=1

τ∥dzekh∥20,ω

≤ ch2∥u∥22,Ω +
1

4

l3∑
k=1

τ∥dzekh∥20,ω.

(22)

Combining the above inequalities, we have

l3∑
i=1

τ∥dzekh∥20,ω +

l3−1∑
i=1

τa(ekh, e
k
h) ≤ c(h2 + τ2).(23)

In summary, considering the properties of a(·, ·), we conclude the following error
estimate result.

Theorem 4.1. If u ∈ H2(Ω), then the differential virtual element solution uh

satisfies the following error estimates

∥∇(u− uh)∥2l2 + ∥dz(u− uh)∥2l2 ≤ c(h2 + τ2).

5. Numerical results

In this section, we perform some numerical examples to demonstrate the effi-
ciency of the DVEM for the 3D elliptic equation on a cylinder domain. Denote the
error function Eτ

h = u− uh. To verify the convergence rate, we calculate the errors
of ∥Eτ

h∥0,Ω, ∥∇Eτ
h∥0,Ω and ∥∂zEτ

h∥0,Ω respectively.
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5.1. Convex polyhedron domain. Example 1. In this test, we take the coef-
ficient matrix A(x, y) as a piecewise constant, and the exact solution is continuous
but not smooth everywhere in the (x, y)-plane. We consider unit cubic domain
Ω = ω × [0, L3] = [0, 1]3. The exact solution u is as follows:

u(x, y, z) =


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2
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2 ,

(
4
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3
)(
4
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3
)z(z − 1), x > 1

2 , y > 1
2 ,

A(x, y) =


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2
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Figure 1: Uniform quadrilateral meshes.

Table 1: Errors and the corresponding convergence rates of DFEM with uniform quadrilateral

meshes.

Mesh ∥Eτ
h∥0,Ω Order ∥∇Eτ

h∥0,Ω Order ∥∂zEτ
h∥0,Ω Order

(h, τ)/2 8.645e-3 - 5.905e-2 - 5.348e-2 -
(h, τ)/4 2.173e-3 1.992 2.989e-2 0.982 2.675e-2 0.995
(h, τ)/8 5.432e-4 2.000 1.495e-2 1.000 1.337e-2 1.001
(h, τ)/16 1.358e-4 2.000 7.469e-3 1.001 6.683e-3 1.000
(h, τ)/32 3.395e-5 2.000 3.734e-3 1.000 3.341e-3 1.000
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Table 2: Errors and the corresponding convergence rates of DVEM with uniform quadrilateral
meshes.

Mesh 1 ∥Eτ
h∥0,Ω Order ∥∇Eτ

h∥0,Ω Order ∥∂zEτ
h∥0,Ω Order

(h, τ)/2 1.046e-2 - 3.523e-2 - 3.229e-2 -
(h, τ)/4 2.647e-3 1.984 1.769e-2 0.994 1.617e-2 0.998
(h, τ)/8 6.619e-4 1.999 8.846e-3 0.999 8.052e-3 1.006
(h, τ)/16 1.580e-4 2.066 4.409e-3 1.005 4.026e-3 1.000
(h, τ)/32 3.924e-5 2.010 2.205e-3 1.000 2.012e-3 1.000

Given the uniform quadrilateral meshes (Figure 1), we begin to test the error
results of the DVEM in comparison with the DFEM (see [39]). Table 1 and Table
2 demonstrate the error results computed by DVEM and DFEM, respectively. It
can be observed that both methods achieve the optimal convergence rate (1 for
∥∇Eτ

h∥0,Ω and ∥∂zEτ
h∥0,Ω and 2 for ∥Eτ

h∥0,Ω), which is also in good agreement with
the theoretical result in consistent with Theorem 4.1. We also test the DVEM for

Figure 2: Polyhedron meshes. Left: smooth Voronoi meshes. Right: arbitrary quadrilateral
meshes.

Table 3: Errors and the corresponding convergence rates of DVEM with smoothed Voronoi meshes.

Mesh ∥Eτ
h∥0,Ω Order ∥∇Eτ

h∥0,Ω Order ∥∂zEτ
h∥0,Ω Order

(h, τ)/8 1.392e-2 - 4.315e-2 - 3.894e-2 -
(h, τ)/15 4.079e-3 1.953 2.324e-2 0.984 2.091e-2 0.989
(h, τ)/30 1.021e-3 1.998 1.163e-2 1.000 1.045e-2 1.001

the 3D elliptic equation with smooth Voronoi meshes and arbitrary quadrilateral
meshes (see Figure 2). The corresponding error results and convergence rates of
∥Eτ

h∥0,Ω, ∥∇Eτ
h∥0,Ω and ∥∂zEτ

h∥0,Ω are displayed in Tables 3-4. From these tables
we can see the same convergence result as in the uniform quadrilateral meshes,
which shows the advantage of VEM on the polygonal meshes.

Example 2. In this test, we consider the DVEM for 3D elliptic equation in
non-convex meshes. With the same referential settings in Example 1, the exact
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Table 4: Errors and the corresponding convergence rates of DVEM with arbitrary quadrilateral
meshes.

Mesh ∥Eτ
h∥0,Ω Order ∥∇Eτ

h∥0,Ω Order ∥∂zEτ
h∥0,Ω Order

(h, τ)/4 4.659e-2 - 1.6976e-1 - 1.283e-1 -
(h, τ)/8 1.172e-2 1.991 8.497e-2 0.998 6.427e-2 0.997
(h, τ)/16 2.934e-3 1.998 4.253e-2 0.999 3.192e-2 1.001
(h, τ)/32 7.331e-4 2.001 2.043e-2 1.056 1.596e-2 0.999

solution is set to be

u(x, y, z) = (1− x)(1− y)(1− z) sin(πxyz)ex+2z.

Figure 3: Non-convex meshes.

Figure 4: The error results of DVEM for 3D elliptic equation in non-convex meshes with different

degrees of freedom in 2D domain ω.

Figure 4 reports the error results and corresponding convergence rate in ∥Eτ
h∥0,Ω,

∥∇Eτ
h∥0,Ω and ∥∂zEτ

h∥0,Ω. We can see the same results as in Example 1, which
further illustrates the efficiency of the DVEM in treating the non-convex polyhedral
meshes.
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5.2. Non-convex polyhedron domain. Example 3. Next, we consider a non-
convex L-shaped domain Ω = [0, 1]2/[0.5, 1]2 × [0, 5]. The mesh size in the z-
direction is set as τ = 5h. The exact solution is given by:

u(x, y, z) = z2(z − 5)2(x2 − 3
2x+ 1

2 )(y
2 − 3

2y +
1
2 ) sin(πxyz).

Figure 5: L-shaped domain. Left: non-uniform triangulation meshes. Right: twisted quadrilateral
meshes.

Figure 6: The convergence rates in non-convex L-shaped domain. Left: non-uniform triangulation

meshes. Right: twisted quadrilateral meshes.

We consider the non-uniform triangulation meshes and twisted quadrilateral
meshes in non-convex L-shaped domain Ω (see Figure 5). The corresponding error
results in ∥Eτ

h∥0,Ω, ∥∇Eτ
h∥0,Ω and ∥∂zEτ

h∥0,Ω are plotted in Figure 6. It can be
observed that the optimal convergence orders are achieved, which again shows the
efficiency of DVEM in non-convex domains.

Example 4. Finally, we consider the 3D elliptic equation on Wrench domain
(see Figure 7). The exact solution is given by:

u(x, y, z) = φ(x, y)(2φy(x, y)ξ(z)− φ(x, y)ξ′(z)).

where φ(x, y) = x2 + y2 − 1, ξ(z) = z2(z − 1)2 and φs(x, y) denotes the derivative
of φ(x, y) with respect to s.
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Figure 7: Wrench domain.

Figure 8: The convergence rates in wrench domain.

Figure 8 shows the error results in ∥Eτ
h∥0,Ω, ∥∇Eτ

h∥0,Ω and ∥∂zEτ
h∥0,Ω from which

we can see the convergence rate is about 1.8 in ∥Eτ
h∥0,Ω and 0.8 in ∥∇Eτ

h∥0,Ω and
∥∂zEτ

h∥0,Ω, which further proves that DVEM is very effective for complex regions.

6. Conclusions

In this paper, we develop a difference virtual element method for 3D elliptic
equation. The proposed method transform a three dimensional problem into a series
of two dimensional instances, optimizing computational complexity and enhancing
the flexibility of the virtual element method in application to the high-dimensional
problems. Also DVEM can be regarded as the generalized form of DFEM, thus has
a great flexibility in polygonal meshes, especially for non-convex domains. A variety
of numerical examples are carried out to verify the theoretical results. The extension
to the incompressible flows and other problems and coupling with adaptive methods
will be studied in the future.
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