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DECOUPLING METHODS FOR FLUID-STRUCTURE

INTERACTION WITH LOCAL TIME-STEPPING

HEMANTA KUNWAR AND HYESUK LEE∗

Abstract. We introduce two global-in-time domain decomposition methods, namely the Steklov-
Poincare method and the Robin method, for solving a fluid-structure interaction system. These

methods allow us to formulate the coupled system as a space-time interface problem and apply
iterative algorithms directly to the evolutionary problem. Each time-dependent subdomain prob-
lem is solved independently, which enables the use of different time discretization schemes and
time step sizes in the subsystems. This leads to an efficient way of simulating time-dependent

phenomena. We present numerical tests for both non-physical and physical problems, with var-
ious mesh sizes and time step sizes to demonstrate the accuracy and efficiency of the proposed
methods.
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1. Introduction

The Fluid-Structure Interaction (FSI) problems are multiphysics problems where
the fluid flow and an elastic structure are coupled through the continuity of traction
force and velocity on the interface. FSI systems have a wide range of applications in
various fields, including manufacturing, energy, aeroelasticity, defense, and biology
[5, 7, 11, 12, 18, 22, 29, 37, 40]. In engineering, FSI systems are considered in design-
ing inkjet printers, blades for wind turbines, airplane wings, combustion chambers
in engines, and offshore oil rigs. In biology, such systems are often considered to
study blood flow through vessels.

The FSI system is considered as a coupled monolithic system in [3, 20, 27, 34, 35].
In such an approach, the computational complexity arises from solving a large
matrix system, necessitating the use of an efficient and suitable preconditioner for
the discretized system [35]. An alternative approach involves decoupling the fluid
and structure subsystems [2, 4, 6, 8, 9, 10, 14, 15, 30, 32, 36]. Implementing such
methods, despite their advantages of using partitioned solvers and smaller matrices
for each subsystem, can pose challenges in achieving efficient iteration between the
two subsystems.

There have been extensive studies on domain decomposition (DD) techniques for
FSI in the literature. Various approaches have been considered, including explicit
schemes [10, 14] and semi-implicit schemes [4, 15, 38]. Many implicit DD meth-
ods have also been investigated for better stability of the numerical solution. For
example, an implicit DD method based on optimization is considered in [36], for
both linear and nonlinear elastic formulations for the structure. There, the stress
force on the interface is used as a Neumann control, which is updated until the
stress discontinuity on the interface is sufficiently small, by enforcing the continuity
of velocity through a Dirichlet boundary condition for the fluid subsystem. This
process requires solving the subsystems in serial. Another optimization approach
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for FSI is explored in [30] by formulating the FSI problem as a least squares prob-
lem, where the jump in the velocities of the two substructures is minimized by a
Neumann control enforcing the continuity of stress on the interface. In [39], the
hybridizable discontinuous Galerkin (HDG) finite element method is used in the
simulation of FSI. The coupling between an underlying incompressible fluid and
an embedded solid is formulated through the overlapping domain decomposition
method in conjunction with a mortar approach in [21]. A fictitious domain ap-
proach, where the fluid velocity and pressure are extended into the solid domain
by introducing new unknowns, has been applied to study FSI in [2, 6, 32]. In [9] a
splitting scheme based on Robin conditions is analyzed with an additional variable
representing the structure velocity, where a common Robin parameter is utilized
for both fluid and structure sub-problems. This approach uses common time steps
for the fluid and the structure sub-problems, and the loosely coupled subproblems
are solved at each time step. In [8], the finite element approximation of the DD
formulation introduced in [9] is analyzed, and an error estimate is derived for the
fully discretized system. Loosely coupled schemes based on interface conditions of
Robin type are also found in [16] for the time-discretized FSI system, where the
choice of optimal Robin parameters is analyzed.

In classical DD approaches for time-dependent problems, model equations are
discretized uniformly in time, and DD methods are implemented at each time step
as a steady-state problem. However, using a uniform time step throughout the en-
tire time domain can be inefficient in certain FSI applications where the time scales
of the fluid and structure domains differ. In recent studies, alternative approaches
based on global-in-time or space-time domain decomposition (DD) have been em-
ployed where iterative algorithms are directly applied to the evolutionary problem.
This enables the independent solving of subdomain problems with the different
time discretization schemes and step sizes, resulting in an efficient simulation of
time-dependent phenomena.

The space-time DD approach has been extensively investigated for porous medi-
um flows (see [23, 24, 28] and the references therein) and recently studied for the
Stokes-Darcy systems [25, 26]. In [26], a global-in-time DD method is developed
based on the physical transmission conditions for the nonlinear Stokes-Darcy cou-
pling. A time-dependent Steklov-Poincare type operator is constructed, and non-
matching time grids are implemented using L2 projection functions to exchange
data on the space-time interface between different time grids. Another global-in-
time DD method is proposed in [25] for the mixed formulation of the non-stationary
Stokes-Darcy system based on Robin transmission conditions.

This work aims to study the global-in-time DD methods introduced in [25, 26]
for an FSI system using nonconforming time discretization. We consider two differ-
ent DD schemes, based on the Steklov-Poincaré operator and Robin transmission
conditions, respectively. To our knowledge, the global-in-time DD scheme has not
been considered for an FSI system in the literature. Apart from the advantage
of using local time stepping, another key point of this work is that we were able
to simulate hemodynamic application problem using the Steklov-Poincaré method
without encountering the stability issue. In the analysis of the DD method for the
FSI system, additional difficulty arises due to the model equations of hyperbolic
and parabolic types, unlike the Stokes-Darcy system. Another issue is caused by
the lack of regularity of the unknown Lagrange multiplier function.

The paper is structured as follows. Section 2 introduces the FSI model system.
In Section 3, we derive space-time interface problems for the continuous FSI model,
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and present the Schwarz waveform relaxation (SWR) algorithm and its convergence
analysis. The semi-discrete system, the discrete SWR algorithm, and its conver-
gence analysis are discussed in Section 4. Section 5 presents the results of numerical
tests conducted on two examples. Following that, Section 6 provides the conclusion.

2. Model equations

The FSI problem involves coupling an incompressible Newtonian fluid with a
linear elastic structure. To simplify the problem and conduct a rigorous analysis,
we assume that the fluid is governed by the linear Stokes equations in a fixed
domain. However, the proposed DD schemes can be extended to a nonlinear FSI
system, as demonstrated in [26]. See Remark 3.2 for more details.

Suppose the domain under consideration comprises two bounded regions Ωf ,Ωs ∈
RI d, d = 2, 3, separated by the common interface Γ. See Figure 1. The free fluid
occupies the first region Ωf and has boundary ∂Γf = Γf ∪ Γ. For the analysis
presented in Section 3, we assume Ωf is an open set of class C2. A saturated elastic
structure occupies the second region Ωs with the boundary ∂Γs = Γs ∪ Γ.
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Figure 1. Two-dimensional domain formed by FSI system.

Consider the fluid equations:

ρf∂tu− 2νf ∇ ·D(u) +∇p = ff in Ωf × (0, T ) ,(1)

∇ · u = 0 in Ωf × (0, T ) ,(2)

u = 0 in Γf × (0, T ) ,(3)

u(., 0) = u0 in Ωf ,(4)

where u denotes the velocity vector of the fluid, p the pressure of the fluid, ρf the
density of the fluid, νf the fluid viscosity, and ff the body force acting on the fluid.
Here, D(u) is the strain rate tensor

D(u) =
1

2

(
∇u+ (∇u)T

)
and the Cauchy stress tensor is given by

σf = 2νf D(u)− pI.

The equation (1) represents the conservation of linear momentum, while equation
(2) represents the conservation of mass. The elastic system is represented by:

ρs∂
2
t η − 2νs ∇ ·D(η)− λ∇(∇ · η) = fs in Ωs × (0, T ) ,(5)

η = 0 in Γs × (0, T ) ,(6)

η(., 0) = η0 in Ωs ,(7)

∂tη(., 0) = η̄0 in Ωs ,(8)
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where η is the displacement of the structure and fs is the body force. The total
stress tensor for the elastic structure is given by

σs = 2νsD(η) + λ(∇ · η)I,

where νs and λ denote the Lamé constants. The density of the elastic structure is
denoted by ρs.

The fluid and elastic models, (1)-(4) and (5)-(8), are coupled via the following
interface conditions:

σfnf = −σsns on Γ× (0, T ) ,(9)

∂tη = u on Γ× (0, T ) ,(10)

where nf and ns denote outward unit normal vectors to Ωf and Ωs, respectively.
These interface conditions suffice to precisely couple the Stokes system (1)-(4) to the
structure system (5)-(8), imposing the balance of normal stresses and the continuity
of velocity.

To establish a weak formulation of the problem, we adopt standard notation for
Sobolev spaces and their associated norms and seminorms. For S ⊂ RI d, the norm
for the Hilbert space Hm(S) is denoted by ∥ · ∥m,S . For m = 0, (·, ·)S and ∥ · ∥S
denote the inner product and the norm in L2(S) respectively. Moreover, if S = Ωf

or Ωs, and the context is clear, S will be omitted, i.e., (·, ·) = (·, ·)Ωf
or (·, ·)Ωs for

functions defined in Ωf and Ωs. For F ⊂ RI d−1 such that F ⊂ ∂Ωf ∩ ∂Ωs, we use

⟨·, ·⟩F to denote the duality pairing between H−1/2(F ) and H1/2(F ).
Define the function spaces for the fluid velocity u, the fluid pressure p, and the

displacement η as

X := {v ∈ H1(Ωf ) : v = 0 on Γf},
Q := L2(Ωf ),

Σ := {ξ ∈ H1(Ωs) : ξ = 0 on Γs}.

The spaces X and Q satisfy the inf-sup condition,

(11) inf
q∈Q

sup
v∈X

(q,∇ · v)
∥q∥Ωf

∥∇v∥Ωf

≥ β > 0.

We also define the div-free space for the fluid velocity,

V := {v ∈ X : (q,∇ · v) = 0, ∀q ∈ Q} .

The dual spaces X∗ and V∗ are endowed with the following dual norms

∥w∥X∗ := sup
v∈X

(w,v)

∥∇v∥Ωf

, ∥w∥V∗ := sup
v∈V

(w,v)

∥∇v∥Ωf

.

In the following Lemma, we show the equivalence of these norms for functions
in V.

Lemma 2.1. For w ∈ V, there exists C∗ > 0 such that

∥w∥V∗ ≤ ∥w∥X∗ ≤ C∗∥w∥V∗ .

Proof. The inequality ∥w∥V∗ ≤ ∥w∥X∗ is easily obtained, since V ⊂ X. For the
reversed inequality, consider the orthogonal decomposition of v ∈ X,

v = v1 +∇q,

where v1 ∈ V and q ∈ H1
0 (Ωf ) ∩H2(Ωf ) [41] (See Theorem 1.5 and Remark 1.6),

and the semi-norm ∥∆q∥Ωf
is equivalent to ∥q∥2,Ωf

[17] (See (3.12) on page 42).
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The decomposition is L2-orthogonal, i.e., (y,∇q) = 0 for all y ∈ V. Also, as
v1 ∈ V,

∥∇(∇q)∥Ωf
≤ C∥∆q∥Ωf

= C∥∇ · v∥Ωf
≤ C∥∇v∥Ωf

.

Then, by the triangular inequality,

∥∇v1∥Ωf
≤ ∥∇v∥Ωf

+ ∥∇(∇q)∥Ωf
≤ C∗∥∇v∥Ωf

.

This estimate and the orthogonality give

∥w∥X∗ = sup
v∈X

(w,v)

∥∇v∥Ωf

= sup
v∈X

(w,v1 +∇q)

∥∇v∥Ωf

≤ sup
v∈X

C∗
(w,v1)

∥∇v1∥Ωf

= C∗ sup
z∈V

(w, z)

∥∇z∥Ωf

= C∗∥w∥V∗

Thus, we have ∥w∥X∗ ≤ C∗∥w∥V∗ . �

The variational formulation for the fluid-structure system (1)-(8) is given by:
given the initial conditions, find (u, p,η) ∈ (X, Q,Σ), for a.e. t ∈ (0, T ), such that

ρf (∂tu, v) + (2νfD(u), D(v))− (p,∇ · v)
= (ff ,v) +

⟨
σfnf ,v

⟩
Γ

∀v ∈ X ,(12)

(q,∇ · u) = 0 ∀q ∈ Q ,(13)

ρs

(
∂2
t η, ξ

)
+ 2νs(D(η), D(ξ)) + λ(∇ · η,∇ · ξ)

= (fs, ξ) + ⟨σsns, ξ⟩Γ ∀ξ ∈ Σ.(14)

If a normal stress function satisfying σfnf = −σsns on Γ is given as Neumann
conditions for the fluid and structure problems, each local problem is well-posed.
In our approach, the normal stress function is represented by an unknown Lagrange
multiplier and will be used to impose the continuity of the velocities on the interface.

3. Global-in-time DD schemes

This section discusses time-dependent interface problems for the fluid-structure
system, from which global-in-time domain decomposition methods are developed.

3.1. Time-dependent Steklov-Poincaré operator. We introduce the Lagrange
multiplier g ∈ Λ := H−1/2(Γ) representing

(15) g := σfnf = −σsns on Γ× (0, T ) .

The equations (12)-(14) are then rewritten as

ρf (∂tu, v) + (2νfD(u), D(v))− (p,∇ · v)
= (ff ,v) + ⟨g,v⟩Γ ∀v ∈ X ,(16)

(q,∇ · u) = 0 ∀q ∈ Q ,(17)

ρs

(
∂2
t η, ξ

)
+ 2νs(D(η), D(ξ)) + λ(∇ · η,∇ · ξ)

= (fs, ξ)− ⟨g, ξ⟩Γ ∀ξ ∈ Σ.(18)

Let Λ∗ denote the dual space of Λ and define the following interface operators: for
given f ,s, u

0, η0, η̄0

Sf : L2(0, T ;Λ) −→ L2(0, T ;Λ∗), Sf (g) = u(g)|Γ ,

Ss : L
2(0, T ;Λ) −→ L2(0, T ;Λ∗), Ss(g) = −∂η(g)

∂t
|Γ,
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where u(g) and η(g) are the solutions to the Stokes problem (16)-(17) and the
structure problem (18). In (16)-(18), the interface condition (9) has been imposed
through the use of a common g, however, the interface condition (10) is not enforced.
Therefore, the remaining condition (10) leads to the following time-dependent in-
terface problem:

For a.e t ∈ (0, T ), find g(t) ∈ L2(0, T,Λ) satisfying

(19)

∫ T

0

(
⟨Sf (g),v⟩+ ⟨Ss(g),v⟩

)
ds = 0 ∀v ∈ L2(0, T,Λ).

The evolutionary interface problem (19) can be solved using iterative methods,
e.g., a Krylov method.

Remark 3.1. Since the time-dependent Steklov-Poincaré operators are nonsym-
metric, standard methods cannot be used to prove the existence and uniqueness of
solutions to the space-time interface problem (19). A very recent analytical study
on time-dependent Steklov-Poincaré operators for a quasilinear parabolic equation
can be found in [13].

Remark 3.2. If the nonlinear Stokes or the Navier-Stokes equations are considered
for the FSI system, the interface operator is nonlinear, and an iteration formula
for the nonlinear problem is defined using the linearized fluid equations. See [26].

3.2. Robin transmission conditions and the space-time interface prob-
lem. The two-sided Robin interface conditions on Γ are established by linearly
combining equations (9) and (10) with coefficients of (αf , 1) and (−αs, 1), respec-
tively, where αf , αs > 0 [16]:

(20) gf := αfu+ σfnf = αf∂tη − σsns on Γ× (0, T ) ,

(21) gs := −αs∂tη − σsns = −αsu+ σfnf on Γ× (0, T ) .

Remark 3.3 (Regularity of Normal stress). With the function spaces defined in
Section 2, the stress functions σfnf , σsns in (3.6)-(3.7) are in H−1/2(Γ). How-
ever, in order to formulate the DD scheme as an interface problem and analyze
it, we need the interface functions gf , and gs to have L2-regularity. Therefore,
we assume that the weak formulations (33)-(35) and (61)-(66), considered for the
SWR algorithm in the subsequent sections, are well-posed with sufficient solution
regularity so that σfnf and σsns have the L2 regularity in Γ. Unfortunately, we
have not yet established or come across a proof of these regularity results in the
literature. Nonetheless, they have been assumed in several studies (see Remark 3.1
of [9]).

The regularity assumption in Remark 3.3 allows the unknown functions gf and
gs to have L2-regularity in space, which is needed to define interface operators for
the variables and analyze the DD algorithm discussed later in this section.

If we let gf be a Robin condition for the Stokes equations with the parameter
αf > 0 as in the left-hand side of (20), the corresponding weak formulation is given
as follows: find (u, p) ∈ (X, Q), for a.e. t ∈ (0, T ), such that

ρf (∂tu,v) + 2νf (D(u), D(v))− (p,∇ · v)
+αf (u,v)Γ = (f ,v) + (gf ,v)Γ ∀v ∈ X ,(22)

(q,∇ · u) = 0 ∀q ∈ Q .(23)

Similarly, considering gs as a Robin condition for the elastic system with the pa-
rameter αs > 0 as in (21), we have the weak formulation given by: find η ∈ Σ, for
a.e. t ∈ (0, T ) satisfying
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ρs

(
∂2
t η, ξ

)
+ 2νs(D(η), D(ξ)) + λ(∇ · η,∇ · ξ) + αs(∂tη, ξ)Γ

= (fs, ξ)− (gs, ξ)Γ, ∀ξ ∈ Σ.(24)

Denote by (u, p) =
(
u(gf ,f ,u0),p(gf ,f ,u0)

)
the solution to the Stokes prob-

lem (22)-(23), and η = η(gs,s ,η0, η̄
0) the solution to the structure problem (24).

To derive the interface problem associated with the Robin conditions (20)-(21), we
first define the interface operator:

R :
(
L2(0, T ; L2(Γ))

)2
→
(
L2(0, T ; L2(Γ))

)2
,

such that

(25) R
[

gf

gs

]
=

[
gs + (αs + αf )

(
∂tη(gs,s ,η0, η̄0)

)
|Γ

gf − (αf + αs)
(
u(gf ,f ,u0)

)
|Γ

]
.

The Robin transmission conditions (20)-(21) are then equivalent to the following
space-time interface problem for two interface variables gf and gs:

(26) SR

[
gf

gs

]
= χR on Γ× (0, T ),

where

SR

[
gf

gs

]
=

[
gf

gs

]
−

[
gs + (αs + αf )

(
∂tη(gs,0,0,0)

)
|Γ

gf − (αf + αs)
(
u(gf ,0,0)

)
|Γ

]
and

χR =

[
(αs + αf )

(
∂tη(0,s ,η0, η̄0)

)
|Γ

−(αf + αs)
(
u(0,f ,u0)

)
|Γ

]
.

The weak form of (26) reads as: find (gf ,gs) ∈
(
L2(0, T ; L2(Γ))

)2
, for a.e. t ∈

(0, T ), such that

(27)

∫ T

0

∫
Γ

SR

[
gf

gs

]
·

[
ξf
ξs

] dγ dt =

∫ T

0

∫
Γ

χR ·

[
ξf
ξp

] dγ dt

∀
(
ξf , ξp

)
∈
(
L2(0, T ; L2(Γ))

)2
.

The interface problem (27) can be solved by iterative methods such as GM-
RES and simple Jacobi-type methods. We consider a Schwarz waveform relaxation
(SWR) algorithm based on Robin transmission conditions and show the convergence
of the algorithm.

3.2.1. Schwarz waveform relaxation (SWR) algorithm. Consider the follow-
ing SWR algorithm based on Robin transmission conditions: at the kth iteration
step we solve

ρf∂tu
k −∇ · (2νfD(uk)− pkI) =f in Ωf × (0,T) ,(28)

∇ · uk =0 in Ωf × (0, T ) ,(29)

αfu
k + σk

fnf =αf∂tη
k−1 − σk−1

s ns on Γ× (0, T ) ,(30)

for (uk, pk) satisfying the initial and boundary conditions (4), (3), and

ρs∂
2
t η

k − 2νs ∇ ·D(ηk)− λ∇(∇ · ηk) =fks in Ωs × (0, T ) ,(31)

−αs∂tη
k − σk

sns =− αsu
k−1 + σk−1

f nf on Γ× (0, T ),(32)
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for ηk satisfying (6)-(8). The weak formulation of this decoupled system is written
as: at the kth iteration, find (uk, pk,ηk) ∈ (X, Q,Σ), for a.e. t ∈ (0, T ), such that

ρf

(
∂tu

k, v
)
+ (2νfD(uk), D(v))− (pk,∇ · v) + αf (u

k,v)Γ

= (ff ,v) +
(
αf∂tη

k−1 − σk−1
s ns,v

)
Γ

∀v ∈ X ,(33)

(q,∇ · uk) = 0 ∀q ∈ Q ,(34)

ρs

(
∂2
t η

k, ξ
)
+ 2νs(D(ηk), D(ξ)) + λ(∇ · ηk,∇ · ξ) + αs(∂tη

k, ξ)Γ

= (fs, ξ)− (−αsu
k−1 + σk−1

f nf , ξ)Γ, ∀ξ ∈ Σ.(35)

In the next theorem, we prove the convergence of the proposed algorithm. The
idea of proving the convergence of the Robin-Robin method by energy estimates
comes from [31]. Then, it was adapted to the time-dependent problems in [33], and
also used in [23, 25]. We apply the same approach to our problem.

Theorem 3.4. Suppose f ∈ X∗, s ∈ Σ∗ and αs ≥ αf > 0. If an initial (u0,η0, η̄0)
is chosen such that the Robin-Robin conditions (20), (21) are well-defined in L2(Γ)
for a.e. t ∈ (0, T ), then the weak formulation (33)-(35) generates a convergent
sequence of iterates

(uk,ηk) ∈ L∞(0, T ;X)× L∞(0, T ;Σ).

With the additional assumption that σs ∈ H1(Ωs), ∂tu ∈ V the pressure pk also
converges in L2(0, T ;Q).

Proof. Since the equations (33)-(35) are linear, we show that the iterate (uk, pk,ηk)
converges to zero in suitable norms by setting f = u0 = 0 and s = η0 = η̄0 = 0.
The proof is organized as follows: we begin by applying identities (37) and (42)
in the weak formulation of both the fluid and structure subproblems respectively.
These identities are chosen to create matching terms on both sides of (45), which
will cancel each other out and result in a constant when summed across iterations.
Next, by combining the results with the use of the Robin conditions and applying
the Gronwall lemma, we establish the convergence of the velocity and displacement
in respective norms. Finally, under additional regularity assumption, we utilize the
energy estimates of velocity and displacement, along with Lemma 2.1, to establish
the convergence of the pressure. Taking v = uk and q = pk in (33) and (34), we
get

ρf

(
∂tu

k, uk
)
+ (2νfD(uk), D(uk)) + αf (u

k,uk)Γ

=
(
αf∂tη

k−1 − σk−1
s ns,u

k
)
Γ
.(36)

Using the identity

(37) (σk
fnf +αfu

k)2− (σk
fnf −αsu

k)2 = 2(αf +αs)(σ
k
fnf )(u

k)+(α2
f −α2

s)(u
k)2

and the Robin condition (30), we can rewrite (36) as

ρf

(
∂tu

k, uk
)
+ 2νf

∥∥∥D(uk)
∥∥∥2
Ωf

+
1

2(αf + αs)

∫
Γ

(σk
fnf − αsu

k)2 dγ

=
1

2(αf + αs)

∫
Γ

(σk
fnf + αfu

k)2 dγ +
1

2
(αs − αf )

∫
Γ

(uk)2 dγ

=
1

2(αf + αs)

∫
Γ

(−σk−1
s ns + αf∂tη

k−1)2 dγ +
1

2
(αs − αf )

∫
Γ

(uk)2 dγ.(38)
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We then integrate over (0, t) for a.e. t ∈ (0, T ]. And, since uk ∈ H1(Ωf ), apply the
trace theorem and Young’s inequality to obtain

ρf
2

∥∥∥uk
∥∥∥2
Ωf

+ 2νf

∫ t

0

∥∥∥D(uk)
∥∥∥2
Ωf

ds+
1

2(αf + αs)

∫ t

0

∫
Γ

(σk
fnf − αsu

k)2dγ ds

≤ 1

2(αf + αs)

∫ t

0

∫
Γ

(−σk−1
s ns + αf∂tη

k−1)2dγ ds

+ C

∫ t

0

∥∥∥uk(s)
∥∥∥
Ωf

∥∥∥D(uk(s))
∥∥∥
Ωf

dγ ds

≤ 1

2(αf + αs)

∫ t

0

∫
Γ

(−σk−1
s ns + αf∂tη

k−1)2dγ ds

+ C

∫ t

0

(
1

4ϵ

∥∥∥uk(s)
∥∥∥2
Ωf

+ ϵ
∥∥∥D(uk(s))

∥∥∥2
Ωf

)
ds(39)

for some constant C > 0 and ϵ > 0. Choosing ϵ = νf/C, we have

ρf
2

∥∥∥uk
∥∥∥2
Ωf

+ νf

∫ t

0

∥∥∥D(uk)
∥∥∥2
Ωf

ds+
1

2(αf + αs)

∫ t

0

∫
Γ

(σk
fnf − αsu

k)2dγ ds

≤ 1

2(αf + αs)

∫ t

0

∫
Γ

(−σk−1
s ns + αf∂tη

k−1)2dγ ds+ C

∫ t

0

∥∥∥uk(s)
∥∥∥2
Ωf

ds,(40)

where C = C
2
/(4νf ).

Now, similarly for the structure part, taking ξ = ∂tη
k in (35),

ρs

(
∂2
t η

k, ∂tη
k
)
+ 2νs(D(ηk), D(∂tη

k)) + λ(∇ · ηk,∇ · ∂tηk) + αs(∂tη
k, ∂ηk)Γ

= −(−αsu
k−1 + σk−1

f nf , ∂tη
k)Γ.(41)

Using the identity

(−σk
sns − αs∂tη

k)2 − (−σk
sns + αf∂tη

k)2

= 2(αf + αs)(σ
k
sns)(∂tη

k) + (α2
s − α2

f )(∂tη
k)2(42)

and the Robin condition (32), (41) implies

ρs

(
∂2
t η

k, ∂tη
k
)
+ 2νs(D(ηk), ∂tD(ηk)) + λ(∇ · ηk, ∂t∇ · ηk)

+
αs − αf

2

∫
Γ

(∂tη
k)2 dγ +

1

2(αf + αs)

∫
Γ

(−σk
sns + αf∂tη

k)2 dγ

≤ 1

2(αf + αs)

∫
Γ

(−σk
sns − αs∂tη

k)2 dγ.(43)

Integrate over (0, t) for a.e. t ∈ (0, T ) and apply the Robin boundary conditions
(32) to obtain

ρs
2

∥∥∥∂tηk
∥∥∥2
Ωs

+ νs

∥∥∥D(ηk)
∥∥∥2
Ωs

+
λ

2

∥∥∥∇ · ηk
∥∥∥2
Ωs

+
αs − αf

2

∫ t

0

∥∥∥∂tηk
∥∥∥2
Γ
ds

+
1

2(αf + αs)

∫ t

0

∫
Γ

(−σk
sns + αf∂tη

k)2 dγ ds

≤ 1

2(αf + αs)

∫ t

0

∫
Γ

(σk−1
f nf − αsu

k−1)2 dγ ds.(44)
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Define, for all k ≥ 1 and for a.e. t ∈ (0, T ],

Ek(t) :=
ρf
2

∥∥∥uk(t)
∥∥∥2
Ωf

+ νf

∫ t

0

∥∥∥D(uk)
∥∥∥2
Ωf

ds+
ρs
2

∥∥∥∂tηk
∥∥∥2
Ωs

+νs

∥∥∥D(ηk)
∥∥∥2
Ωs

+
λ

2

∥∥∥∇ · ηk
∥∥∥2
Ωs

+
αs − αf

2

∫ t

0

∥∥∥∂tηk
∥∥∥2
Γ
ds,

Bk(t) :=
1

2(αf + αs)

∫ t

0

∥∥∥σk
fnf − αsu

k
∥∥∥2
Γ
ds

+
1

2(αf + αs)

∫ t

0

∥∥∥−σk
sns + αf∂tη

k
∥∥∥2
Γ
ds ,

where
αs−αf

2 ≥ 0 with the assumption αs ≥ αf . Adding (40) to (44) yields

(45) Ek(t) +Bk(t) ≤ Bk−1(t) + C

∫ t

0

∥uk(s)∥2Ωf
ds ,

and summing over the iterates for any given K > 0, we obtain

(46)

K∑
k=1

Ek(t) ≤ B0(t) + C

K∑
k=1

∫ t

0

∥uk(s)∥2Ωf
ds.

In (46)

B0(t) =
1

2(αf + αs)

∫ t

0

g0 ds,

where g0 =
∥∥∥σ0

fnf − αsu
0
∥∥∥2
Γ
+
∥∥−σ0

sns + αf∂tη
0
∥∥2
Γ
is obtained by the initial guess.

Now, the definition of Ek(t) and (46) yield

ρf
2

K∑
k=1

∥uk(t)∥2Ωf
≤ B0(t) + C

K∑
k=1

∫ t

0

∥uk(s)∥2Ωf
ds,

and applying Gronwall’s lemma, we obtain

(47)
K∑

k=1

∥uk(t)∥2Ωf
≤ 2B0(T )

ρf
e

2CT
ρf

for any K > 0 and a.e. t ∈ (0, T ). The inequality (47) implies that uk converges
to 0 in L∞(0, T ;L2(Ωf )) as k → ∞. Also, the inequalities (46) and (47) yield

K∑
k=1

(
νf

∫ t

0

∥∥∥D(uk)
∥∥∥2
Ωf

ds+
ρs
2

∥∥∥∂tηk
∥∥∥2
Ωs

+ νs

∥∥∥D(ηk)
∥∥∥2
Ωs

+
λ

2

∥∥∥∇ · ηk
∥∥∥2
Ωs

+
αs − αf

2

∫ t

0

∥∥∥∂tηk
∥∥∥2
Γ
ds

)
≤

(
1 +

2CT

ρf
e

2CT
ρf

)
B0(T ),(48)

which implies that D(uk), ∂tη
k, D(ηk), ∇ · ηk converge to 0 in L2(0, T ;L2(Ωf )),

L∞(0, T ;L2(Ωs)), L∞(0, T ;L2(Ωs)), L∞(0, T ;L2(Ωs)), respectively, as k → ∞.
In addition, σk

s converges to 0 in L∞(0, T ;L2(Ωs)) by its definition, and using
Poincaré-Friedrichs inequality, the convergence of ηk to 0 in L∞(0, T ;L2(Ωs)) is
obtained.

By the Robin condition (21) with gs ∈ L2(Γ), the trace σsns on Γ is in L2(Γ)
for a.e. t ∈ (0, T ). We prove the convergence of pk with additional regularity
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assumption that σs is in H1(Ωs) for a.e. t ∈ (0, T ). First, we estimate a bound for
the time derivative term in (33). For v ∈ V the equation (33) is written as

ρf (∂tu
k,v) =− 2νf (D(uk), D(v))− αf (u

k,v)Γ

+ (αf∂tη
k−1 − σk−1

s ns,v)Γ(49)

Then, using Cauchy-Schwarz inequality, we have for some constants C1, C2, C3 > 0,

ρf (∂tu
k,v) ≤ C1∥D(uk)∥Ωf

∥D(v)∥Ωf
+ C2∥uk∥Γ∥v∥Γ

+C3(∥∂tηk−1∥Γ + ∥σk−1
s ns∥Γ)∥v∥Γ ,(50)

and, using the trace theorem,

ρf (∂tu
k,v) ≤ C1∥D(uk)∥Ωf

∥D(v)∥Ωf
+ C2,T ∥uk∥1,Ωf

∥v∥1,Ωf

+C3,T (∥∂tηk−1∥Γ + ∥σk−1
s ns∥Γ)∥v∥1,Ωf

(51)

for some constants C2,T , C3,T > 0. Then Korn’s inequality implies, for some con-
stants CK > 0,

ρf (∂tu
k,v) ≤ CK

(
∥D(uk)∥Ωf

+ ∥∂tηk−1∥Γ + ∥σk−1
s ns∥Γ

)
∥∇v∥Ωf

.(52)

Now using Poincaré-Friedrichs inequality, dividing both sides by ∥∇v∥Ωf
and

taking supremum over v ∈ V, we have, for some constant Ĉ > 0,

ρf∥∂tuk∥V∗ ≤ Ĉ( ∥D(uk)∥Ωf
+ ∥∂tηk−1∥Γ + ∥σk−1

s ns∥Γ ) .

With the assumption that ∂tu ∈ V, we use the norm equivalence of ∥ · ∥X∗ and
∥ · ∥V∗ (see Lemma 2.1) and obtain, for some constant C∗ > 0,

(53) ρf∥∂tuk∥X∗ ≤ C∗( ∥D(uk)∥Ωf
+ ∥∂tηk−1∥Γ + ∥σk−1

s ns∥Γ ) .

To estimate a bound for pk, consider (33) with v ∈ X. We isolate the pressure
term, divide by ∥∇v∥Ωf

, take supremum over v ∈ X. Then the inf-sup condition
(11) and the estimate (53) yield

β∥pk∥Ωf
≤ (1 + C∗)( ∥D(uk)∥Ωf

+ ∥∂tηk−1∥Γ + ∥σk−1
s ns∥Γ ) .

for some β > 0. If we square both sides, integrate over the interval (0, t) for a.e.
t ∈ (0, T ), then using the trace theorem,

β2

3(1 + C∗)2

∫ t

0

∥pk∥2Ωf
ds ≤

∫ t

0

( ∥D(uk)∥2Ωf
+ ∥∂tηk−1∥1,Ωs∥∂tηk−1∥Ωs

+∥σk−1
s ∥1/21,Ωs

∥σk−1
s ∥1/2Ωs

) ds .(54)

Now, ∥∂tηk−1∥1,Ωs , ∥σk−1
s ∥1,Ωs < ∞ as ∂tη

k−1,σk−1
s ∈ H1(Ωs) for a.e. t ∈ (0, T ).

Hence the convergence of D(uk), ∂tη
k, σk

s implies that

∫ t

0

∥pk∥2Ωf
ds converges to

0 as k → ∞, i.e., pk converges to 0 in L2(0, T ;L2(Ωf )). �

4. Nonconforming time discretization and SWR algorithm

The global-in-time DD approach allows the use of separate time discretizations in
each subdomains because the local problems are still time-dependent. On the space-
time interface the transfer of information between different time grids is achieved
through a suitable projection technique.

Consider τf be a partition of time interval (0, T ) into subintervals for the Stokes

domain. Let Jm
f := (tm−1

f , tmf ] and step size ∆tmf := tmf − tm−1
f for m = 1, .....,Mf .
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The space of piecewise constant functions in time on grid τf , with values in W =
L2(Γ), is denoted by P0(τf ,W ):

P0(τf ,W ) = {ϕ : (0, T ) → W,ϕ is constant on Jm
f ∀m = 1, ....,Mf}.

Similarly, we define τs,Ms, J
n
s and ∆tns for the structure domain. To exchange

data on the space-time interface between different time grids, we introduce the L2

projection Πs,f from P0(τf ,W ) onto P0(τs,W ) [25]:

Πs,f (ϕ)|Jn
s
=

1

|Jn
s |

Mf∑
l=1

∫
Jn
s ∩Jl

f

ϕ.

The projection Πf,s from P0(τs,W ) onto P0(τf ,W ) is also defined similarly.

..

x

.

y

.

t

.

Ωf

.

Ωs

Figure 2. The
fluid and struc-
ture domains.

..

x

.

y

.

t

.

Ωf

.

Ωs

Figure
3. Nonconforming
time grids.

..
x

.

t

.

T

.0 .

∆tmf

.

∆tns

.
Ωf

.
Ωs

Figure 4. Projection
of nonconforming time
grids in two dimensions.

We discretize the FSI system in time using an additional variable η̇ ∈ Σ, repre-
senting ∂tη. Using the backward Euler method, the semi-discrete FSI system with
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Robin transmission conditions (20) and (21) is given by: for m = 1, .....,Mf

ρf (u
m − um−1) + ∆tmf (−2νf∇ ·D(um) +∇pmI) = m

f in Ωf ,(55)

∇ · um = 0 in Ωf ,(56)

∆tmf

(
αfu

m + σm
f nf

)
=

∫
Jm
f

Πf,s

(
αf η̇ − σsns

)
dt on Γ,(57)

and for n = 1, .....,Ms

ρs(η̇
n − η̇n−1)− 2νs∆tns ∇ ·D(ηn)− λ∆tns∇(∇ · ηn) = fns in Ωs ,(58)

(ηn − ηn−1)−∆tns η̇
n = 0 in Ωs(59)

∆tns (−αsη̇
n − σn

sns) =

∫
Jn
s

Πs,f

(
−αsu+ σfnf

)
dt on Γ,(60)

where (u, p) = (um, pm)
Mf

m=1 satisfies the boundary condition (3) and the initial

condition (4), and (η, η̇) = (ηn, η̇n)Ms
n=1 satisfies the boundary condition (6) and

the initial conditions (7), (8).
Next, we present the semi-discrete SWR algorithm and prove the convergence of

the iterations. Consider the following algorithm. In the kth iteration step, solve

ρf (u
k,m − uk,m−1) + ∆tmf (−2νf∇ ·D(uk,m) +∇pk,mI) = m

f in Ωf ,(61)

∇ · uk,m = 0 in Ωf ,(62)

∆tmf

(
αfu

k,m + σk,m
f nf

)
=

∫
Jm
f

Πf,s

(
αf η̇

k−1 − σk−1
s ns

)
dt on Γ,(63)

for (uk,m, pk,m) satisfying (3) and (4), where uk,0 = u0, uk,m := uk|Jm
f
, pk,m :=

pk|Jm
f

for m = 1, .....,Mf , and

ρs(η̇
k,n − η̇k,n−1)− 2νs∆tns ∇ ·D(ηk,n)− λ∆tns∇(∇ · ηk,n) = fns in Ωs ,(64)

(ηk,n − ηk,n−1)−∆tns η̇
k,n = 0 in Ωs,(65)

∆tns

(
−αsη̇

k,n − σk,n
s ns

)
=

∫
Jn
s

Πs,f

(
−αsu

k−1 + σk−1
f nf

)
dt on Γ(66)

for (ηk,n, η̇k,n) satisfying (6)-(8), where ηk,0 = η0, ηk,n := ηk|Jn
s

η̇k,0 = η̄0,

η̇k,n := η̇k|Jn
s

for n = 1, .....,Ms. In the next theorem we show that the weak
solution to (61)-(66) converges to the weak solution of (55)-(59) as k → ∞.

Remark 4.1. The proposed method allows varying time step sizes across subdo-
mains, with interface conditions on nonconforming time grids enforced through the
L2 projection. Being fully implicit in time, the method supports the use of large
time step sizes while maintaining stability.

Theorem 4.2. Suppose the initial guess (u0, p0,η0, η̇0) is chosen such that the
Robin-Robin conditions (63) and (66) are well-defined in L2(Γ). Further, assume
σs ∈ H1(Ωs) and the condition that αf = αs, then the weak formulation (61)-(66)
defines a unique sequence of iterates

(uk, pk,ηk, η̇k) ∈ P0(τf ,X)× P0(τf , Q)× P0(τs,Σ)× P0(τs,Σ)

that converges to the weak solution of (55)-(60).

Proof. Since the equations are linear, we can set f =s= u0 = η0 = η̇0 = 0,
and proceed to derive energy estimates following the proof of Theorem 3.4. The
structure of the proof is similar to Theorem 3.4, except that we do not use the
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Gronwall lemma due to the presence of projection operators. We multiply the
equations (61) and (62) by uk,m and pk,m, respectively, use (37), and add the
resulting equations together to obtain

ρf (u
k,m,uk,m)Ωf

− ρf (u
k,m−1,uk,m)Ωf

+ 2νf∆tmf

∥∥∥D(uk,m)
∥∥∥2
Ωf

+
∆tmf

2(αf + αs)

∥∥∥σk,m
f nf − αsu

k,m
∥∥∥2
Γ

≤
∆tmf

2(αf + αs)

∥∥∥σk,m
f nf + αfu

k,m
∥∥∥2
Γ
+

∆tmf
2

(αs − αf )
∥∥∥uk,m

∥∥∥2
Γ
.(67)

By using Cauchy-Schwarz inequality and 1
2 (a

2 − b2) ≤ a2 − ab, we can obtain

ρf
2

(
∥uk,m∥2Ωf

− ∥uk,m−1∥2Ωf

)
+ 2νf

∫
Jm
f

∥∥∥D(uk)
∥∥∥2
Ωf

dt

+
1

2(αf + αs)

∫
Jm
f

∥∥∥σk
fnf − αsu

k
∥∥∥2
Γ
dt

≤ 1

2(αf + αs)

∫
Jm
f

∥∥∥σk
fnf + αfu

k
∥∥∥2
Γ
dt+

(αs − αf )

2

∫
Jm
f

∥∥∥uk
∥∥∥2
Γ
dt.(68)

Next, multiply (64) by η̇k,n, integrate over Ωs and use (65) and (42) to have

ρs
2

(
∥η̇k,n∥2Ωs

− ∥η̇k,n−1∥2Ωs

)
+ νs

(∥∥∥D(ηk,n)
∥∥∥2
Ωs

−
∥∥∥D(ηk,n−1)

∥∥∥2
Ωs

)
+

λ

2

(∥∥∥∇ · ηk,n
∥∥∥2
Ωs

−
∥∥∥∇ · ηk,n−1

∥∥∥2
Ωs

)
+

1

2(αf + αs)

∫
Jn
s

∥∥∥−σk
sns + αf η̇

k
∥∥∥2
Γ
dt

≤ 1

2(αf + αs)

∫
Jn
s

∥∥∥−σk
sns − αsη̇

k
∥∥∥2
Γ
dt− (αs − αf )

2

∫
Jn
s

∥∥∥η̇k
∥∥∥2
Γ
dt.(69)

To eliminate the last terms of equations (68) and (69), we assume that αf =
αs, since we cannot use Gronwall’s lemma as for the continuous case due to the
global-in-time projection Πf,s and Πs,f [23]. By summing these equations over the
subintervals in (0, tmf ] and (0, tns ], respectively, we obtain

ρf
2
∥uk,m∥2Ωf

+ 2νf

∫ tmf

0

∥∥∥D(uk)
∥∥∥2
Ωf

dt+
1

2(αf + αs)

∫ tmf

0

∥∥∥σk
fnf − αsu

k
∥∥∥2
Γ
dt

≤ 1

2(αf + αs)

∫ tmf

0

∥∥∥σk
fnf + αfu

k
∥∥∥2
Γ
dt,(70)

and

ρs
2
∥η̇k,n∥2Ωs

+ νs

∥∥∥D(ηk,n)
∥∥∥2
Ωs

+
λ

2

∥∥∥∇ · ηk,n
∥∥∥2
Ωs

+
1

2(αf + αs)

∫ tns

0

∥∥∥−σk
sns + αf η̇

k
∥∥∥2
Γ
dt

≤ 1

2(αf + αs)

∫ tns

0

∥∥∥−σk
sns − αsη̇

k
∥∥∥2
Γ
dt.(71)
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We add (70) and (71), apply the Robin conditions (63) and (66) and set tmf = tns = T
to obtain the following.

ρf
2
∥uk,Mf ∥2Ωf

+ 2νf

∫ T

0

∥∥∥D(uk)
∥∥∥2
Ωf

dt

+
ρs
2
∥η̇k,Ms∥2Ωs

+ νs

∥∥∥D(ηk,Ms)
∥∥∥2
Ωs

+
λ

2

∥∥∥∇ · ηk,Ms

∥∥∥2
Ωs

+
1

2(αf + αs)

∫ T

0

∥∥∥σk
fnf − αsu

k
∥∥∥2
Γ
dt+

1

2(αf + αs)

∫ T

0

∥∥∥−σk
sns + αf η̇

k
∥∥∥2
Γ
dt

≤ 1

2(αf + αs)

∫ T

0

∥∥∥σk
fnf + αfu

k
∥∥∥2
Γ
dt+

1

2(αf + αs)

∫ T

0

∥∥∥−σk
sns − αsη̇

k
∥∥∥2
Γ
dt

≤ 1

2(αf + αs)

∫ T

0

∥∥∥Πs,f (σ
k−1
f nf − αsu

k−1)
∥∥∥2
Γ
dt

+
1

2(αf + αs)

∫ T

0

∥∥∥Πf,s(−σk−1
s ns + αf η̇

k−1)
∥∥∥2
Γ
dt

≤ 1

2(αf + αs)

∫ T

0

∥∥∥σk−1
f nf − αsu

k−1
∥∥∥2
Γ
dt

+
1

2(αf + αs)

∫ T

0

∥∥∥−σk−1
s ns + αf η̇

k−1
∥∥∥2
Γ
dt .

(72)

Then, for all k > 0

ρf
2
∥uk,Mf ∥2Ωf

+ 2νf

∫ T

0

∥∥∥D(uk)
∥∥∥2
Ωf

dt+
ρs
2
∥η̇k,Ms∥2Ωs

+ νs

∥∥∥D(ηk,Ms)
∥∥∥2
Ωs

+
λ

2

∥∥∥∇ · ηk,Ms

∥∥∥2
Ωs

+Bk ≤ Bk−1,(73)

where

Bk =
1

2(αf + αs)

∫ T

0

∥∥∥σk
fnf − αsu

k
∥∥∥2
Γ
dt+

1

2(αf + αs)

∫ T

0

∥∥∥−σk
sns + αf η̇

k
∥∥∥2
Γ
dt .

By summing over the iterates k, we conclude that ∥uk,Mf ∥Ωf
,
∫ T

0
∥D(uk)∥2Ωf

dt,

∥D(ηk,Ms)∥Ωs ,
∥∥∇ · ηk,Ms

∥∥
Ωs

and ∥η̇k,Ms∥Ωs converge to 0 as k → ∞. This

implies
∫ tmf
0

∥D(uk)∥2Ωf
dt converges to 0 as k → ∞ for all m = 1, 2, · · ·,Mf ,

and also ∥D(uk,m)∥Ωf
converges 0 for all m = 1, 2, · · ·,Mf , as uk ∈ P0(τf ,X).

Now, using Korn’s inequality, ∥uk,m∥Ωf
≤ CPF1∥D(uk,m)∥Ωf

and ∥ηk,Ms∥Ωs ≤
CPF2∥D(ηk,Ms)∥Ωs for some constants CPF1, CPF2 > 0, which implies ∥uk,m∥Ωf

converges to 0 for all m = 1, 2, ···,Mf , and ∥ηk,Ms∥Ωs also converges to 0 as k → ∞.

Next, we show the convergence of ηk,n η̇k,n and D(ηk,n) in the L2 norm for all

n = 1, 2, · · ·,Ms. We multiply (64) by η̇k,n−1, integrate over Ωs, and use Cauchy-
Schwarz inequality and the Trace theorem to obtain

∥η̇k,n−1∥2Ωs
≤Cs1

(
∥η̇k,n∥Ωs∥η̇

k,n−1∥Ωs + ∥D(ηk,n)∥Ωs∥D(η̇k,n−1∥Ωs

+∥σk,n
s ∥1/21,Ωs

∥σk,n
s ∥1/2Ωs

∥η̇k,n−1∥1/21,Ωs
∥η̇k,n−1∥1/2Ωs

)
,(74)

for some constant Cs1 > 0. Similarly, from (65), for some constant Cs2 > 0,

(75) ∥ηk,n−1∥Ωs ≤ Cs2(∥ηk,n∥Ωs + ∥η̇k,n∥Ωs) .
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For n = Ms, ∥σk,n
s ns∥Ωs in (74) converges to 0 as k → ∞ by its definition and the

convergence of ∥D(ηk,Ms)∥Ωs , hence the last term in (74) converges to 0 if σk,n
s ns

has H1 regularity. Then, (74) and (75), together with the fact that ∥η̇k,Ms∥Ωs
and

∥ηk,Ms∥Ωs converge to 0, imply ∥η̇k,Ms−1∥Ωs and ∥ηk,Ms−1∥Ωs converge to 0 as
k → ∞. Now, multiplying (64) by ηk,n, integrating over Ωs and using Cauchy-
Schwarz inequality, (66) and the Trace theorem,

∥D(ηk,n)∥2Ωs
+ ∥∇ · ηk,n∥2Ωs

≤ Cs3

(
∥η̇k,n∥Ωs∥ηk,n∥Ωs + ∥η̇k,n−1∥Ωs∥ηk,n∥Ωs

+∥Πs,f |Jn
s
(uk−1 + σk−1

f nf )∥Γ∥ηk,n∥1/21,Ωs
∥ηk,n∥1/2Ωs

)
(76)

for some Cs3 > 0. Since gf ∈ L2(Γ), the convergence of ∥ηk,Ms−1∥Ωs to 0 im-
plies that ∥D(ηk,Ms−1)∥Ωs converges to 0. Therefore, in this way, we can show

that ∥ηk,n∥Ωs , ∥η̇k,n∥Ωs and ∥D(ηk,n)∥Ωs converge to 0 as k → ∞ for all n =
1, 2, . . . ,Ms.

To establish the convergence of pk,m, we follow a similar approach to the con-
tinuous case, and obtain the following result for some β > 0:

β∥pk,m∥Ωf
≤ (1 + C∗)( ∥D(uk,m)∥Ωf

+ ∥Πf,sη̇
k−1,m∥Γ + ∥Πf,sσ

k−1,m
s ns∥Γ ) .

Squaring both sides and integrating over the interval (0, tmf ], we get, for all m

β2

3(1 + C∗)

∫ tmf

0

∥pk∥2Ωf
dt ≤

∫ tmf

0

∥D(uk)∥2Ωf
ds+

∫ T

0

∥η̇k−1∥1,Ωs∥η̇
k−1∥Ωsds

+

∫ T

0

∥σk−1
s ∥1,Ωs∥σk−1

s ∥Ωs ds .(77)

The last term in (77) converges to 0 by the regularity assumption for σs and the
convergence of ∥D(ηk,n)∥Ωs

for all n = 1, 2, . . . ,Ms. Then, the convergence of∫ tmf
0

∥pk∥2Ωf
dt to 0 as k → ∞ follows from the convergence of ∥D(uk,m)∥2Ωf

and

∥η̇k,n∥Ωs for all m and n. Finally, we have that ∥pk,m∥Ωf
converges to 0 for all

m = 1, 2, . . . ,Mf , as p
k ∈ P0(τf , Q). �

5. Numerical Examples

We provide two numerical examples to demonstrate the effectiveness of our pro-
posed methods. The first example is a manufactured problem with a known solu-
tion, which we use to assess the accuracy and efficiency of the methods. The second
example is a benchmark problem from the field of hemodynamics that has been pre-
viously considered in [30, 36]. For both examples, we use GMRES to achieve fast
convergence when solving the interface problem (19) or (27). The SWR algorith-
m analyzed in Section 4 is a Jacobi-type iterative method, thus we expect fast
convergence to be achieved by GMRES. No preconditioner is considered for the
interface problems, and all computations are performed using freeFEM++ [19] in
a sequential setting.

5.1. Test 1 : With a Known Analytical Solution. Consider an example with
a known exact solution, where the fluid subdomain is Ωf = (0, 1) × (0, 1) and
the structure subdomain is Ωs = (0, 1) × (1, 2). The interface between the two
subdomains is given by Γ = {(x, y) : 0 < x < 1, y = 1}. The chosen exact solution
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is

u =

(
cos (x+ t) sin (y + t) + sin (x+ t) cos (y + t)
− sin (x+ t) cos (y + t)− cos (x+ t) sin (y + t)

)
,

p = 2νf (sin (x+ t) sin (y + t)− cos (x+ t) cos (y + t))

+2νs cos (x+ t) sin (y + t),

η =

(
sin (x+ t) sin (y + t)
cos (x+ t) cos (y + t)

)
.

The constants, ρs, ρf , νs, νf , and λ, are set to unity. For the Robin conditions (20)
and (21) we choose αf = 1 and αs = 100, and the tolerance for GMRES is set to
ϵ = 10−7.

We test the convergence of both methods in space using inf-sup stable Taylor-
Hood elements (P2, P1) for the fluid subproblem and P2 elements for the structure
subproblem, along with nonconforming time grids. We then repeat the test using
inf-sup stable MINI elements (P1 + bubble, P1) [1] for the fluid and P1 element
for the structure subproblem. In all numerical tests, subdomains are discretized
with matching grid points on the interface. The unknown Lagrange multipliers
are approximated at the common grid points along the interface using the same
polynomial degrees for the displacement approximation. However, the discretiza-
tion of the Lagrange multiplier with normal stress terms can pose a stability risk.
Although it works in our case, a more detailed discrete stability analysis may be
required, which we leave for future work.

The errors at the final time T = 0.0025 are presented in Tables 1-3 for all
variables, with expected convergence rates shown. For Taylor-Hood elements we
expect convergence of O(h2) and for MINI elements we expect convergence if O(h)
for velocity in H1 norm and for pressure O(h2) in L2 norm. To test convergence
with respect to different time steps, we use ∆tcoarse to denote the coarse time step
size and set the fine time step size to be ∆tfine = ∆tcoarse/2. Numerical tests are
performed using three different types of time grids:

(1) Coarse conforming time grids: ∆tf = ∆ts = ∆tcoarse,
(2) Fine conforming time grids: ∆tf = ∆ts = ∆tfine,
(3) Nonconforming time grids: ∆tf = ∆tcoarse and ∆ts = ∆tfine.

First, the Steklov-Poincaré interface problem (19) is solved using Taylor-Hood and
P2 elements with h = 1

32 and the three types of time grids given above, with
∆tcoarse ∈ {0.2, 0.1, 0.05, 0.0025}. Then the same test is repeated using MINI and
P1 elements with h = 1

64 and ∆tcoarse ∈ {0.4, 0.2, 0.1, 0.05}. Figures 5 and 6
demonstrate the first-order convergence of solutions, showing the errors at T = 0.2
and T = 0.4, respectively. For the nonconforming time grids, ∆tf = ∆tcoarse and
∆ts = ∆tfine. Thus, as expected, the fluid velocity and pressure errors for the
nonconforming time grids are close to the errors of the conforming coarse grids,
while the displacement errors are between the errors of the conforming fine and
coarse grids. We also solve the interface problem (27) using Taylor-Hood and P2
elements with the same condition as (19). Figure 7 shows a result similar to the
result obtained by the Steklov-Poincaré method in Figure 5.

Next, we compare the computer running times for both methods using conform-
ing and nonconforming time grids on a fixed mesh. Computer running times for
both methods are presented in Table 4 and Table 5. The tables show that the
computer running times for the nonconforming cases are close to the conforming
coarse cases than the conforming fine cases for both methods, demonstrating the
efficiency of the proposed methods. We also examine the convergence behavior of
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GMRES by various Robin parameters, αf and αs. Table 6 presents the number
of iterations for various αs values when αf is fixed to 1. The table indicates that
a higher αs value yields faster convergence of GMRES iterations. However, in an
additional test, we observe that the convergence of GMRES is not much affected
by αf values.

Table 1. Errors by the Steklov-Poincaré method using Taylor-
Hood and P2 elements, ∆tf = 0.000025 and ∆ts = 0.000050.

h 1/4 1/8 1/16 1/32

L2 error 2.08e-04 2.17e-05 [3.26] 2.75e-06 [2.98] 3.77e-07 [2.87]
u

H1 error 5.90e-03 1.23e-03 [2.26] 3.02e-04 [2.02] 7.47e-05 [2.02]

p L2 error 5.21e-03 1.09e-03 [2.26] 2.54e-04 [2.10] 6.56e-05 [1.95]

L2 error 2.21e-04 2.31e-05 [3.26] 2.38e-06 [3.28] 3.11e-07 [2.94]
η

H1 error 6.50e-03 1.39e-03 [2.22] 3.00e-04 [2.21] 7.52e-05 [2.00]

Table 2. Errors by the Steklov-Poincaré method using MINI and
P1 elements, ∆tf = 0.000025 and ∆ts = 0.000050.

h 1/4 1/8 1/16 1/32

L2 error 9.03e-03 2.18e-03 [2.05] 4.79e-04 [2.19] 1.23e-04 [1.97]
u

H1 error 1.96e-01 8.12e-02 [1.27] 3.58e-02 [1.18] 1.80e-02[1.00]

p L2 error 5.73e-01 1.43e-01 [2.00] 3.59e-02 [2.00] 1.06e-02 [1.76]

L2 error 6.37e-03 1.34e-03 [2.24] 3.35e-04 [2.00] 8.43e-05 [1.99]
η

H1 error 8.25e-02 3.71e-02 [1.15] 1.86e-02 [1.00] 9.38e-03 [0.99]

Table 3. Errors by the Robin method for (αf , αs) = (1, 100) using
Taylor-Hood and P2 elements, ∆tf = 0.000050, ∆ts = 0.000025.

h 1/4 1/8 1/16 1/32

L2 error 2.10e-04 2.09e-05 [3.34] 2.56e-06 [3.03] 3.39e-07 [2.92]
u

H1 error 5.95e-03 1.23e-03 [2.27] 3.04e-04 [2.03] 7.43e-05 [2.02]

p L2 error 5.40e-03 1.02e-03 [2.40] 2.46e-04 [2.05] 6.45e-05 [1.93]

L2 error 2.21e-04 2.31e-05 [3.26] 2.38e-06 [3.28] 3.10e-07 [2.94]
η

H1 error 6.50e-03 1.39e-03 [2.22] 3.00e-04 [2.21] 7.52e-05 [2.00]
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Table 4. Comparison of the computer running times (in seconds)
of conforming and nonconforming time grids using Taylor-Hood
and P2 elements with h = 1/32.

∆t

Steklov-Poincaré Method Robin Method (αf = 1, αs = 100)

Conforming Nonconforming Conforming Nonconforming

0.2 335

376

336

338
0.1 651

802

657

676
0.05 1324

1537

1219

1290
0.025 2630

3053

2478

2556
0.0125 5201 5031

Table 5. Comparison of the computer running times (in seconds)
of conforming and nonconforming time grids using MINI and P1
elements with h = 1/64.

∆t

Steklov-Poincaré Method

∆t

Robin Method (αf = 1, αs = 100)

Conforming Nonconforming Conforming Nonconforming

0.4 2224

2784

0.8 5004

5068
0.2 4476

5408

0.4 9214

9271
0.1 9468

11137

0.2 18390

19673
0.05 18405

19198

0.1 36575

37390
0.025 38525 0.05 69892

Table 6. Number of GMRES iterations for T = 0.2 using
(∆tf ,∆ts) = (0.025, 0.0125) and αf = 1.

αs 1 3 5 10 50 100

Number of iterations 31 25 22 20 18 18
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Figure 5. Errors at T = 0.2 by the Steklov-Poincaré method
using Taylor-Hood and P2 elements with h = 1/32.

5.2. Test 2 : Hemodynamic Experiment. In this example, we consider the
blood flow problem reported in [30, 36]. The domain and the boundary conditions
used for the computation are depicted in Figure 8. The force b(t) applied to the
left fluid boundary in Figure 8 denotes the stress at the inlet at t seconds and is
defined as:

b(t) =


(
−103

(
1− cos 2πt

0.025

)
, 0
)

t ≤ 0.025

(0, 0)) 0.025 < t < T.

The parameters used in this example are in accordance with the characteristics of
blood flow in the human body. The density of the fluid, ρf , is 1 g/cm3 and the
viscosity of the fluid, νf , is 0.035 g/cms. The density of the structure, ρs, is 1.1
g/cm3. The Youngs Modulus of the structure, E, is 3 × 106 dyne/cm2 and the
Poisson ratio, ν, is 0.3. The Lame parameters λ and νs are defined as follows:

λ =
νE

(1− 2ν)(1 + ν)
dyne/cm

2
, νs =

E

2(1 + ν)
dyne/cm

2
.

Both the fluid and structure have volume forces of s =f= 0 dyne/cm2. Due to
the closely matched densities between the fluid and the structure, the problem is
significantly impacted by the added mass effect. Thus, when using a DD method
at each time step, as in most DD approaches for FSI, additional relaxation steps
may be necessary for solution stability, in addition to the use of a very fine time
grid [36].
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Figure 6. Errors at T = 0.4 by the Steklov-Poincaré method
using MINI and P1 elements with h = 1/64.

We simulate this example using the Steklov-Poincaré method without encoun-
tering the stability issue, as our local problems are still time-dependent. A uniform
mesh is employed to spatially discretize the domains of both the fluid and structure,
with hx and hy representing the spatial discretization in the x and y directions. For
this test, the fluid and structure are approximated using MINI elements and P1
element, respectively. We use a time step of ∆tf = 2×10−4 for the fluid subdomain
and ∆ts = 1×10−4 for the structure subdomain, with the final time set at T = 0.1.
By setting hx = 0.1 cm and changing hy between 0.1 cm and 1

30 cm, we monitor the
vertical displacement at three distinct points on the interface (see Figure 9). We
observe similar vertical displacement at each point for all values of hy. In [30] and
[36], it is observed that the solution heavily depends on spatial discretization, and
the vertical displacements in Figure 9 are similar to their results obtained by fine
spatial discretization (see Figure 9 of [36]). Furthermore, we report the interface
velocity errors, 1

2∥u− η̇∥2Γ for different mesh sizes of hy in Table 7 at the final time
T = 0.1 seconds.

6. Conclusion

We have introduced global-in-time domain decomposition methods by formu-
lating two interface problems, based on the Steklov-Poincaré operator and Robin
transmission conditions, respectively. In these methods, the fluid and the struc-
ture subproblems are time-dependent and solved independently using local solvers.
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Figure 7. Errors at T = 0.2 by the Robin method for (αf , αs) =
(1, 100) using Taylor-Hood and P2 elements with h = 1/32.

..

uN = b(t)

.

ηD = 0

.

uN = 0

.

ηD = 0

.
uD = 0

.

ηN = 0

.

Ωs = [0, 6]× [1, 1.1]

.

Ωf = [0, 6]× [0, 1]

.

Γ

Figure 8. Domain and boundary conditions for Test 2.

Table 7. Errors in the continuity of velocity between subsystems
for hx = 0.1cm.

Values of hy Interface Velocity Error

0.1 2.05e-04

0.05 8.23e-05

1
30 2.87e-05
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Figure 9. Vertical displacement at three points on the interface
with: (1) hx = 0.1 cm, hy = 0.1 cm, (2) hx = 0.1 cm, hy = 0.05
cm, and (3) hx = 0.1 cm, hy = 1

30 cm.

This allows for the use of nonconforming time grids and different time-stepping
algorithms for local problems. The SWR algorithm for the second interface prob-
lem was introduced and analyzed in continuous and semi-discrete settings. In this
paper, we emphasize the time discretization aspects, providing an in-depth anal-
ysis of the nonconforming time discretization method utilized in our numerical
experiments. While a detailed exploration of spatial discretization techniques and
stability analysis would further enhance our study, we propose it as a direction
for future research. We performed numerical tests on two examples, including a
non-physical problem where we tested with various mesh sizes and time steps to
verify convergence rates. The use of non-conforming time grids resulted in better
accuracy within similar computational times compared to results obtained using
conforming coarse grids. For the physical benchmark problem, we implemented
the Steklov-Poincar method and observed similar results reported in the literature.
Local time stepping makes these algorithms efficiently applicable to multiphysics
problems, where local problems may have different time scales. In our ongoing re-
search, we are extending these algorithms to tackle more complicated multiphysics
problems, such as the Stokes-Biot system.
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cada 55 (2011) 59-108.

[15] M. Fernández, J. Gerbeau, and C. Grandmont, A projection semi-implicit scheme for the
coupling of an elastic structure with an incompressible fluid, INRIA, 2005 Technical Report

RR-5700.
[16] G. Gigante and C. Vergara, On the Choice of Interface Parameters in RobinCRobin Loosely

Coupled Schemes for Fluid-Structure Interaction, Fluids 6 (2021) 213.
[17] V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, Springer-

Verlag (1986).
[18] N. Haritos, Introduction to the analysis and design of offshore structures C an overview,

Elect. J. Struct. Engrg. 7 (2007) 55-65.
[19] F. Hecht, New development in freefem++, J. Numer. Math. 20 (2012) 251-265.

[20] M. Heil, An efficient solver for the fully coupled solution of large-displacement fluidCstructure
interaction problems, Comput. Methods Appl. Mech. Eng. 193 (2004) 1-23.

[21] C. Hesch, A.J. Gil, A. Carreno, J. Bonet, and P. Betsch, A mortar approach for Fluid-
Structure interaction problems: Immersed strategies for deformable and rigid bodies, Com-

put. Methods Appl. Mech. Eng. 278 (2014) 853-882.
[22] J. J. Heys, T. A. Manteuffel, S. F. McCormick, and J.W. Ruge, First order system least

squares (FOSLS) for coupled fluidCelastic problems, J. Comput. Phys. 195 (2004) 560-575.
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