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A LINEARIZED, DECOUPLED AND UNCONDITIONALLY

STABLE BDF2 FEM FOR THE ACTIVE FLUID MODEL

YUXING ZHANG AND BO WANG∗

Abstract. In this paper, we develop a linear and decoupled fully discrete mixed finite element
scheme for the active fluid model. The scheme employs an auxiliary variable to reformulate
the fourth-order derivative term, an implicit-explicit treatment to deal with the nonlinear terms
and the second-order pressure-projection method to split the velocity and pressure. Through

rigorous theoretical analysis, the unique solvability, unconditional stability and error estimates of
the numerical scheme are obtained. Then, several numerical experiments are presented to verify
the efficiency and accuracy of the proposed scheme. Finally, the comparison of simulation results

with laboratory results, including the motion direction of active fluid changes from disorder to
order and reversal in 2D and 3D, demonstrate that the scheme can accurately capture and handle
the complex dynamics of active fluid motion.
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1. Introduction

The active fluid refers to a collection of particles, macro-molecules or cells that
are commonly found suspended in a viscous fluid. Examples abound in the natural
world, ranging from liquid-crystal-like arrangements and microbial suspensions to
the coherent macro-scale dynamics exhibited by schools of fish and flocks of birds
[3,7,15,17,28,42,46]. The active fluid can absorb energy from their surroundings and
convert it into kinetic energy, it exhibits sought-after properties such as collective
and organized motion that set it apart from classical complex fluid [25, 31]. These
characteristics have attracted considerable interest from researchers in the fields of
materials science, biology, medicine and other related disciplines.

For investigating the collective and organized motion of active fluid, many re-
searchers studied active fluid in the laboratory [10,14,18,23,25,34,36,38,39,45,53].
Nédélec et al. [23] studied the extend and characteristics of self-organization us-
ing microtubules and molecular motors, and obtained a variety of self-organization
structures. In [38], Schaller et al. investigated the phenomenon of collective mo-
tion in highly concentrated actin filaments. The obtained results demonstrate that,
beyond a critical density threshold, the actin filaments undergo self-organization,
forming coherent structures characterized by persistent density modulations. Guil-
laume et al. reported the observation of four distinct spatial instabilities within a
specific cytoskeletal active gel in [35]. Their findings reveal that these instabilities
are controlled by the concentrations of Adenosine triphosphate and depletion agen-
t. However, it is difficult to culture active fluid in the laboratory, which limits the
study of active fluid.

As we all know, mathematical models can help to understand the collective
and organized motion of active fluid, which can capture the dynamics of active
system qualitatively or quantitatively [22, 37, 40, 41, 43, 44]. Toner et al. derived
a nonequilibrium continuum dynamical model based on symmetry considerations

Received by the editors on September 28, 2023 and, accepted on September 2, 2024.
2000 Mathematics Subject Classification. 65M12, 65M15, 65M60.
∗Corresponding author.

40



PRESSURE-PROJECTION METHOD FOR THE ACTIVE FLUID MODEL 41

to explore the dynamics of “flocking” behavior among living things in [40]. In
[37], Simha and Ramaswamy constructed the equations of motion for small, long-
wavelength disturbances in suspensions of self-propelled particles that exhibit polar
and apolar ordering, utilizing symmetry principles and conservation laws. Based on
the interaction and feedback between the swimming Bacillus subtilis and the fluid,
Wolgemuth presented a two-phase model for the bacterial/fluid mixture [43]. But
above-mentioned models ignore Pascal’s law or the extremely effective suppression
of density fluctuations by isotropic pressure, which is essential for the ordered state
of active system. In addition, these models focus on the couplings with two or
more order-parameters and typically involve a large number of parameters, making
it is very difficult to compare with experimental data. Subsequently, Wensink et
al. [44] derived an active fluid model based on the non-equilibrium free energy of
active particle motion combined with general transport laws. The basic governing
equations read as follows

ut − µ∆u+ γ∆2u+ ν(u · ∇)u+ αu+ β|u|2u+∇p = f , in Ω× (0, T ],(1a)

∇ · u = 0, in Ω× (0, T ],(1b)

u|t=0 = u0(x), in Ω,(1c)

u|∂Ω =
∂u

∂n
|∂Ω = 0,(1d)

where Ω is a smooth, bounded and connected domain in Rd (d=2 or 3), T is the
final time and n denotes the unit outer normal vector on ∂Ω. The prescribed func-
tion u(x, t), p(x, t), f(x, t) and u0(x) respectively represent the velocity, pressure,
external body force and initial velocity with ∇ · u0 = 0. The model parameters µ,
γ and ν represent the viscosity coefficient, the generic stability coefficient and the
density coefficient, which are positive. The (α,β)-terms denote a quartic Landau
velocity potential, where β > 0 is positive, and α is allowed to take positive or nega-
tive values. For α > 0, the potential is mono-stable and the fluid is damped towards
a disordered state with u = 0. For α < 0, equation describes a sombrero potential
with fixed points |u| =

√
|α|/β corresponding to global polar order [7,16,44]. This

paper mainly focuses on the self-organization of active fluid to the global polar or-
der state. Due to the presence of fourth-order derivative term and strong nonlinear
terms in the active fluid model, analytical solution is unattainable, necessitating
the use of numerical methods for solving the system.

Now, we review some works that have been done for the active fluid model (1).
Dunkel et al. in [8] showed that the model effectively captures the experimental
characteristics of self-sustained active turbulence, encompassing the suppression of
density fluctuations and the occurrence of continuous phase transformations. James
et al. [16] numerically simulated the model using pseudo-spectral codes combined
with the second-order Runge-Kutta method and found a highly ordered lattice s-
tates in an extensive turbulent transient. In [29], Reinken et al. employed the
pseudo-spectral method to solve the model and demonstrated how arrays of smal-
l pillars, with minimal geometrical constraints, stabilize complex vortex lattices
within a turbulent bacterial suspension. It should be noted that the above research
mainly focus on numerical simulations of the active fluid model and lack the numer-
ical analysis. Motivated by this, the primary objective of this paper is to develop
a highly efficient fully discrete numerical scheme for the active fluid model and
conduct a numerical analysis.

To accomplish the aforementioned aim for active fluid system, several proven
methods are assembled. First, an auxiliary variable w = −∆u is used to transform
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the original system into an equivalent coupled nonlinear second-order equations,
and the spatial domain is discretized by the mixed finite element method. The in-
troduction of auxiliary variable improves the computational efficiency and precision
of the numerical scheme. Second, we adopt the second-order pressure-projection
method to solve the system, which has the ability to get second-order temporal
accuracy and split the velocity and pressure [12, 32, 47, 51]. Third, the rigorous
theoretical analysis of the unique solvability, unconditional stability and error esti-
mates of the proposed scheme are given in detail. Extensive numerical experiments
are then presented to validate the efficiency, stability and accuracy of the scheme,
along with the simulations of various active fluid phenomena.

This paper is organized as follows. We briefly review some notations for later
analysis in Section 2. We establish a linearized and decoupled fully discrete finite
element scheme in Section 3, and the unique solvability and unconditional stability
of the scheme are discussed in detail. In Section 4, the related error estimates are
deduced rigorously. In Section 5, ample numerical experiments are carried out to
testify the theoretical analysis of the error estimates and some phenomena of active
fluid are simulated. In Section 6, we draw some concluding remarks.

2. Preliminaries

Now, we introduce some notations in this section. We use ∥ · ∥Ls to denote the
usual Lebesgue space on Ω with the norm Ls(Ω). Hr(Ω) stands for the standard
scalar Sobolev spaces equipped with the norm ∥ · ∥r. The inner product and norm
in L2(Ω) are represented by (·, ·) and ∥ · ∥, respectively. Then, we define the space

L2(0, T ;Hr(Ω)) with the norm ∥f∥L2(0,T ;Hr(Ω)) = (
∫ T

0
∥f∥2rdt)

1
2 . Additionally,

bold fonts, Ls(Ω) = [Ls(Ω)]d and Hr(Ω) = [Hr(Ω)]d are used for vector Sobolev
spaces, and the space L2(0, T ;Hr(Ω)) is equipped with norm ∥f∥L2(0,T ;Hr(Ω)) =

(
∫ T

0

d∑
i=1

∥fi∥2rdt)
1
2 .

In what follows, several function spaces are defined for the variational formulation

X = H1
0 = {v ∈ H1, v|∂Ω = 0}, W = {ϕ ∈ H1,

∫
Ω

ϕdx = 0},

V = {v ∈ X, ∇ · v = 0}, M = {q ∈ L2(Ω),

∫
Ω

qdx = 0}.

The function spaces X and M satisfy the inf-sup condition (see [11])

(2) ∥q∥ ≤ C sup
v∈X

(q,∇ · v)
∥∇v∥

, ∀q ∈ M,

where C denotes the generic positive constant that remains independent of both
h and τ and may represent different values on different occasions. We define the
trilinear form b(·, ·, ·) on X ×X ×X as follows

b(u,v,w) =
1

2
((u · ∇)v,w)− 1

2
((u · ∇)w,v).

It is easy to verify that b(u,v,w) satisfies (see [20, 24])

b(u,v,v) = 0, b(u,v,w) = −b(u,w,v),

b(u,v,w) ≤ C∥u∥∥∇v∥∥w∥L∞ , b(u,v,w) ≤ C∥u∥L∞∥∇v∥∥w∥,
b(u,v,w) ≤ C∥∇u∥∥∇v∥∥∇w∥, b(u,v,w) ≤ C∥∇u∥∥∆v∥∥w∥.
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Lemma 2.1. (see [20,27]) For all ζ,ϑ ∈ X, there hold

||ζ|k−2 − |ϑ|k−2| ≤ C(|ζ|k−3 + |ϑ|k−3)|ζ − ϑ|,

||ζ|k−2ζ − |ϑ|k−2ϑ| ≤ C(|ζ|+ |ϑ|)k−2|ζ − ϑ|,

||ζ|k−2 − |ϑ|k−2 − (k − 2)|ϑ|k−4ϑ · (ζ − ϑ)| ≤ C(|ζ|k−4 + |ϑ|k−4)|ζ − ϑ|k−2,

(ζ|ζ|k−2 − ϑ|ϑ|k−2, ζ − ϑ) ≥ C||ζ − ϑ||k,
where C only depend on k ≥ 2.

By employing the auxiliary variable w = −∆u [26,54,57], the active fluid model
(1) can be rewritten as an equivalent system

ut − µ∆u− γ∆w + ν(u · ∇)u+ αu+ β|u|2u+∇p = f , in Ω× (0, T ],(3a)

w = −∆u, in Ω× (0, T ],(3b)

∇ · u = 0, in Ω× (0, T ],(3c)

u|t=0 = u0(x), in Ω,(3d)

u|∂Ω =
∂u

∂n
|∂Ω = 0.(3e)

Then, the weak form of the system (3) can be described in the following form: find
(u,w, p) ∈ V ×W ×M such that for all (v,ϕ, q) ∈ V ×W ×M satisfy

(ut,v) + µ(∇u,∇v) + γ(∇w,∇v) + νb(u,u,v) + α(u,v) + β(|u|2u,v)(4a)

+ (∇p,v) = (f ,v),(4b)

(w,ϕ) = (∇u,∇ϕ),(4c)

(∇ · u, q) = 0.(4d)

The stability of the system (3) can be easily demonstrated through the standard
derivation as follows.

Theorem 2.1. Assuming (u,w, p) is the solution of the system (4), then we have
the following stability

∥u(t)∥2 +
∫ t

0

(µ∥∇u∥2 + 2γ∥w∥2 + 2α∥u∥2 + 2β∥u∥4L4)ds

≤ ∥u0∥2 + C

∫ t

0

∥f∥2ds.
(5)

Proof. By taking v = u in (4a), ϕ = γw in (4c) and q = p in (4d), and using
νb(u,u,u) = 0, we get

(6) (ut,u) + µ∥∇u∥2 + γ(∇w,∇u) + α∥u∥2 + β∥u∥4L4 = (f ,u),

and

(7) γ∥w∥2 = γ(∇w,∇u).

According to the Hölder’s inequality, Young’s inequality and Poincaré inequality to
estimate the term to the right of (6), it is easy to get

(8) (f ,u) ≤ ∥f∥∥u∥ ≤ µ∥∇u∥2 + C∥f∥2.
Then, combining (6), (7) with (8), we have

(9)
d

dt
∥u∥2 + µ∥∇u∥2 + 2γ∥w∥2 + 2α∥u∥2 + 2β∥u∥4L4 ≤ C∥f∥2.

Therefore, the desired result (5) follows from (9) directly, indicating that the solu-
tion is stable. �
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Remark 2.1. Remarkably, by utilizing the standard Galerkin process [1, 4], the
above stability can demonstrate the unique solvability of the weak solution within
a certain smoothness. It is worth emphasizing that the rewritten system (3) is
equivalent to the original system (1). Therefore, we only need to develop time-
stepping energy-stable numerical scheme for equivalent systems (3).

3. Fully discrete schemes

In this section, we will design a novel fully-discrete mixed finite element scheme
for the active fluid model (3). Before the numerical scheme, we introduce some
conforming finite element spaces. Let Th denote a uniformly regular partition Ω as
a triangle (or tetrahedron), and the mesh-width parameter h = max{dK ;K ∈ Th},
where K represents an element of the partition Th. For the non-negative integer
l ≥ 1, Pl(K) represents a polynomial of degree l on K. The discrete function spaces
Xh ⊂ X, V h ⊂ V , W h ⊂ W and Mh ⊂ M are constructed based on the partition
Th, where

Xh = {vh ∈ X, vh|K ∈ [Pl(K)]d}, W h = {wh ∈ W , wh|K ∈ [Pl(K)]d},
V h = {vh ∈ V ∩Xh, ∇ · vh = 0}, Mh = {qh ∈ M, qh|K ∈ Pl−1(K)}.

Moreover, we make the assumption that Xh and Mh satisfy the inf-sup condition
(see [11, 30])

∥qh∥ ≤ C sup
vh∈Xh

(∇ · vh, qh)

∥∇vh∥
, ∀ qh ∈ Mh.

The following known inequality will be frequently used throughout this paper [2,48]

∥vh∥Ls ≤ C∥∇vh∥(2 ≤ s ≤ 6), ∥vh∥L∞ ≤ Ch− d
2 ∥vh∥, ∀ vh ∈ Xh.

To obtain the error estimates, the Ritz projections are denoted as Ph : X → Xh

and Rh : W → W h, and the orthogonal projector represents Qh : M → Mh, which
meet

(∇(v −Phv),∇wh) = 0, ∀ v ∈ X, wh ∈ Xh,

(∇(z −Rhz),∇ϕh) = 0, ∀ z ∈ W , ϕh ∈ W h,

(p−Qhp, qh) = 0, ∀ q ∈ M, qh ∈ Mh.

We define the discrete Laplacian ∆h satisfies

(∆huh,vh) = −(∇uh,∇vh), ∀ uh, vh ∈ Xh.

Lemma 3.1. Assume that Ω is a convex polygon and Th is a uniformly regular
partition. Let 2 ≤ r ≤ l, there exists a constant C > 0, independent of h, such that
the projections Ph and Qh satisfy the following error estimates (see [9,26,56])

∥v −Phv∥+ h∥∇(v − Phv)∥ ≤ Chr+1∥v∥r+1, v ∈ Hr+1(Ω) ∩X,

∥z −Rhz∥+ h∥∇(z −Rhz)∥ ≤ Chr+1∥z∥r+1, z ∈ Hr+1(Ω) ∩W ,

∥q −Qhq∥ ≤ Chr∥q∥r, ∀ q ∈ Hr(Ω) ∩M.

Given a time step τ > 0 and denoted tn = nτ for 0 ≤ n ≤ N , with the final
time T = Nτ . To simplify the presentation, the following notation will be used
throughout this paper

âk+1 = ak+1 − ak, â∗,k+1 = ak+1 − 2ak + ak−1, δ∗t a
k+1 =

3ak+1 − 4ak + ak−1

2τ
,

a∗,k = 2ak − ak−1, a∗∗,k+1 = ak+1 + 2ak − ak−1.
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By combining the second-order backward differentiation formula (BDF2) and the
pressure-projection method, we construct a linear and decoupled scheme for the sys-
tem (3). Given the initial data (u0,w0, p0), having computed (un−1,wn−1, pn−1)
and (un,wn, pn), we compute (un+1,wn+1, pn+1) by the following steps [5, 19, 49,
50,52,55,58,59].
Step 1. Find (ũn+1, w̃n+1) as the solution of

3ũn+1 − 4un + un−1

2τ
− µ∆ũn+1 − γ∆w̃n+1 + ν(u∗,n · ∇)ũn+1 + αũn+1(10a)

+ β|u∗,n|2ũn+1 +∇pn = fn+1,

w̃n+1 = −∆ũn+1,(10b)

ũ(x, t)|∂Ω = 0.(10c)

Step 2. Find (un+1, pn+1) as the solution of

3un+1 − 3ũn+1

2τ
+∇(pn+1 − pn) = 0,(11a)

∇ · un+1 = 0.(11b)

Remark 3.1. Let F be the projector in H1 onto the divergence-free space V . We
infer from (11a) that un+1 = F ũn+1, and the numerical scheme (10)-(11) is called
projection scheme (see [33]). Each step in (10)-(11) is to solve the linear equations,
hence, making the scheme highly efficient and straightforward to implement.
Remark 3.2. By taking the divergence for the equation (11a), we can obtain

(12) −∆pn+1 = − 3

2τ
∇ · ũn+1 −∆pn,

associated with the Neumann boundary condition ∂n(p
n+1 − pn) = 0. Therefore,

we can update un+1 by

un+1 = ũn+1 − 2τ

3
∇(pn+1 − pn).

Next, we construct the fully discrete mixed finite element numerical scheme of
the system (3). The fully discrete version of (10)-(11) reads as follows.
Step 1. Find (ũn+1

h , w̃n+1
h ) ∈ Xh ×W h, such that for all (vh,ϕh) ∈ Xh ×W h,

(
3ũn+1

h − 4un
h + un−1

h

2τ
,vh) + µ(∇ũn+1

h ,∇vh) + γ(∇w̃n+1
h ,∇vh)(13a)

+ νb(u∗,n
h , ũn+1

h ,vh) + α(ũn+1
h ,vh) + β(|u∗,n

h |2ũn+1
h ,vh)

+ (∇pnh,vh) = (fn+1
h ,vh),

(w̃n+1
h ,ϕh) = (∇ũn+1

h ,∇ϕh).(13b)

Step 2. Find pn+1
h ∈ Mh as the solution of

(∇(pn+1
h − pnh),∇qh) = − 3

2τ
(∇ · ũn+1

h , qh).(14)

Step 3. Find un+1
h ∈ V h from

(15) (
3un+1

h − 3ũn+1
h

2τ
,vh) + (∇pn+1

h −∇pnh,vh) = 0.

Remark 3.3. The computations of the second-order scheme (13)-(15) relies on the
values of u1

h and p1h. We choose u0
h = Phu0 and p0h = Qhp0. Then, we can compute

u1
h and p1h via any first order projection method.
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3.1. Unique solvability.
In this subsection, we prove the unique solvability of the scheme (13)-(15) as

follows by a process similar to [6, 11].

Theorem 3.1. There exists a unique solution (ũn+1
h , w̃n+1

h ) ∈ Xh ×W h to (13)
satisfying

(16) ∥∇ũn+1
h ∥ ≤

C(2τ∥fn+1
h ∥+ 2τ∥pnh∥+ 4∥un

h∥+ ∥un−1
h ∥)

2µτ
,

and

(17) ∥w̃n+1
h ∥ = ∥∆ũn+1

h ∥ ≤
C(2τ∥fn+1

h ∥+ 2τ∥pnh∥+ 4∥un
h∥+ ∥un−1

h ∥)
2
√
µγτ

.

Proof. We rewrite (13) as

(18)

3(ũn+1
h ,vh) + 2µτ(∇ũn+1

h ,∇vh) + 2ντb(u∗,n
h , ũn+1

h ,vh)

+ 2γτ(∇w̃n+1
h ,∇vh) + 2γτ(w̃n+1

h ,ϕh)− 2γτ(∇ũn+1
h ,∇ϕh)

+ 2ατ(ũn+1
h ,vh) + 2βτ(|u∗,n

h |2ũn+1
h ,vh)

= 2τ(fn+1
h ,vh)− 2τ(∇pnh,vh) + 4(un

h,vh)− (un−1
h ,vh).

Taking vh = ũn+1
h and ϕh = w̃n+1

h in (18), dropping some positive terms, we have

(19)
2τµ∥∇ũn+1

h ∥2 + 2τγ∥w̃n+1
h ∥2

≤ 2τ(fn+1
h , ũn+1

h )− 2τ(∇pnh, ũ
n+1
h ) + (4un

h, ũ
n+1
h )− (un−1

h , ũn+1
h ).

By the equation of (13b), we derive the results of (16) and (17).
Next, we denote

(20)

(F(ũn+1
h , w̃n+1

h ), (vh,ϕh))

= 3(ũn+1
h ,vh) + 2µτ(∇ũn+1

h ,∇vh) + 2ντb(u∗,n
h , ũn+1

h ,vh)

+ 2γτ(∇w̃n+1
h ,∇vh) + 2γτ(w̃n+1

h ,ϕh)− 2γτ(∇ũn+1
h ,∇ϕh)

+ 2ατ(ũn+1
h ,vh) + 2βτ(|u∗,n

h |2ũn+1
h ,vh).

From the the Cauchy-Schwarz inequality and Poincaré inequality, we easily get

(21)

(F(ũn+1
h , w̃n+1

h ), (vh,ϕh))

≤ 3∥ũn+1
h ∥∥vh∥+ 2µτ∥∇ũn+1

h ∥∥∇vh∥+ 2Cντ∥u∗,n
h ∥L∞∥∇ũn+1

h ∥∥∇vh∥
+ 2γτ∥∇w̃n+1

h ∥∥∇vh∥+ 2γτ∥w̃n+1
h ∥∥ϕh∥+ 2γτ∥∇ũn+1

h ∥∥∇ϕh∥
+ 2ατ∥ũn+1

h ∥∥vh∥+ 2βτ∥u∗,n
h ∥2L∞∥∇ũn+1

h ∥∥∇vh∥
≤ C(∥∇ũn+1

h ∥+ ∥∇w̃n+1
h ∥)(∥∇vh∥+ ∥∇ϕh∥).

Then, taking vh = ũn+1
h and ϕh = w̃n+1

h , and using inverse inequality, we can
obtain

(F(ũn+1
h , w̃n+1

h ), (ũn+1
h , w̃n+1

h ))

= 3∥ũn+1
h ∥2 + µτ∥∇ũn+1

h ∥2 + βτ∥u∗,n
h ũn+1

h ∥2 + ατ∥ũn+1
h ∥2 + γτ∥w̃n+1

h ∥2

≥ µτ∥∇ũn+1
h ∥2 + γτ∥w̃n+1

h ∥2

≥ C∗
0

(
∥∇ũn+1

h ∥2 + ∥∇w̃n+1
h ∥2

)
,

(22)

where C∗
0 = min{µτ, Cγτ

h2 }.
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By applying the Lax-Milgram theorem, we can obtain that the numerical scheme
(13) admits a unique solution (ũn+1

h , w̃n+1
h ). It is easy to prove that the numerical

scheme (14)-(15) has a unique solution un+1
h ∈ V h and pn+1

h ∈ Mh.
�

3.2. Stability analysis.
In this subsection, we will rigorously prove that the linear and decoupled scheme

(13)-(15) is unconditionally stable as follows.

Theorem 3.2. Suppose (un+1
h , pn+1

h , ũn+1
h , w̃n+1

h ) is the solution of the fully dis-
crete scheme (13)-(15), we have

(23)

∥un+1
h ∥2 + ∥2un+1

h − un
h∥2 + ∥û∗,n+1

h ∥2 + 4µτ∥∇ũn+1
h ∥2 + 4γτ∥w̃n+1

h ∥2

+ 4ατ∥ũn+1
h ∥2 + 4τ2

3
∥∇pn+1

h ∥2 + 4τ2

3
∥∇pn+1

h −∇pnh∥2

≤ ∥un
h∥2 + ∥2un

h − un−1
h ∥2 + 4τ2

3
∥∇pnh∥2 +

2Cτ

µ
∥fn+1

h ∥2.

Furthermore, if the external body force f is neglected, we can get the energy
dissipation law

En+1
tot ≤ En

tot,(24)

where the discrete energy is defined as En
tot = ∥un

h∥2+∥2un
h−un−1

h ∥2+ 4τ2

3 ∥∇pnh∥2.

Proof. Firstly, we recall the following identity

(2a, 3a− 4b+ c) = a2 − b2 + (2a− b)2 − (2b− c)2 + (a− 2b+ c)2.(25)

Taking vh = 4τ ũn+1
h and ϕh = 4γτw̃n+1

h in (13), and summing them up, because

νb(u∗,n
h , ũn+1

h , ũn+1
h ) = 0 and β(|u∗,n

h |2ũn+1
h , ũn+1

h ) ≥ 0, we obtain

(3ũn+1
h − 4un

h + un−1
h , 2ũn+1

h ) + 4µτ∥∇ũn+1
h ∥2 + 4γτ∥w̃n+1

h ∥2

+ 4ατ∥ũn+1
h ∥2 + 4τ(∇pnh, ũ

n+1
h ) ≤ 4τ(fn+1

h , ũn+1
h ).

(26)

With the help of the Hölder’s inequality, Young’s inequality and Poincaré inequality,
the right-hand side of (26) can be estimated as follows

4τ(fn+1
h , ũn+1

h ) ≤ 4τ∥fn+1
h ∥∥ũn+1

h ∥

≤ 2µτ∥∇ũn+1
h ∥2 + 2Cτ

µ
∥fn+1

h ∥2.
(27)

Choosing vh = 4τ ũn+1
h in (15), we have

(28) (3un+1
h − 3ũn+1

h , 2ũn+1
h ) + 4τ(∇pn+1

h −∇pnh, ũ
n+1
h ) = 0.

Substituting (27) into (26) and adding the resulting equations (26) and (28), we
derive

(3un+1
h − 4un

h + un−1
h , 2ũn+1

h ) + 2µτ∥∇ũn+1
h ∥2 + 4γτ∥w̃n+1

h ∥2

+ 4ατ∥ũn+1
h ∥2 + 4τ(∇pn+1

h , ũn+1
h ) ≤ 2Cτ

µ
∥fn+1

h ∥2.
(29)

By the equation of (11b), we get

(30) (∇ · (3un+1
h − 4un

h + un−1
h ), qh) = 0.
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Taking vh = 4τ
3 (3un+1

h −4un
h +un−1

h ) in (15) and qh = pn+1
h −pnh in (30), we arrive

at

(3un+1
h − 4un

h + un−1
h , 2ũn+1

h − 2un+1
h )

=
4τ

3
(3un+1

h − 4un
h + un−1

h ,∇(pn+1
h − pnh)) = 0.

(31)

By using (25) and (31), we obtain

(3un+1
h − 4un

h + un−1
h , 2ũn+1

h )

= (3un+1
h − 4un

h + un−1
h , 2un+1

h + 2ũn+1
h − 2un+1

h )

= ∥un+1
h ∥2 − ∥un

h∥2 + ∥2un+1
h − un

h∥2 − ∥2un
h − un−1

h ∥2 + ∥ûn+1
h ∥2.

(32)

Then, taking qh = 8τ2

3 pn+1
h in (14), one can easily get

4τ(∇pn+1
h , ũn+1

h ) =
4τ2

3
(∥∇pn+1

h ∥2 − ∥∇pnh∥2 + ∥∇pn+1
h −∇pnh∥2).(33)

Substituting (32)-(33) into (29), we have

∥un+1
h ∥2 + ∥2un+1

h − un
h∥2 + ∥û∗,n+1

h ∥2 + 4µτ∥∇ũn+1
h ∥2 + 4γτ∥w̃n+1

h ∥2

+ 4ατ∥ũn+1
h ∥2 + 4τ2

3
∥∇pn+1

h ∥2 + 4τ2

3
∥∇pn+1

h −∇pnh∥2

≤ ∥un
h∥2 + ∥2un

h − un−1
h ∥2 + 4τ2

3
∥∇pnh∥2 +

2Cτ

µ
∥fn+1

h ∥2.

(34)

If we neglect the external body force f , we further get the energy dissipation law
(24). �

4. Error estimates

In this section, the optimal error estimates are rigorously derived for the velocity
and pressure. Throughout this paper, we assume that the solution (u,w, p) of the
equivalent system (3) exists and satisfies

(35)

∥u∥L2(0,T ;Hr+1(Ω)) + ∥w∥L2(0,T ;Hr+1(Ω)) + ∥ut∥L2(0,T ;Hr+1(Ω))

+ ∥wt∥L2(0,T ;Hr+1(Ω)) + ∥utt∥L2(0,T ;Hr+1(Ω)) + ∥uttt∥L2(0,T ;L2(Ω))

+ ∥p∥L2(0,T ;Hr(Ω)) + ∥pt∥L2(0,T ;Hr(Ω)) ≤ C.

For the sake of simplicity, we adopt the usual way to decompose the errors as follows

ẽnu = u(tn)− ũn
h = θnu + ξ̃nu, θnu = u(tn)−Phu

n, ξ̃nu = Phu
n − ũn

h,

ẽnw = w(tn)− w̃n
h = θnw + ξ̃nw, θnw = w(tn)−Rhw

n, ξ̃nw = Rhw
n − w̃n

h,

enu = u(tn)− un
h = θnu + ξnu, θnu = u(tn)−Phu

n, ξnu = Phu
n − un

h,

enw = w(tn)−wn
h = θnw + ξnw, θnw = w(tn)−Rhw

n, ξnw = Rhw
n −wn

h,

ep = p(tn)− pnh = θnp + ξnp , θnp = p(tn)−Qhp
n, ξnp = Qhp

n − pnh.

For 0 ≤ n ≤ N , we take t = tn+1 in (4) and obtain

(δ∗tu
n+1,vh) + µ(∇un+1,∇vh) + γ(∇wn+1,∇vh) + νb(un+1,un+1,vh)(36a)

+ α(un+1,vh) + β(|un+1|2un+1,vh) + (∇pn,vh)

= (fn+1,vh) + (Rn+1
u ,vh)− (∇(pn+1 − pn),vh),

(wn+1,ϕh) = (∇un+1,∇ϕh),(36b)

(∇ · un+1, qh) = 0,(36c)
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where Rn+1
u is defined as

Rn+1
u = δ∗tu

n+1 − ut(tn+1) =
3un+1 − 4un + un−1

2τ
− ∂u(tn+1)

∂t
.

Lemma 4.1. Under the Assumption (35), the truncation errors Rn+1
u satisfies

(37) max
1≤n≤N

∥Rn+1
u ∥ ≤ Cτ2.

Proof. Applying the Taylor expansion, we get

|Rn+1
u | = |δ∗tun+1 − ut(tn+1)| ≤ Cτ

∫ tn+1

tn

|uttt(·, s)|ds ≤ Cτ2.

�

Theorem 4.1. Let (ũm
h , w̃m

h ,um
h , pmh ) and (u(tm),w(tm), p(tm)) be the solutions

of (13)-(15) and (6), respectively. Under Lemma 4.1, the Assumption (35) and
τ ∼ h2, then for all 0 ≤ m ≤ N , we have

∥em+1
u ∥2 + ∥e∗,m+1

u ∥2 + ∥∇em+1
u ∥2 + τ

m∑
n=1

∥en+1
p ∥2

≤ C(τ4 +max{h2r−2, h4}).
(38)

Proof. We subtract equation (13) from equation (36) to obtain the following error
equations

(
3ẽn+1

u − 4enu + en−1
u

2τ
,vh) + µ(∇ẽn+1

u ,∇vh) + γ(∇ẽn+1
w ,∇vh)(39a)

+ νb(û∗,n+1,un+1,vh) + νb(e∗,nu ,un+1,vh) + νb(u∗,n
h , ẽn+1

u ,vh)

+ α(ẽn+1
u ,vh) + β(|u∗,n

h |2ẽn+1
u ,vh) + β((u∗,n + u∗,n

h ) · e∗,nu un+1,vh)

+ β((u∗∗,n+1 · û∗,n+1)un+1,vh) + (∇enp ,vh)

= (Rn+1
u ,vh)− (∇(pn+1 − pn),vh),

(ẽn+1
w ,ϕh) = (∇ẽn+1

u ,∇ϕh),(39b)

(∇ · en+1
u , qh) = 0.(39c)

From (15), we obtain

(40) (
3en+1

u − 3ẽn+1
u

2τ
,vh) + (∇(en+1

p − enp ),vh) = (∇(pn+1 − pn),vh).

In what follows, we present the analysis of the error equations (39)-(40) and then
establish the error estimates given in Theorem 4.1. Firstly, we make the following
induction assumption for the error functions at the previous time steps

(41) ∥e∗,nu ∥ ≤ C(τ2 +max{hr−1, h2}),

for n ≤ m. Such an induction assumption will be recovered by the error estimate
at the next time step tn+1.

For n = 1, (41) obviously holds. The induction assumption (41) (for n ≤ m)
yields

∥u∗,n
h ∥L∞ ≤ ∥u∗,n∥L∞ + ∥e∗,nu ∥L∞ ≤ ∥u∗,n∥L∞ + Ch− d

2 ∥e∗,nu ∥ ≤ C,(42)
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for d
2 ≤ max{r − 1, 2} and τ ≤ h√

C
with h ≤ h0, where h0 is a small positive

constant. Then, taking vh = 4τ ξ̃n+1
u and ϕh = 4γτ ξ̃n+1

w in (39) and adding them
up, we have

(3ξ̃n+1
u − 4ξnu + ξn−1

u , 2ξ̃n+1
u ) + 4µτ∥∇ξ̃n+1

u ∥2 + 4γτ∥ξ̃n+1
w ∥2 + 4ατ∥ξ̃n+1

u ∥2

= 4τ(Ru(tn+1), ξ̃
n+1
u )− 4τ(∇enp , ξ̃

n+1
u )− 2τ(δ∗t θ

n+1
u , 2ξ̃n+1

u )

− 4γτ(θn+1
w , ξ̃n+1

w )− 4ατ(θn+1
u , ξ̃n+1

u )− 4ντb(û∗,n+1,un+1, ξ̃n+1
u )

− 4ντb(e∗,nu ,un+1, ξ̃n+1
u )− 4ντb(u∗,n

h , ẽn+1
u , ξ̃n+1

u )

− 4βτ(|u∗,n
h |2ẽn+1

u , ξ̃n+1
u )− 4τ(∇(pn+1 − pn), ξ̃n+1

u )

− 4βτ((u∗,n + u∗,n
h ) · e∗,nu un+1, ξ̃n+1

u )− 4βτ(u∗∗,n+1 · û∗,n+1un+1, ξ̃n+1
u ).

(43)

Choosing vh = 4τ ξ̃n+1
u in (40), we obtain

(3ξn+1
u − 3ξ̃n+1

u , 2ξ̃n+1
u ) + 4τ(∇(en+1

p − enp ), ξ̃
n+1
u )

= 4τ(∇(pn+1 − pn), ξ̃n+1
u ).

(44)

Adding the resulting equations (43) and (44), we derive

(3ξn+1
u − 4ξnu + ξn−1

u , 2ξ̃n+1
u ) + 4µτ∥∇ξ̃n+1

u ∥2 + 4γτ∥ξ̃n+1
w ∥2 + 4ατ∥ξ̃n+1

u ∥2

= 4τ(Ru(tn+1), ξ̃
n+1
u )− 4τ(∇ξn+1

p , ξ̃n+1
u )− 2τ(δ∗t θ

n+1
u , 2ξ̃n+1

u )

− 4γτ(θn+1
w , ξ̃n+1

w ) + 4τ(θn+1
p ,∇ · ξ̃n+1

u )− 4ατ(θn+1
u , ξ̃n+1

u )

− 4ντb(û∗,n+1,un+1, ξ̃n+1
u )− 4ντb(e∗,nu ,un+1, ξ̃n+1

u )

− 4ντb(u∗,n
h , ẽn+1

u , ξ̃n+1
u )− 4βτ(|u∗,n

h |2ẽn+1
u , ξ̃n+1

u )

− 4βτ((u∗,n + u∗,n
h ) · e∗,nu un+1, ξ̃n+1

u )

− 4βτ(u∗∗,n+1 · û∗,n+1un+1, ξ̃n+1
u ).

(45)

Taking vh = 4τ
3 (3en+1

u − 4enu + en−1
u ) in (40) and from the identity of (25), we can

get

(3ξn+1
u − 4ξnu + ξn−1

u , 2ξ̃n+1
u )

= (3en+1
u − 4enu + en−1

u , 2ξ̃n+1
u − 2ξn+1

u )− 4τ(δ∗t θ
n+1
u , 2ξ̃n+1

u − 2ξn+1
u )

+ (3ξn+1
u − 4ξnu + ξn−1

u , 2ξn+1
u )

= ∥ξn+1
u ∥2 − ∥ξnu∥2 + ∥2ξn+1

u − ξnu∥2 − ∥2ξnu − ξn−1
u ∥2 + ∥ξ̂∗,n+1

u ∥2

− 4τ(δ∗t θ
n+1
u , ξ̃n+1

u − ξn+1
u ).

(46)

By the equation of (14), we have

(47)
3

2τ
(ẽn+1

u ,∇qh) = (∇(en+1
p − enp ),∇qh)− (∇(pn+1 − pn),∇qh).

Then, taking qh = 8τ2

3 ξn+1
p in (47), we arrive at

4τ(∇ξn+1
p , ξ̃n+1

u )

=
4τ2

3
(∥∇ξn+1

p ∥2 − ∥∇ξnp ∥2 + ∥∇ξn+1
p −∇ξnp ∥2)

+
8τ2

3
(∇θn+1

p −∇θnp ,∇ξn+1
p )− 8τ2

3
(∇pn+1 −∇pn,∇ξn+1

p )

− 4τ(∇ξn+1
p , θn+1

u ).

(48)
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Substituting (46) and (48) into (45), we derive

∥ξn+1
u ∥2 − ∥ξnu∥2 + ∥2ξn+1

u − ξnu∥2 − ∥2ξnu − ξn−1
u ∥2 + ∥ξ̂∗,n+1

u ∥2

+ 4µτ∥∇ξ̃n+1
u ∥2 + 4γτ∥ξ̃n+1

w ∥2 + 4ατ∥ξ̃n+1
u ∥2 + 4τ2

3
(∥∇ξn+1

p ∥2

− ∥∇ξnp ∥2 + ∥∇ξn+1
p −∇ξnp ∥2)

=
5∑

i=1

Ii,

(49)

with

I1 = 4τ(Rn+1
u , ξ̃n+1

u ),

I2 = −4τ(δ∗t θ
n+1
u , ξn+1

u )− 4γτ(θn+1
w , ξ̃n+1

w ) + 4τ(θn+1
p ,∇ · ξ̃n+1

u )− 4ατ(θn+1
u , ξ̃n+1

u ),

I3 = −4ντb(û∗,n+1,un+1, ξ̃n+1
u )− 4ντb(e∗,nu ,un+1, ξ̃n+1

u )− 4ντb(u∗,n
h , ẽn+1

u , ξ̃n+1
u ),

I4 = −4βτ(|u∗,n
h |2ẽn+1

u , ξ̃n+1
u )− 4βτ((u∗,n + u∗,n

h ) · e∗,nu un+1, ξ̃n+1
u )

− 4βτ(u∗∗,n+1 · û∗,n+1un+1, ξ̃n+1
u ),

I5 =
8τ2

3
(∇pn+1 −∇pn,∇ξn+1

p )− 8τ2

3
(∇θn+1

p −∇θnp ,∇ξn+1
p ) + 4τ(∇ξn+1

p , θn+1
u ).

Now, we analyze each term on the righthand side of (49). According to Lemma
4.1, integration by parts, Hölder’s inequality, Young’s inequality and τ ∼ h2, we
find

I1 ≤ 4τ∥Rn+1
u ∥∥ξ̃n+1

u ∥ ≤ ατ

4
∥ξ̃n+1

u ∥2 + 16τ

α
∥Rn+1

u ∥2 ≤ ατ

4
∥ξ̃n+1

u ∥2 + Cτ5,(50)

I2 ≤ 4τ
(
∥δ∗t θn+1

u ∥∥ξn+1
u ∥+ γ∥θn+1

w ∥∥ξ̃n+1
w ∥+ ∥θn+1

p ∥∥∇ξ̃n+1
u ∥(51)

+ α∥θn+1
u ∥∥ξ̃n+1

u ∥
)

≤ τ∥ξn+1
u ∥2 + γτ∥ξ̃n+1

w ∥2 + ατ

4
∥ξ̃n+1

u ∥2 + µτ

3
∥∇ξ̃n+1

u ∥2 + 8γτ∥θn+1
w ∥2

+ 4τ∥δ∗t θn+1
u ∥2 + 16ατ∥θn+1

u ∥2 + 3τ

4µ
∥θn+1

p ∥2

≤ τ∥ξn+1
u ∥2 + γτ∥ξ̃n+1

w ∥2 + ατ

4
∥ξ̃n+1

u ∥2 + µτ

3
∥∇ξ̃n+1

u ∥2 + Cτh2r,

I3 ≤ 4Cντ∥∇ξ̃n+1
u ∥

(
∥∆un+1∥(∥û∗,n+1∥+ ∥θnu∥+ ∥ξnu∥+ ∥θn−1

u ∥(52)

+ ∥ξn−1
u ∥) + ∥u∗,n

h ∥L∞∥∇θn+1
u ∥

)
≤ µτ

3
∥∇ξ̃n+1

u ∥2 + 12Cν2τ

µ
∥∆un+1∥2(∥ξnu∥2 + ∥ξn−1

u ∥2 + ∥θnu∥2

+ ∥θn−1
u ∥2) + 12Cν2τ

µ
∥∆un+1∥2∥û∗,n+1∥2

+
12Cν2τ

µ
∥u∗,n

h ∥2L∞∥∇θn+1
u ∥2

≤ µτ

3
∥∇ξ̃n+1

u ∥2 + Cτ(∥ξnu∥2 + ∥ξn−1
u ∥2) + Cτh2r + Cτ5,

I4 ≤ 4βτ∥∇ξ̃n+1
u ∥

(
∥u∗,n

h ∥2L∞∥∇θn+1
u ∥+ ∥∆un+1∥∥∇u∗,n+1∥∥u∗∗,n+1∥(53)

+ ∥∆un+1∥(∥∇u∗,n∥+ ∥u∗,n
h ∥L∞)(∥θnu∥+ ∥ξnu∥+ ∥θn−1

u ∥+ ∥ξn−1
u ∥)

)
≤ µτ

3
∥∇ξ̃n+1

u ∥2 + 12Cβ2τ

µ

(
∥u∗,n

h ∥4L∞∥∇θn+1
u ∥2
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+ ∥∆un+1∥2∥∇u∗,n+1∥2∥u∗∗,n+1∥2 + ∥∆un+1∥2(∥∇u∗,n∥2

+ ∥u∗,n
h ∥2L∞)(∥θnu∥2 + ∥ξnu∥2 + ∥θn−1

u ∥2 + ∥ξn−1
u ∥2)

)
≤ µτ

3
∥∇ξ̃n+1

u ∥2 + Cτ(∥ξnu∥2 + ∥ξn−1
u ∥2) + Cτh2r + Cτ5,

I5 ≤ 8τ2

3

∫ tn+1

tn

(∥∇pt∥+ ∥∇θpt∥)ds∥∇ξn+1
p ∥+ 4τhr+1∥∇ξn+1

p ∥(54)

≤ τ3∥∇ξn+1
p ∥2 + Cτ2

∫ tn+1

tn

∥∇pt∥2ds+ Cτ−1h2r+2

≤ τ3∥∇ξn+1
p ∥2 + Cτ(h4 + h2r−2).

Substituting (50)-(54) into (49) and summing it over n from 1 to m, we obtain

∥ξm+1
u ∥2 + ∥2ξm+1

u − ξmu ∥2 + 4τ2

3
∥∇ξm+1

p ∥2 +
m∑

n=1

∥ξ̂∗,n+1
u ∥2

+ 3µτ
m∑

n=1

∥∇ξ̃n+1
u ∥2 + 3γτ

m∑
n=1

∥ξ̃n+1
w ∥2 + 3ατ

m∑
n=1

∥ξ̃n+1
u ∥2

+
4τ2

3

m∑
n=1

∥∇ξn+1
p −∇ξnp ∥2

≤ Cτ

m∑
n=1

(
τ4 + h2r−2 + h4 + ∥ξn+1

u ∥2 + ∥ξnu∥2 + ∥ξn−1
u ∥2 + τ2∥∇ξn+1

p ∥2
)
.

(55)

Employing the discrete Gronwall’s inequality, it is easy to get

∥ξm+1
u ∥2 + ∥2ξm+1

u − ξmu ∥2 + 4τ2

3
∥∇ξm+1

p ∥2 +
m∑

n=1

∥ξ̂∗,n+1
u ∥2

+ 3µτ
m∑

n=1

∥∇ξ̃n+1
u ∥2 + 3γτ

m∑
n=1

∥ξ̃n+1
w ∥2 + 3ατ

m∑
n=1

∥ξ̃n+1
u ∥2

+
4τ2

3

m∑
n=1

∥∇ξn+1
p −∇ξnp ∥2

≤ C(τ4 +max{h2r−2, h4}).

(56)

The above estimate implies that the induction assumption (41) could be recovered
at n = m+ 1. Thus the mathematical induction is closed.

In what follows, we add the equations (39) and (40) and obtain

(
3en+1

u − 4enu + en−1
u

2τ
,vh) + µ(∇ẽn+1

u ,∇vh) + γ(∇ẽn+1
w ,∇vh)(57a)

+ νb(û∗,n+1,un+1,vh) + νb(e∗,nu ,un+1,vh) + νb(u∗,n
h , ẽn+1

u ,vh)

+ β(|u∗,n
h |2ẽn+1

u ,vh) + β((u∗,n + u∗,n
h ) · e∗,nu un+1,vh)

+ β((u∗∗,n+1 · û∗,n+1)un+1,vh) + (∇en+1
p ,vh) + α(ẽn+1

u ,vh)

= (Rn+1
u ,vh),

(ẽn+1
w ,ϕh) = (∇ẽn+1

u ,∇ϕh),(57b)

(∇ · en+1
u , qh) = 0.(57c)
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Then, taking vh = 4τδ∗t ξ
n+1
u in (57a), one has

4τ∥δ∗t ξn+1
u ∥2 + 4µτ(∇ξ̃n+1

u ,∇δ∗t ξ
n+1
u ) + 4γτ(∇ξ̃n+1

w ,∇δ∗t ξ
n+1
u )

= 4τ(Ru(tn+1), δ
∗
t ξ

n+1
u )− 4τ(δ∗t θ

n+1
u , δ∗t ξ

n+1
u )− 4ατ(θn+1

u , δ∗t ξ
n+1
u )

− 4ατ(ξ̃n+1
u , δ∗t ξ

n+1
u ) + 4τ(∇en+1

p , δ∗t θ
n+1
u )

− 4ντb(û∗(tn+1),u(tn+1), δ
∗
t ξ

n+1
u )− 4ντb(e∗,nu ,u(tn+1), δ

∗
t ξ

n+1
u )

− 4ντb(u∗,n
h , ẽn+1

u , δ∗t ξ
n+1
u )− 4βτ((u∗(tn) + u∗,n

h ) · e∗,nu u(tn+1), δ
∗
t ξ

n+1
u )

− 4βτ(|u∗,n
h |2ẽn+1

u , δ∗t ξ
n+1
u )− 4βτ(u∗∗(tn+1) · û∗(tn+1)u(tn+1), δ

∗
t ξ

n+1
u ).

(58)

By the equation (36b), (39b) and (57c), we arrive at

(en+1
w ,ϕh) = (∇en+1

u ,∇ϕh),(59a)

(ξ̃n+1
w − ξn+1

w ,ϕh) = (∇ξ̃n+1
u −∇ξn+1

u ,∇ϕh),(59b)

(δ∗t θ
n+1
w ,ϕh) + (δ∗t ξ

n+1
w ,ϕh) = (∇δ∗t ξ

n+1
u ,∇ϕh),(59c)

(∇ · δ∗t en+1
u , qh) = 0.(59d)

Choosing qh = 4µτ∆(pn+1
h − pnh) in (59d), we derive

4µτ(∇δ∗t ξ
n+1
u ,∇ξ̃n+1

u )

= 4µτ(∇δ∗t ξ
n+1
u ,∇ξn+1

u ) + 4µτ(∇δ∗t ξ
n+1
u ,∇(ξ̃n+1

u − ξn+1
u ))

= 4µτ(∇ξn+1
u ,∇δ∗t ξ

n+1
u )− 4µτ(∇ · δ∗t en+1

u ,∆(pn+1
h − pn+1

h ))

= µ(∥∇ξn+1
u ∥2 − ∥∇ξnu∥2 + ∥2∇ξn+1

u −∇ξnu∥2

− ∥2∇ξnu −∇ξn−1
u ∥2 + ∥∇ξ̂∗,n+1

u ∥2).

(60)

Then, we taking ϕh = 4γτ ξ̃n+1
w in (59c) and qh = 4γτ∆2(pn+1

h − pnh) in (59d), we
have

4γτ(∇δ∗t ξ
n+1
u ,∇ξ̃n+1

w )

= 4γτ(δ∗t θ
n+1
w , ξ̃n+1

w ) + 4γτ(δ∗t ξ
n+1
w , ξn+1

w ) + 4γτ(δ∗t ξ
n+1
w , ξ̃n+1

w − ξn+1
w )

= γ(∥ξn+1
w ∥2 − ∥ξnw∥2 + ∥2ξn+1

w − ξnw∥2 − ∥2ξnw − ξn−1
w ∥2 + ∥ξ̂∗,n+1

w ∥2)
+ 4γτ(δ∗t θ

n+1
w , ξn+1

w ).

(61)

Substituting (60) and (61) into (58), we obtain

4τ∥δ∗t ξn+1
u ∥2 + µ(∥∇ξn+1

u ∥2 − ∥∇ξnu∥2 + ∥∇ξ̂∗,n+1
u ∥2 + ∥2∇ξn+1

u −∇ξnu∥2

− ∥2∇ξnu −∇ξn−1
u ∥2) + γ(∥ξn+1

w ∥2 − ∥ξnw∥2 + ∥ξ̂∗,n+1
w ∥2 + ∥2ξn+1

w − ξnw∥2

− ∥2ξnw − ξn−1
w ∥2) =

4∑
i=1

Si,

(62)

with

S1 = 4τ(Ru(tn+1), δ
∗
t ξ

n+1
u ),

S2 = −4τ(δ∗t θ
n+1
u , δ∗t ξ

n+1
u )− 4ατ(θn+1

u , δ∗t ξ
n+1
u )− 4ατ(ξ̃n+1

u , δ∗t ξ
n+1
u )

+ 4τ(∇en+1
p , δ∗t θ

n+1
u )− 4γτ(δ∗t θ

n+1
w , ξn+1

w ),

S3 = −4ντb(û∗(tn+1),u(tn+1), δ
∗
t ξ

n+1
u )− 4ντb(e∗,nu ,u(tn+1), δ

∗
t ξ

n+1
u )

− 4ντb(u∗,n
h , ẽn+1

u , δ∗t ξ
n+1
u ),

S4 = −4βτ(|u∗,n
h |2ẽn+1

u , δ∗t ξ
n+1
u )− 4βτ((u∗(tn) + u∗,n

h ) · e∗,nu u(tn+1), δ
∗
t ξ

n+1
u )
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− 4βτ(u∗∗(tn+1) · û∗(tn+1)u(tn+1), δ
∗
t ξ

n+1
u ).

Recalling the Lemma 4.1, τ ∼ h2, integration by parts, Hölder’s inequality and
Young’s inequality again, the estimates for each term on the righthand side of (62)
are obtained below

S1 ≤ 4τ∥Ru(tn+1)∥∥δ∗t ξn+1
u ∥ ≤ τ

2
∥δ∗t ξn+1

u ∥2 + Cτ5,(63)

S2 ≤ 4τ(∥δ∗t θn+1
u ∥∥δ∗t ξn+1

u ∥+ α∥θn+1
u ∥∥δ∗t ξn+1

u ∥+ α∥ξ̃n+1
u ∥∥δ∗t ξn+1

u ∥(64)

+ γ∥δ∗t θn+1
w ∥∥ξn+1

w ∥+ ∥∇θn+1
p ∥∥δ∗t θn+1

u ∥+ ∥∇ξn+1
p ∥∥δ∗t θn+1

u ∥)

≤ τ

2
∥δ∗t ξn+1

u ∥2 + τ3∥∇ξn+1
p ∥2 + 12τ(∥δ∗t θn+1

u ∥2 + α∥θn+1
u ∥2 + α∥ξ̃n+1

u ∥2)

+ γτ∥ξn+1
w ∥2 + 4γτ∥δ∗t θn+1

w ∥2 + Cτh2r−2 + Cτh2r

≤ τ

2
∥δ∗t ξn+1

u ∥2 + τ3∥∇ξn+1
p ∥2 + Cτ∥ξ̃n+1

u ∥2 + γτ∥ξn+1
w ∥2 + Cτh2r−2,

S3 ≤ 4Cντ∥δ∗t ξn+1
u ∥((∥∇û∗(tn+1)∥+ ∥∇e∗,nu ∥)∥∆u(tn+1)∥(65)

+ ∥u∗,n
h ∥L∞∥∇ẽn+1

u ∥)

≤ τ

2
∥δ∗t ξn+1

u ∥2 + 4Cν2τ∥∆u(tn+1)∥2(∥∇û∗(tn+1)∥2 + ∥∇ξnu∥2

+ ∥∇ξn−1
u ∥2) + 4Cν2τ∥∆u(tn+1)∥2(∥∇θnu∥2 + ∥∇θn−1

u ∥2)

+ 4Cν2τ∥u∗,n
h ∥2L∞(∥∇θn+1

u ∥+ ∥∇ξ̃n+1
u ∥)

≤ τ

2
∥δ∗t ξn+1

u ∥2 + Cτ(∥∇ξ̃n+1
u ∥2 + ∥∇ξnu∥2 + ∥∇ξn−1

u ∥2) + Cτ5 + Cτh2r,

S4 ≤ 4βτ∥δ∗t ξn+1
u ∥(∥u∗,n

h ∥2L∞∥ẽn+1
u ∥+ ∥∆u∗∗(tn+1)∥∥∆u(tn+1)∥∥û∗(tn+1)∥(66)

+ (∥∆u∗(tn)∥+ ∥u∗,n
h ∥L∞)∥∆u(tn+1)∥∥e∗,nu ∥)

≤ τ

2
∥δ∗t ξn+1

u ∥2 + 4Cβ2τ(∥θ∗,nu ∥2 + ∥θn+1
u ∥2 + ∥ξ̃n+1

u ∥2

+ ∥ξnu∥2 + ∥ξn−1
u ∥2) + Cτ5

≤ τ

2
∥δ∗t ξn+1

u ∥2 + 4Cβ2τ(∥ξ̃n+1
u ∥2 + ∥ξnu∥2 + ∥ξn−1

u ∥2)

+ Cτh2(r+1) + Cτ5.

Substituting (64)-(66) into (63) and summing it over n from 1 to m, we get

µ(∥∇ξm+1
u ∥2 + ∥2∇ξm+1

u −∇ξmu ∥2) + γ(∥ξm+1
w ∥2 + ∥2ξm+1

w − ξmw∥2)

+

m∑
n=1

(2τ∥δ∗t ξn+1
u ∥2 + µ∥∇ξ̂∗,n+1

u ∥2 + ∥ξ̂∗,n+1
w ∥2 + ∥ξ̂∗,n+1

u ∥2)

≤ Cτ
m∑

n=1

(∥∇ξ̃n+1
u ∥2 + ∥∇ξnu∥2 + ∥∇ξn−1

u ∥2 + ∥ξ̃n+1
u ∥2 + ∥ξnu∥2 + ∥ξn−1

u ∥2

+ τ2∥∇ξn+1
p ∥2 + ∥ξn+1

w ∥2) + Ch2r−2 + Cτ4.

(67)

Employing the discrete Gronwall’s inequality, we obtain

µ(∥∇ξm+1
u ∥2 + ∥2∇ξm+1

u −∇ξmu ∥2) + γ(∥ξm+1
w ∥2 + ∥2ξm+1

w − ξmw∥2)

+
m∑

n=1

(2τ∥δ∗t ξn+1
u ∥2 + µ∥∇ξ̂∗,n+1

u ∥2 + ∥ξ̂∗,n+1
w ∥2 + ∥ξ̂∗,n+1

u ∥2)

≤ C(h2r−2 + τ4).

(68)
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Subsequently, we choose vh = 4τ ξ̃n+1
w in (39a) and have

(3ξ̃n+1
u − 4ξnu + ξn−1

u , 2ξ̃n+1
w ) + 4µτ(∇ξ̃n+1

u ,∇ξ̃n+1
w ) + 4γτ∥∇ξ̃n+1

w ∥2

+ 4ατ(ξ̃n+1
u , ξ̃n+1

w ) + 4τ(∇enp , ξ̃
n+1
w )

= 4τ(Rn+1
u , ξ̃n+1

w )− 4τ(δ∗t θ
n+1
u , ξ̃n+1

w )− 4ατ(θn+1
u , ξ̃n+1

w )

− 4ντb(û∗,n+1,un+1, ξ̃n+1
w )− 4ντb(e∗,nu ,un+1, ξ̃n+1

w )

− 4ντb(u∗,n
h , ẽn+1

u , ξ̃n+1
w )− 4βτ(|u∗,n

h |2ẽn+1
u , ξ̃n+1

w )

− 4βτ((u∗∗,n+1 · û∗,n+1)un+1, ξ̃n+1
w )− 4τ(∇(pn+1 − pn), ξ̃n+1

w )

− 4βτ((u∗,n + u∗,n
h ) · e∗,nu un+1, ξ̃n+1

w ).

(69)

Taking ϕh = 4µτ ξ̃n+1
w and 4ατξ̃n+1

u in (39b), we obtain

4µτ(∇ξ̃n+1
u ,∇ξ̃n+1

w ) = 4µτ∥ξ̃n+1
w ∥2 + 4µτ(θn+1

w , ξ̃n+1
w ),(70a)

4ατ(ξ̃n+1
u , ξ̃n+1

w ) = 4ατ∥∇ξ̃n+1
u ∥2 − 4ατ(θn+1

w , ξ̃n+1
u ).(70b)

Choosing vh = 4τ ξ̃n+1
w in (40), we derive

(3en+1
u − 3ẽn+1

u , 2ξ̃n+1
w ) + 4τ(∇(en+1

p − enp ), ξ̃
n+1
w )

= 4τ(∇(pn+1 − pn), ξ̃n+1
w ).

(71)

Taking ϕh = 2(3ξn+1
u −4ξnu+ξn−1

u ) in (59a), ϕh = δ∗t e
n+1
u in (59b), qh = 4τ∆(pn+1

h −
pnh) in (59d) and vh = 8τ2

3 ∆δ∗t e
n+1
u in (40), we have

(3ξn+1
u − 4ξnu + ξn−1

u , 2ξ̃n+1
w )

= (3ξn+1
u − 4ξnu + ξn−1

u , 2ξn+1
w ) + (3ξn+1

u − 4ξnu + ξn−1
u , 2ξ̃n+1

w − 2ξn+1
w )

= (3ξn+1
u − 4ξnu + ξn−1

u , 2ξn+1
w + 2θn+1

w )

− 4τ(δ∗t ξ
n+1
u , θn+1

w ) + 4τ(δ∗t e
n+1
u , ξ̃n+1

w − ξn+1
w )− 4τ(δ∗t θ

n+1
u , ξ̃n+1

w − ξn+1
w )

= ∥∇ξn+1
u ∥2 − ∥∇ξnu∥2 + ∥2∇ξn+1

u −∇ξnu∥2 − ∥2∇ξnu −∇ξn−1
u ∥2

+ ∥∇ξ̂∗,n+1
u ∥2 − 4τ(θn+1

w , δ∗t ξ
n+1
u )− 4τ(δ∗t θ

n+1
u , ξ̃n+1

w − ξn+1
w ).

(72)

Choosing qh = 8τ2

3 ∇(∆ξn+1
p ) in (40), one can easily get

4τ(ξ̃n+1
w ,∇ξn+1

p )

=
4τ2

3
(∥∆ξn+1

p ∥2 − ∥∆ξnp ∥2 + ∥∆ξn+1
p −∆ξnp ∥2)− 4τ(θn+1

w ,∇ξn+1
p )

+
8τ2

3
(

∫ tn+1

tn

∆θptdt,∆ξn+1
p )− 8τ2

3
(

∫ tn+1

tn

∆ptdt,∆ξn+1
p ).

(73)

Substituting (69)-(73) into (67), we get

∥∇ξn+1
u ∥2 − ∥∇ξnu∥2 + ∥2∇ξn+1

u −∇ξnu∥2 − ∥2∇ξnu −∇ξn−1
u ∥2

+ ∥∇ξ̂∗,n+1
u ∥2 + 4µτ∥ξ̃n+1

w ∥2 + 4γτ∥∇ξ̃n+1
w ∥2 + 4ατ∥∇ξ̃n+1

u ∥2

+
4τ2

3
∥∆ξn+1

p ∥2 − 4τ2

3
∥∆ξnp ∥2 +

4τ2

3
∥∆ξn+1

p −∆ξnp ∥2 =
5∑

i=1

Di,

(74)

with

D1 = 4τ(Rn+1
u , ξ̃n+1

w ),

D2 = −4τ(δ∗t θ
n+1
u , ξn+1

w )− 4µτ(θn+1
w , ξ̃n+1

w ) + 4ατ(θn+1
w , ξ̃n+1

u ) + 4τ(θn+1
w , δ∗t ξ

n+1
u )
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− 4ατ(θn+1
u , ξ̃n+1

w ) + 4τ(θn+1
w ,∇ξn+1

p ) + 4τ(θn+1
p ,∇ · ξ̃n+1

w ),

D3 = −4ντb(û∗,n+1,un+1, ξ̃n+1
w )− 4ντb(e∗,nu ,un+1, ξ̃n+1

w )− 4ντb(u∗,n
h , ẽn+1

u , ξ̃n+1
w ),

D4 = −4βτ(|u∗,n
h |2ẽn+1

u , ξ̃n+1
w )− 4βτ((u∗,n + u∗,n

h ) · e∗,nu un+1, ξ̃n+1
w )

− 4βτ((u∗∗,n+1 · û∗,n+1)un+1, ξ̃n+1
w ),

D5 =
8τ2

3
(

∫ tn+1

tn

∆ptdt,∆ξn+1
p )− 8τ2

3
(

∫ tn+1

tn

∆θptdt,∆ξn+1
p ).

By using the Lemma 4.1, integration by parts, Hölder’s inequality, Young’s in-
equality and τ ∼ h2, we estimate the righthand side of (74) and obtain

D1 ≤ 4τ∥Rn+1
u ∥∥ξ̃n+1

w ∥ ≤ µτ∥ξ̃n+1
w ∥2 + 4τ

µ
∥Rn+1

u ∥2 ≤ µτ∥ξ̃n+1
w ∥2 + Cτ5,(75)

D2 ≤ 4τ(∥δ∗t θn+1
u ∥∥ξ̃n+1

w ∥+ µ∥θn+1
w ∥∥ξ̃n+1

w ∥+ α∥θn+1
w ∥∥ξ̃n+1

u ∥(76)

+ ∥δ∗t ξn+1
u ∥∥θn+1

w ∥+ α∥θn+1
u ∥∥ξ̃n+1

w ∥+ C∥θn+1
w ∥∥∇ξn+1

p ∥

+ ∥θn+1
p ∥∥∇ξ̃n+1

w ∥)

≤ γτ∥ξn+1
w ∥2 + µτ∥ξ̃n+1

w ∥2 + γτ∥∇ξ̃n+1
w ∥2 + τ

2
∥δ∗t ξn+1

u ∥2 + τ3∥∇ξn+1
p ∥2

+ ατ∥ξ̃n+1
u ∥2 + Cτ(∥δ∗t θn+1

u ∥2 + ∥θn+1
w ∥2 + τ−2∥θn+1

w ∥2

+ ∥θn+1
u ∥2 + ∥θn+1

p ∥2)

≤ γτ∥ξn+1
w ∥2 + µτ∥ξ̃n+1

w ∥2 + γτ∥∇ξ̃n+1
w ∥2 + τ

2
∥δ∗t ξn+1

u ∥2 + τ3∥∇ξn+1
p ∥2

+ ατ∥ξ̃n+1
u ∥2 + Cτh2r−2,

D3 ≤ 4Cντ∥∇ξ̃n+1
w ∥(∥∇û∗,n+1∥∥∇un+1∥+ ∥∇e∗,nu ∥∥∇un+1∥(77)

+ ∥u∗,n
h ∥L∞∥∇ẽn+1

u ∥)

≤ γτ∥∇ξ̃n+1
w ∥2 + 8Cν2

γ
(∥∇un+1∥2(∥∇û∗,n+1∥2 + ∥∇θnu∥+ ∥∇θn−1

u ∥

+ ∥∇ξnu∥+ ∥∇ξn−1
u ∥) + ∥u∗,n

h ∥2L∞(∥∇θn+1
u ∥+ ∥∇ξ̃n+1

u ∥))

≤ γτ∥∇ξ̃n+1
w ∥2 + Cτ(∥∇ξ̃n+1

u ∥2 + ∥∇ξnu∥+ ∥∇ξn−1
u ∥) + Cτ(τ4 + h2r),

D4 ≤ 4βτ∥∇ξ̃n+1
w ∥

(
∥u∗,n

h ∥2L∞(∥∇θn+1
u ∥+ ∥∇ξ̃n+1

u ∥)(78)

+ ∥∆un+1∥∥∇u∗,n+1∥∥u∗∗,n+1∥+ ∥∆un+1∥(∥∇u∗,n∥+ ∥u∗,n
h ∥L∞)

(∥θnu∥+ ∥ξnu∥+ ∥θn−1
u ∥+ ∥ξn−1

u ∥)
)

≤ γτ∥∇ξ̃n+1
w ∥2 + 12Cβ2τ

γ

(
∥u∗,n

h ∥4L∞(∥∇θn+1
u ∥2 + ∥∇ξ̃n+1

u ∥)

+ ∥∆un+1∥2∥∇u∗,n+1∥2∥u∗∗,n+1∥2 + ∥∆un+1∥2(∥∇u∗,n∥2

+ ∥u∗,n
h ∥2L∞)(∥θnu∥2 + ∥ξnu∥2 + ∥θn−1

u ∥2 + ∥ξn−1
u ∥2)

)
≤ γτ∥∇ξ̃n+1

w ∥2 + Cτ(∥∇ξ̃n+1
u ∥+ ∥ξnu∥2 + ∥ξn−1

u ∥2) + Cτh2r + Cτ5,

D5 ≤ 8τ3

3

∫ tn+1

tn

(∥∆θpt∥+ ∥∆pt∥)ds∥∆ξn+1
p ∥ ≤ τ3∥∆ξn+1

p ∥2 + Cτh4.(79)
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Substituting (75)-(79) into (74) and summing it over n from 1 to m, we deduce

∥∇ξm+1
u ∥2 + ∥2∇ξm+1

u −∇ξmu ∥2 + 4τ2

3
∥∆ξm+1

p ∥2 +
m∑

n=1

(∥∇ξ̂∗,n+1
u ∥2

+ 2µτ∥ξ̃n+1
w ∥2 + γτ∥∇ξ̃n+1

w ∥2 + ατ∥∇ξ̃n+1
u ∥2 + 4τ2

3
∥∆ξn+1

p −∆ξnp ∥2)

≤ τ

2

m∑
n=1

∥δ∗t ξn+1
u ∥2 + Cτ

m∑
n=1

(τ2∥∆ξn+1
p ∥2 + ∥∇ξnu∥2 + ∥∇ξn−1

u ∥2

+ ∥∇ξ̃n+1
u ∥2 + ∥ξn+1

w ∥2) + Cτ(max{h4, h2r−2}+ τ4).

(80)

Employing the discrete Gronwall’s inequality, we obtain

(81)

∥∇ξm+1
u ∥2 + ∥2∇ξm+1

u −∇ξmu ∥2 + 4τ2

3
∥∆ξm+1

p ∥2 +
m∑

n=1

(∥∇ξ̂∗,n+1
u ∥2

+ 2µτ∥ξ̃n+1
w ∥2 + γτ∥∇ξ̃n+1

w ∥2 + ατ∥∇ξ̃n+1
u ∥2 + 4τ2

3
∥∆ξn+1

p −∆ξnp ∥2)

≤ C(max{h4, h2r−2}+ τ4).

Next, from the equation of (2), it is easy to get

(82)

∥en+1
p ∥ ≤ β∗ sup

vh∈V h

(en+1
p ,∇ · vh)

∥∇vh∥

≤ β∗

∥∇vh∥

(
(δ∗t e

n+1
u ,vh) + µ(∇ẽn+1

u ,∇vh) + γ(∇ẽn+1
w ,∇vh)

+ νb(û∗(tn+1),u(tn+1),vh) + νb(e∗,nu ,u(tn+1),vh)

+ νb(u∗,n
h , ẽn+1

u ,vh) + α(ẽn+1
u ,vh)− (Ru(tn+1),vh)

+ β(|u∗,n
h |2ẽn+1

u ,vh) + β((u∗(tn) + u∗,n
h )) · e∗,nu u(tn+1),vh)

+ β(u∗∗(tn+1) · û∗(tn+1)u(tn+1),vh)

)
≤ C(τ2 + ∥δ∗t en+1

u ∥+ ∥∇ẽn+1
u ∥+ ∥∇ẽn+1

w ∥+ ∥enu∥+ ∥en−1
u ∥).

Square both sides of (82) and multiplying by τ , then summing over n from 1 to m,
it holds

(83)
τ

m∑
n=1

∥en+1
p ∥2 ≤ Cτ

m∑
n=1

(τ4 + ∥δ∗t en+1
u ∥2 + ∥∇ẽn+1

u ∥2 + ∥∇ẽn+1
w ∥2

+ ∥enu∥2 + ∥en−1
u ∥2).

Finally, we are able to derive the desired result (38) by using the equations of
(56), (68), (81), (83) and triangle inequality.

�

Remark 4.1. If choosing τ ∼ h
3
2 in (54), (64), (76) and (79), we can obtain the

error estimates as follows:
Theorem 4.1. Let (ũm

h , w̃m
h ,um

h , pmh ) and (u(tm),w(tm), p(tm)) be the solu-
tions of (13)-(15) and (6), respectively. Under Lemma 4.1, the Assumption (35)
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and τ ∼ h
3
2 , then for all 0 ≤ m ≤ N , we have

∥em+1
u ∥2 + ∥e∗,m+1

u ∥2 + ∥∇em+1
u ∥2 + τ

m∑
n=1

∥en+1
p ∥2

≤ C(τ4 +max{h2r−1, h3}).
(84)

5. Numerical experiments

In this section, we present a battery of numerical experiments to solve the ac-
tive fluid model by implementing the developed scheme (13)-(15), where the stable
P 2-P 2-P1 elements are used for the velocity u, auxiliary variable w and pressure
p. The numerical examples include the stability/accuracy tests and the some simu-
lations of self-organization. Our computations are done using the software package
FreeFem++ [13] and the computational domain is set as Ω = [0, 1]d.

5.1. Convergence and stability tests. We first verify the temporal and spatial
convergence of the proposed scheme, where the domain is set as Ω = [0, 1]2. The
initial condition reads as

u0(x) = (−(cos(2πx+ π) + 1) sin(2πy), (cos(2πy + π) + 1) sin(2πx)).

Then, the external body force is given by f(x, t) = (0, 0), and the model parameters
are set as follows µ = ν = β = α = 0.1 and γ = 0.01.

Figure 1. The L2 errors for the velocity field u and pressure
p at time t = 1, where (a) convergence order in space, and (b)
convergence order in time.

Due to the exact solutions are not known when deriving the rates of numerical
convergence, the exact solutions are computed employing the temporal step size τ =
1/10000 and the spatial mesh size h = 1/120. Subsequently, to testify convergence
rates of spatial errors for the velocity and pressure, we fix the temporal step size
τ = 1/1000 and calculate the numerical errors with the following spatial mesh sizes
h = 1/10, 1/20, 1/40 and 1/80 at t = 1. Figure 1 (a) demonstrates that the
convergence rates of L2-norm of pressure p and H1-norm of velocity field u are
closer to theoretical convergence rates O(h2). Next, in order to verify the temporal
convergence rates of O(τ2) for L2-norm of velocity field and pressure respectively,
the spatial mesh size h = 1/80 is fixed and different temporal step sizes τ = 1/100,
1/200, 1/400 and 1/800 are utilized to compute the errors. Figure 1 (b) exhibits
the computational results, which are consistent with the theoretical prediction.
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Figure 2. Time evolution of the total energy functional En
tot for

τ = 0.4, 0.2, 0.1, 0.05, 0.025 and 0.0125.

In Figure 2, we further verify the energy stability of the stabilized pressure-
projection scheme. We consider the parameters µ = 0.045, ν = 0.003, β = 0.5,
α = −0.81 and γ = µ3, and a fixed spatial mesh size of h = 1/50. The energy
evolution curves are plotted for different time steps τ = 0.4, 0.2, 0.1, 0.05, 0.025
and 0.0125, up to the final time T = 2. As can be seen from the obtained energy
curves, the fully discrete numerical scheme is stable for the different temporal step
sizes and the energy eventually tends to 0 over time.

Table 1. The numerical errors and spatial convergence orders at
t = 1.

h ∥u− um
h ∥ order ∥p− pmh ∥ order ∥u− um

h ∥∗ order ∥p− pmh ∥∗ order

1/10 5.30e-04 - 1.30e-03 - 4.94e-06 - 1.92e-06 -
1/20 2.16e-04 1.28 5.31e-04 1.32 5.79e-07 3.09 4.79e-07 2.00
1/40 7.42e-05 1.54 1.73e-04 1.61 7.91e-08 2.87 1.24e-07 1.94
1/80 1.99e-05 1.89 5.02e-05 1.78 9.61e-09 3.04 3.06e-08 2.02

In addition, we compare the L2-norm errors and spatial convergence orders of
velocity field u and pressure p with and without the addition of the auxiliary
variable w = −∆u through another initial condition. The initial condition for u is
given by

u0 = (sin2(πx) sin(πy) cos(πy),− sin2(πy) sin(πx) cos(πx)).

The parameters are set the same as in convergence test. Table 1 shows the spatial
error and the convergence order, where the errors and the orders of convergence
without the addition of auxiliary variables are shown with ∥ · ∥, and the errors and
the orders of convergence with the addition of auxiliary variables are marked with
∥ · ∥∗. The results show that with the addition of the auxiliary variable, the errors
of velocity and pressure are smaller, and the order of convergence is better.

5.2. Self-organization of active fluid in 2D. In this subsection, we simulate
the self-organization of active fluid in 2D by the stabilized pressure-projection
scheme. In Figures 3 and 4, the spatial self-organization of the bacterial active
fluid was observed by adding purified genomic DNA to the dense active suspension
of Escherichia coli cells, see [21]. Figures 3 and 4 show the phase space trajectory
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of the bacterial active fluid rotating clockwise or counterclockwise at a constant
angle to form a unidirectional vortex current and the fluid rate reversing, respec-
tively. These fascinating patterns are created by the self-organization of active fluid
and can be affected by external disturbances. Moreover, experiments involving the
self-organization of active fluid can provide valuable insights into aspects such as
material preparation and biofilm formation.

Figure 3. Phase-contrast image and instantaneous ve-
locity field of a unidirectional giant vortex, snapshots
are taken at (a) t=10.00 and (b) t=22.00 (https://static-
content.springer.com/esm/art%3A10.1038%2Fs41586-020-03168-
6/MediaObjects/41586 2020 3168 MOESM2 ESM.mp4).

Figure 4. Phase-contrast image and instantaneous veloci-
ty field of giant vortices with variable direction, snapshots
are taken at (a) t=10.00 and (b) t=22.00 (https://static-
content.springer.com/esm/art%3A10.1038%2Fs41586-020-03168-
6/MediaObjects/41586 2020 3168 MOESM3 ESM.mp4).

In what follows, we use the scheme (13)-(15) to simulate the real biological self-
organization in Figures 3 and 4. Now, we consider the computational domain as
x ∈ Ω = [0, 1]2 and the initial condition as

u0(x) = (rand(x, y), rand(x, y)),

where rand(x, y) represents the random number in the interval [−1, 1] and follows a
normal distribution. The boundary conditions satisfy u|∂Ω = 0, and parameters of
the model are set as follows: µ = 0.045, ν = 0.003, β = 0.5, α = −0.81 and γ = µ3.
To better show the simulation results, we set the computational time t ∈ [0, 2] and
τ = 1/1000.

Firstly, we set the external body force f(x, t) = (0, 0). Under different random
initial conditions, active fluid forms a polar ordered state over time. We choose a
random initial condition and find that there is only one vortex in the computational

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-03168-6/MediaObjects/41586_2020_3168_MOESM2_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-03168-6/MediaObjects/41586_2020_3168_MOESM2_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-03168-6/MediaObjects/41586_2020_3168_MOESM2_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-03168-6/MediaObjects/41586_2020_3168_MOESM3_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-03168-6/MediaObjects/41586_2020_3168_MOESM3_ESM.mp4
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-03168-6/MediaObjects/41586_2020_3168_MOESM3_ESM.mp4
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domain after t = 0.10. As time goes by, the collective direction of the active fluid
remains counterclockwise, and the velocity of the active fluid tends to 0. Figure 5
shows the snapshots of u at t = 0.00, 0.01, 0.10 and 1.00. For each subfigure, the left
and the right are direction and magnitude(indicated by the colourmap) of collective
velocity, respectively. In Figure 5(a), one can clearly see the highly disordered
distribution of the magnitude and direction of the active fluid. Figure 5(b) show the
active fluid forms the vortices with disordered distribution. Eventually, the active
fluid forms a polar ordered state, as shown in Figures 5(c)-(d). Here, the presence
of the second nonlinearity in the system provides additional freedom, enabling the
system to self-organize into a polar order state without the need for external fine-
tuning.

Secondly, we set the driving force

f(x, t) =



((cos(2πx+ π) + 1)× sin(2πy), (cos(2πy + π) + 1))× sin(2πx),

(x, y) ∈
(
1

4
,
3

4

)
×

(
1

4
,
3

4

)
, t ∈

[
k, k +

1

2

)
, k = 0, 1, 2, · · · ,

((cos(2πx+ π) + 1)× sin(2πy),−(cos(2πy + π) + 1)× sin(2πx)),

(x, y) ∈
(
1

4
,
3

4

)
×

(
1

4
,
3

4

)
, t ∈

[
k +

1

2
, k + 1

)
, k = 0, 1, 2, · · · .

The snapshots of u at t = 0.00, 0.50, 0.72 and 1.00 are shown in Figure 6. In
Figure 6(a), it is clear that the magnitude and direction of the active fluid are
highly disordered distribution. Figure 6(b) shows the active fluid forms a polar
ordered state and the collective direction is clockwise. We observe that the collective
direction of the active fluid becomes counterclockwise in Figures 6(c)-(d). Here, the
temporally periodic driving force reverses the collective direction of the active fluid
periodically.

Figures 5 and 6 show the phase space trajectory of the active fluid rotating
counterclockwise to form a unidirectional vortex current, and the phase space tra-
jectory of the active fluid moving direction with periodic reversal, respectively. We
observed that this is well consistent with the experimental observations in Figures
3 and 4, and find that the direction of motion of the active fluid can be changed by
changing the external body force f(x, t). Then we set the different external body
forces f(x, t) to investigate the difference phenomena of the active fluid.

Next, the external body force and the initial condition are set as f(x, t) =
(cos(2πy), cos(2πx)) and the random number in [−1, 1] with the normal distribu-
tion, respectively. We show the snapshots of u at t = 0.00, 0.01, 0.10 and 1.00. As
can be seen from Figures 7(a) and (b), the active fluid begins to form the vortices
with disordered distribution through self-organization. Driven by external body
force and self-organized by active fluid, the disordered vortices in the region grad-
ually merge into a large vortex and a small vortex over time, as shown in Figure
7(c). Finally, it can be seen from Figure 7(d) that the large vortex and the small
vortex form two symmetrical vortices of the same size and opposite directions.

5.3. Self-organization of active fluid in 3D. We will now proceed with 3D
simulations. The computed domain is set as x ∈ Ω = [0, 1]3 and the initial condition
reads as

u0(x) = (rand(x, y, z), rand(x, y, z), rand(x, y, z)).

Then we change the external body force f(x, t) to investigate the difference phe-
nomena of the active fluid.
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Figure 5. Snapshots of the velocity u is taken at (a) t = 0.00,
(b) t = 0.01, (c) t = 0.10, (d) t = 1.00. For each subfigure, the left
is direction of velocity and the right is magnitude of velocity.

In Figure 8, we display the self-organizing of active fluid at different times when
the external body force f(x, t) = (0, 0, 0). Due to the active fluid will form a stable
vortex with time under different random initial conditions, we choose the movement
time of u in Figure 8 is the same as that in Figure 5. According to Figure 8(d1),
it can be seen that the stable vortex formed by the active fluid is almost parallel
to the xz plane. Therefore, the cross section parallel to the xz plane is used to
show the change of velocity magnitude. Different from Figure 5(d2), the velocity
magnitude of the active fluid in Figure 8(d2) is asymmetrical in space. In 3D space,
the active fluid can move spontaneously along the x, y, and z axes, so the collective
direction of motion is not completely parallel to a plane.
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Figure 6. Snapshots of the velocity u is taken at (a) t = 0.00,
(b) t = 0.50, (c) t = 0.72, (d) t = 1.00. For each subfigure, the left
is direction of velocity and the right is magnitude of velocity.

Secondly, the external body force is set as follows

f(x, t) =



(−(cos(2πx+ π) + 1)× sin(2πy), (cos(2πy + π) + 1), 0)× sin(2πx),

(x, y, z) ∈
(
1

4
,
3

4

)
×
(
1

4
,
3

4

)
× (0, 1), t ∈

[
k, k +

1

2

)
, k = 0, 1, 2, · · · ,

((cos(2πx+ π) + 1)× sin(2πy),−(cos(2πy + π) + 1)× sin(2πx), 0),

(x, y, z) ∈
(
1

4
,
3

4

)
×
(
1

4
,
3

4

)
× (0, 1), t ∈

[
k +

1

2
, k + 1

)
, k = 0, 1, 2, · · · .
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Figure 7. Snapshots of the velocity u is taken at (a) t = 0.00,
(b) t = 0.01, (c) t = 0.10, (d) t = 1.00. For each subfigure, the left
is direction of velocity and the right is magnitude of velocity.

The expressions for f1 and f2 in 3D are the same as the second simulation in 2D,
and let f3 be equal to 0. The snapshots of u at t = 0.00, 0.50, 0.72 and 1.00 are
shown in Figure 9. Due to f3 = 0, the magnitude of u3 tends to 0 in the process
of spontaneous aggregation of active fluid to form collective motion, and the stable
vortex formed is basically parallel to the xy plane. Therefore, the cross section
parallel to the xy plane is selected to show the magnitude change of velocity. It
can be seen from Figure 9 and Figure 6 that the numerical simulation results are
consistent.

Thirdly, we set the external body force f(x, t) = (cos(2πy), cos(2πx), 0). As
shown in Figure 10, the snapshots of u are taken at t = 0.00, 0.01, 0.10 and 1.00.
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Figure 8. Snapshots of the velocity u is taken at (a) t = 0.00,
(b) t = 0.01, (c) t = 0.10, (d) t = 1.00. For each subfigure, the left
is direction of velocity and the right is magnitude of velocity.

We can observe that the active fluid forms two stable vortices from a disordered
state. In Figure 10(d1), it is clear that the vortex in the upper left corner moves
counterclockwise and the vortex in the lower right corner moves clockwise, which is
the opposite of the direction in Figure 7(d1). Due to different initial random values,
the active fluid self-organizes into vortex with different collective motion direction.
As shown in Figure 9, the stable vortex formed is basically parallel to the xy plane.

6. Concluding remarks

This paper proposes a linear, decoupled and unconditional stable fully discrete
mixed finite element numerical scheme for the active fluid model. On the one
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Figure 9. Snapshots of the velocity u is taken at (a) t = 0.00,
(b) t = 0.50, (c) t = 0.72, (d) t = 1.00. For each subfigure, the left
is direction of velocity and the right is magnitude of velocity.

hand, the designed scheme can greatly reduce the expensive time cost caused by
the fourth-order derivative term, strong nonlinear terms and the coupling of ve-
locity and pressure in numerical calculation. On the other hand, the rigorous and
detailed proof processes of solvability and stability are given, and the optimal error
estimates of the related variables are obtained through strict theoretical analysis.
Furthermore, through ample numerical experiments, the validity of the model and
numerical scheme are demonstrated numerically.
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Figure 10. Snapshots of the velocity u is taken at (a) t = 0.00,
(b) t = 0.01, (c) t = 0.10, (d) t = 1.00. For each subfigure, the left
is direction of velocity and the right is magnitude of velocity.
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