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IMAGE SMOOTHING VIA A NOVEL ADAPTIVE WEIGHTED L0

REGULARIZATION

WUFAN ZHAO, TINGTING WU, CHENCHEN FENG, WENNA WU, XIAOGUANG LV,
HONGMING CHEN, AND JUN LIU∗

Abstract. Image smoothing has been extensively used in various fields, e.g., edge extraction,
image abstraction, and image detail enhancement. Many existing optimization-based image s-
moothing methods have been proposed in recent years. The downside of these methods is that
the results often have unclear edges and missing structures. To obtain satisfactory smoothing

results, we design a novel optimization model by introducing an anisotropic L0 gradient intensity.
Specifically, a weighted matrix T is imposed to control further the sparsity of the gradient mea-
sured by L0-norm. Since the proposed model is non-convex and non-smooth, we apply the half
quadratic splitting (HQS) algorithm to solve it effectively. In addition, to obtain a more suitable

regularization parameter λ, we utilize an adaptive parameter selection method based on Morozovs
discrepancy principle. Finally, we conduct numerical experiments to illustrate the superiority of
our method over some state-of-the-art methods.

Key words. Image smoothing, adaptive weighted matrix, L0 gradient minimization, parameter
selection.

1. Introduction

Image smoothing has a broad variety of applications as basic visual research, such
as image detail enhancement [8], edge extraction [41], clip-art compression artifact
removal [39, 32], image denoising [15, 31, 37], image segmentation [30, 33] and
image abstraction [38]. Image smoothing aims to obtain an image with complete
structural content but without small textures, which is undoubtedly challenging.
Actually, many advanced image smoothing algorithms have been studied over recent
years [4, 46, 22].

Model-based methods have been paid much attention because of their excellent
performance and solid theoretical guarantee. The optimization model related to
image smoothing is usually written as

(1) min
u

∥u− f∥22 + λφ(u),

where f and u denote the input image and the resulting smoothed image, respec-
tively. λ is a tradeoff parameter used to adjust the degree of regularization. Many
methods are devoted to selecting an appropriate regularizer to smooth the image
more effectively. Xu et al. [39] used L0-norm to remove a globally small-magnitude
gradient with edge preservation. However, this method failed to deal with small
structures with large amplitude and small resolution. The relative total variation
(RTV) [41] based regularization is employed to extract main structures under the
complex texture. Liu et al. [20] combined the L0 sparse constraint with the nonlo-
cal constraint to remove the fine texture of the image. However, the above methods
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are not flexible enough in gradient processing, which hinders their ability to pro-
tect weak edges and eliminate fine textures effectively. In Figure 1(b), we show the
limitation of the L0 smoothing.

(a) Input (b) L0 [39] (c) Ours

Figure 1. An example of L0 smoothing [39] and our method.
The result of [39] can not remove small structures. In contrast,
our method achieves a more convincing result.

Total variation (TV) regularization is also capable of smoothing. However, it
tends to lose local structure and produce artifacts. To cope with this barrier, many
previous works that combine anisotropic filtering with TV regularization have been
proposed [25, 43]. In [26], the authors employ the characteristics of anisotropic
total variation (ATV) to remove noise while retaining the complete structure:

(2) min
u

∥u− f∥22 + λ∥T∇u∥1,

where T(x, y) := diag(t1(x, y), t2(x, y)) and (x, y) denotes the pixel location of u.
For each pixel, the gradient of the image ∇u = (∇xu,∇yu) is the difference of
adjacent pixels along the x-axis and y-axis. In fact, T(x, y) can impose different
penalty weights on ∇xu(x, y) and ∇yu(x, y). In this work, we try to introduce the
weighted matrix T(x, y) into our smoothing model, i.e., we combine anisotropic
filtering with L0 smoothing. The proposed adaptive weighted L0 regularization
model is as follows:

(3) min
u

∥u− f∥22 + λ ∥T∇u∥0 ,

where ∥ · ∥0 denotes the L0-norm and λ is the regularization parameter. This
regularization term can flexibly handle gradients and depict local details of images,
such as weak edges and small structures. As is well known, the parameter λ also
has an impact on the image smoothing effect. A large λ can cause the image
to be too smooth and weak edges to disappear, while a small λ cannot remove
unrelated textures that exist in the image. A good optimization model should have
an appropriate regularization parameter. Common parameter adjustment methods
include the L-curve-based approach [18], the generalized cross-validation method
[10], the variational Bayesian method [1], and Morozovs discrepancy principle [34,
24]. Specifically, Morozovs discrepancy principle is one of the most widely used
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parameter choice strategies, where a regularization parameter with the following
conditions:

(4) D = {u : ∥Au− f∥22 ≤ c2},

with c2 = τn1n2σ
2, σ2 is the unknown noise variance, τ is usually set to be 1 and

A is a degenerate operator. Using this criterion, the problem of model parameter
selection is transformed into the problem of noise estimation, which makes the
problem easy to solve. Here, we can use the median rule [23] to estimate the
unknown noise variance σ2. In our image smoothing model, the degenerate operator
A is an identity matrix.

In a nutshell, the primary contribution of this novel strategy can be summarized
as follows:

(1) We present a novel L0 regularization image smoothing model that uses
the weighted matrix T to better characterize the local structure of the
smoothing results.

(2) To deal with the weight relationship between the fitting term and the reg-
ularization term, we design a parameter adaptive method to estimate the
regularization parameter λ using Morozovs discrepancy principle.

(3) Extensive experiments conducted on different tasks validate the excellent
performance of the designed scheme.

The outline of our paper is organized as follows: Section 2 briefly reviews the rel-
evant image smoothing methods. A detailed presentation of our model is presented
in Section 3. Comprehensive experimental results are given to show the superior
performance of our method in Section 4. Finally, Section 5 provides conclusions.

2. Related Work

Massive image smoothing technologies have been proposed in the past few decades,
which can be roughly divided into filter-based methods, optimization-based meth-
ods, and learning-based methods.

2.1. Filter-based methods. The method based on filters is mainly to carry out
the weighted average for each pixel and its adjacent pixels. Guided filtering (GF)
[13] is a typical kind of such method, which can avoid gradient inversion artifacts.
The rolling guidance filter (RGF) [44] effectively solved the problem of contour
and boundary loss in the composition of smoothing texture by other filters. The
SD filter [12] considered the structural differences between the guide image and
the input image, and processed different types of data under a unified framework.
Although GF has low computational complexity and inspires other methods, it will
cause edge blur. Cho et al. designed a bilateral filter [5] to protect the edges of the
image which became a typical representative of such methods. Laplace filter [27]
used the Laplace pyramid to decompose the image at multiple scales to obtain edge
information. Karacan et al. [17] adopted the region covariance matrix to indirectly
extract texture information and local structure to highlight edges and shadows,
and improved the applicability of other applications. Based on the segment graph,
Zhang et al. [42] introduced a double weighted average filter to overcome the halo
artifacts in applications.

2.2. Optimization-based methods. Optimization-based image smoothing meth-
ods are also representative approaches in image processing. Xu et al. [39] used the
L0-norm to remove a globally small-magnitude gradient with edge preservation.
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However, this method cannot handle structures with large amplitude and smal-
l resolution. Then, Xu et al. [41] developed an RTV-based optimization model
and used it to extract main structures and remove textures. Later, an L0 gradient
minimization method based on the region fusion [28] is proposed to solve the mini-
mization problem quickly and effectively while improving the smoothing effect. He
et al. designed a truncated L0 gradient regularization [15], which has an obvious
sharpening effect on the critical edge. Wen et al. [35] used two different norms
to decompose images: TV-norm to capture the cartoon component, and G-norm
to capture the texture component. The bilateral total variation (BTV) [16] was
introduced in the past to distinguish between structure and texture, and identify
local structures and weak edges simultaneously. The scheme also adopted a multi-
scale awareness strategy to enhance the ability of the regularization to protect small
structures. Liu et al. [21] proposed a generalized framework for edge or structure
preserving (GFES), which adapts to different applications by adjusting different
parameter settings of the truncated Huber penalty function. Zhu et al. [46] gave
three non-convex penalty functions, all of which can be used as regularization terms
for image smoothing. This method shows effectiveness in various image processing
tasks. Li et al. [19] proposed an image smoothing method based on truncating the
generalized Huber prior (TGHF). The method applies to a wide range of image
smoothing problems and is good at preserving edges and structure while main-
taining color contrast. However, the above methods have poor processing of weak
edges, leading to unclear edges of the smoothed image. The primary cause is that
these variational methods are not flexible enough to deal with gradients, making it
difficult to accurately distinguish texture and structure.

2.3. Learning-based methods. Lately, the emergence of deep learning has great-
ly developed image smoothing algorithms [40, 7, 45, 38, 9]. Some methods are de-
voted to designing new datasets and applying the convolutional network to them
for training. Then they can obtain satisfactory image smoothing effects [45, 38, 9].
Chen et al. [3] used a full convolution neural network to describe the global at-
tributes of images. In [45], the author adopted VDCNN [6] and ResNet [14] as the
baseline methods and designed a loss function suitable for edge smoothing. How-
ever, the results of these methods mostly depend on the dataset and are generally
not good on other wild data. Fan et al. [7] proposed an unsupervised learning
method, which helps maintain fragile edges and structures by designing new energy
functions. This method applies different regularizations to different regions by a
spatially adaptive Lp flattening standard. In contrast, the learning-based methods
are more time-consuming and computationally complex during the training period.

3. Model and Algorithm

In this section, we propose a weighted adaptive L0 regularization method. Then
we utilize the half quadratic splitting [11] algorithm to solve the proposed opti-
mization model. By flexibly adjusting the adaptive weight matrix T, a satisfactory
smoothed image is obtained. We also design a parameter adaptation scheme suit-
able for our model to generate an appropriate regularization parameter.

3.1. Adaptive weighted matrix. There are many approaches to extracting the
structural features of images using the anisotropic TV [2, 36]. Especially, it is
important to select a suitable weighted matrix T for the anisotropic TV. In this
paper, inspired by [26], the adaptive weighted matrix is defined as:
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(5)

T(x, y) =

[
t1(x, y) 0

0 t2(x, y)

]
=

[
1

1+κ|Gσ(x,y)∗∇xu(x,y)|2 0

0 1
1+κ|Gσ(x,y)∗∇yu(x,y)|2

]
,

where κ and σ are positive parameters, ∗ denotes the convolution operator. And

the Gaussian kernel is defined as Gσ(x, y) =
1

2πσ2 exp(−∥x∥2+∥y∥2

2σ2 ). When t1(x, y)
and t2(x, y) take two equal constants, our model tends to be the model proposed by
Xu et al. [39]. The corresponding gradient is isotropic. Coupling the matrix T(x, y)
and the gradient ∇u(x, y) together is rotating ∇u(x, y) with an angle of α− β. As
shown in Figure 2 (b), when |t1(x, y)ux(x, y)| < |t2(x, y)uy(x, y)|, the horizontal
direction will have greater weight. In this way, our method can obtain the overall
structure of the image more effectively when a suitable T(x, y) is selected.

(a) Isotropic gradient (b) Anisotropic gradient

Figure 2. The ∇u(x, y) with the adaptive weighted matrix
T(x, y): |t1(x, y)ux(x.y)| < |t2(x, y)uy(x, y)|. And we set α =

arctan
∇yu(x,y)
∇xu(x,y)

and β = arctan(
t2(x,y)∇yu(x,y)
t1(x,y)∇xu(x,y)

) .

3.2. Algorithm. Here, we utilize the HQS algorithm to solve Eq. (3) by separat-
ing operators T and ∇ from L0-norm. The constrained minimization problem can
be written as:

(6)
min
u,w,v

∥u− f∥22 + λ ∥w∥0 ,

s.t.w := (w1, w2)
T = Tv,v := (v1, v2)

T = ∇u.

After introducing auxiliary variable w and v, we rewrite the above problem as:

(7) min
u,w,v

∥u− f∥22 + λ ∥w∥0 + η ∥w−Tv∥22 + ω∥v−∇u∥22,

where ω, η are positive penalty parameters.
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3.2.1. u-subproblem. Collecting the u-involved terms from Eq. (7), we have the
following optimization problem:

(8) min
u

∥u− f∥22 + ω ∥v−∇u∥22 .

When the periodic boundary conditions are applied to the gradient, we can tackle
this minimization problem effectively by using fast Fourier transform (FFT) and
inverse fast Fourier transform (IFFT):

(9) u = F−1

(
F(f) + ω(F∗(∇x)F(v1) + F∗(∇y)F(v2))

F(I) + ω(F∗(∇x)F(∇x) + F∗(∇y)F(∇y))

)
,

where F denotes the FFT operator.

3.2.2. w-subproblem. The w-subproblem is a classical L0 problem:

(10) min
w

∥w−Tv∥22 +
λ

η
∥w∥0 .

It can be solved by hard thresholding:

(11) (w1, w2) =

{
(0, 0), (t1v1)

2 + (t2v2)
2 ≤ λ/η,

(t1v1, t2v2), otherwise.

3.2.3. v-subproblem. We collect terms about v as follows:

(12) min
v

η ∥w−Tv∥22 + ω∥v−∇u∥22.

With a simple computation, we can obtain

(13)

v1 =
ηt1w1 + ω∇xu

ω + t21
,

v2 =
ηt2w2 + ω∇yu

ω + t22
.

Finally, we update η by η := ρ · η and stop iteration until η < ηmax. The whole
process of our algorithm is shown in Algorithm 1.

Algorithm 1 Image Smoothing via the adaptive weighted L0 gradient intensity

1: The input image f , u(0) = f , k = 0, parameter λ, η, ω, κ, σ, ηmax, ρ;
2: while not converged do
3: Update u(k) via Eq. (9);
4: Update w(k+1) via Eq. (11);
5: Update v(k+1) via Eq. (13);
6: end while
7: The smoothed image u.

3.3. Parameter Adaptation. For the selection of parameter λ, a manual trial-
and-error method is usually time-consuming and tedious. Based on this considera-
tion, we introduce Morozovs discrepancy principle strategy into the new model to
adaptively generate an appropriate regularization parameter during the iteration.
The proposed parameter selection method effectively balances the regularization
term and the fitting term. For convenience, Eq. (3) can be rewritten as follows:

(14) min
u,γ

γ∥u− f∥22 + ∥T∇u∥0 ,
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here, we set γ = 1
λ . Accordingly, u−subproblem can be modified as follows:

(15) uγ = (γI + ω∇T∇)−1(γf + ω∇Tv).

Based on Morozovs discrepancy principle, we can analyze discrepancy eγ given by

(16)

eγ = uγ − f

= (γI + ω∇T∇)−1(γf + η∇Tv)− f

= (γI + ω∇T∇)−1(ω∇Tv+ ω∇T∇f).

Let Φ(γ,v) = ∥eγ∥22 and Dγ = {u : ∥uγ − f∥22 ≤ c2}, according to [34], when

∥u(k)
γk −f∥22 > c2, the equation Φ(γk,v

(k−1)) = c2 has a unique solution. This means

that we can find a unique γk > 0 when u
(k)
γk /∈ D that meets ∥u(k)

γk − f∥22 = c2. And
γk = 0 when u(k) ∈ D. It should be noted that the equation Φ(γ(k),v(k−1)) = c2

is nonlinear and can be solved iteratively by the Newton method. Algorithm 2
summarizes the whole process of the strategy.

Algorithm 2 Image Smoothing via the adaptive weighted L0 gradient intensity
and the adaptive parameter selection

1: The input image f , u(0) = f , k = 0, parameter λ, η, ω, κ, σ, ηmax, ρ;
2: while not converged do
3: Update u(k) via Eq. (15);
4: Update w(k+1) via Eq. (11);
5: if u(k) ∈ D then
6: γk = 0;
7: else
8: Solve Φ(γ,v) = c2 for γk;
9: end if

10: Update v(k+1) via Eq. (13);
11: end while
12: The smoothed image u.

4. Experimental Results

To verify the effectiveness of our model, we compare it with the well-known meth-
ods both qualitatively and quantitatively: L0 [39], RTV [41], RGF [44], Pixel-level
Non-Local Smoothing (PNLS) [38], GFES [21], Scale-adaptive Structure-preserving
Texture Filtering (SSTF) [29], G-norm [35], SD filter [12], TGHF[19], Nonconvex
Regularization for Convex Image Smoothing (NRCS) [46]. In addition, we also
expand our model to some related applications such as image detail enhancement,
edge extraction, clip-art compression artifact removal, image denoising, and image
abstraction. All experiments are run on MATLAB 2019b and the parameters of
the methods for comparison are set as recommended.

4.1. Image Smoothing.

4.1.1. Subjective visual results. Image smoothing aims to remove unrelated
textures while preserving the edges of the image. Our method can achieve an
impressive smooth performance with the adaptive weight matrix. We test the
following types of images: (1) The image with small textures that need to be
smoothed, as shown in Figure 3(a). (2) Obvious textures in the image should be
smoothed while protecting weak edges, as shown in Figure 4(a). The mouth labeled
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with the green arrow in the red box of Figure 4(a) indicates the existing weak edges.
(3) Figure 5(a) is an image containing multi-scale textures, that requires the removal
of large textures while retaining the underlying structure.

(a) Input (b) L0 [39]

(c) RTV [41] (d) RGF [44] (e) PNLS [38] (f) GFES [21]

(g) SSTF [29] (h) TGHF [19] (i) NRCS [46] (j) Ours

Figure 3. The smoothing results of several state-of-the-art meth-
ods. For each smoothed result, the zoomed-in patches of the s-
moothed output are shown in the bottom left.

As presented in Figure 3(a), small textures in the image need to be smoothed
without removing strong edges. The results obtained by L0, RTV, and TGHF have
obvious texture residues, as shown in Figure 3(b), (c), (h). While PNLS and RGF
fail to remove the texture in Figure 3(e) and (f). Although GFES, SSTF, and
NRCS smooth the texture to some extent, they over-blur the structural edges as
shown in Figure 3(f), (g), and (i). On the contrary, our result shows high-quality
performance: the texture in small areas is eliminated, and the overall structure is
maintained.

Figure 4(a) demonstrates a complex image with weak edges and multi-scale fea-
tures, which implies that we need to smooth large textures while extracting small
structures. The results of the L0 and TGHF methods have many obvious textures,
although they extract some meaningful structures. The RTV, GFES, and NRCS
methods reliably remove large textures, however, they fail to maintain the weak
edges. Similarly, RGF, PNLS, and SSTF can remove the obvious textures well,
but the edges of the highlighted regions are blurred. As for our method, we have
a meticulous treatment in extracting weak edges (the red box of Figure 4(h)) and
removing large textures (the green box of Figure 4(h)) by using the novel regular-
ization we design. Our result demonstrates superior smoothing performance with
clear boundaries.
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(a) Input (b) L0 [39]

(c) RTV [41] (d) RGF [44] (e) PNLS [38] (f) GFES [21]

(g) SSTF [29] (h) TGHF [19] (i) NRCS [46] (j) Ours

Figure 4. The smoothing results of several state-of-the-art meth-
ods. For each smoothed result, the zoomed-in patches of the s-
moothed output are shown on the right.

Figure 5(a) shows a typical image with multi-scale textures. An ideal smoothing
result would be to remove large textures while maintaining small structures. In
Figure 5, we can easily notice that L0, RTV, PNLS, TGHF, and NRCS method-
s are unsatisfactory for removing large textures because the results still contain
many white blocks. RGF and SSTF produce blurry edges and an unsmoothed
background. Although the GFES method performs well in the enlarged green area,
it yields poor smoothing results in the gray background. From Figure 5(h), it is
evident that our method performs well in both large texture removal and back-
ground smoothing. Overall, our method can achieve the best visual effect in image
smoothing.

4.1.2. Objective numerical results. We further conduct a quantitative com-
parison to ensure the persuasiveness of the experiment. Especially, we adopt two
256×256 cartoon images [35] with different textures (as shown in Figure 6). Ta-
ble 1 reports the PSNR of three methods under different synthetic images. Our
method outperforms G-norm, L0, TGHF, and NRCS methods in 7 images, clearly
demonstrating its superiority.

4.1.3. A/B testing of the dataset. Xu et al. [41] collected 200 structural tex-
ture images and drew images of important structural edges for each image, resulting
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(a) Input (b) L0 [39]

(c) RTV [41] (d) RGF [44] (e) PNLS [38] (f) GFES [21]

(g) SSTF [29] (h) TGHF [19] (i) NRCS [46] (j) Ours

Figure 5. The smoothing results of several state-of-the-art meth-
ods. For each smoothed result, the zoomed-in patches of the s-
moothed output are shown on the right.

Table 1. Quantitative comparison results (PSNR) of several
methods on synthetic images.

Image Textures G-norm [35] L0 [39] NRCS [46] TGHF [19] Ours

Ball 35a8c 34.56 34.18 32.74 31.28 34.63
4bada 31.99 32.70 32.78 31.19 34.81
brickrg 30.86 32.54 32.32 29.50 33.72
weave 32.91 34.75 32.45 30.53 35.93

Ave. 32.58 33.54 32.57 30.63 34.77

Mixedpic 35a8c 35.54 32.07 32.24 31.50 34.95
4bada 32.26 30.44 31.69 31.02 32.74
brickrg 31.25 30.38 32.05 29.99 31.86
weave 33.91 32.13 32.19 31.65 34.72

Ave. 33.24 31.25 32.04 31.04 33.56

in a total of 400 images that were used to form a dataset1. The source images of
Figure 5, Figure 9 and Figure 14 in this paper are from this dataset.

Given that individuals perceive details and major structures in disparate ways,
they may hold disparate preferences regarding the optimal image smoothing result.
To address this, we recruited 20 volunteers to form a non-expert scoring panel.

1https://www.cse.cuhk.edu.hk/ leojia/projects/texturesep/database.html
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Figure 6. Two 256×256 synthetic images with different textures.

Figure 7. Distribution of choices between different algorithms.

These volunteers were all graduate students at Nanjing University of Posts and
Telecommunications, with the majority having no prior experience in the field of
image smoothing. A total of 200 structural texture images were selected from
the dataset of Xu et al. [41]. Then, nine different image smoothing methods were
applied to each source image. After a clear and concise introduction to the task, the
volunteers were asked to choose the best smoothing result based on the following
basic principles: retain the sharpness of critical edges, minimize blurring effects,
and ensure that the color of the smoothed image is as close as possible to that of
the original image.

Each source image and its corresponding smoothing result was randomly assigned
to 12 volunteers, and each volunteer was allocated 120 source images and their
corresponding smoothing results. Since each image was selected by 12 volunteers,
there were a total of 2400 selections for these 200 source images. The results are
shown in Figure 7, where 1371 selections are generated by our method. This shows
that our method is effective in image smoothing.

4.2. Applications. Subsequently, we showcase several typical applications of our
method, including image detail enhancement, edge extraction, clip-art compression
artifact removal, image denoising, and image abstraction. All details are shown
below.

4.2.1. Image Detail Enhancement. The purpose of this task is to enhance the
details of the image while avoiding common halo artifacts. This task decomposes
the image into two layers: a base layer and a detail layer. The enlarged detail
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layer and the base layer are coupled to obtain a detail-enhanced image. Here,
we subtract our model from the observed image to obtain the smooth structure
to obtain the detail layer. Since the GFES method has a great effect on detail
enhancement applications, we chose it for comparison. Figure 8 illustrates the
results of image detail enhancement. Visually, our method produces satisfactory
enhancement results and avoids the generation of halo artifacts. In addition, we can
see from the 1-D plot of the highlight region that our method has both smoother
results (the red line in Figure 8(e)) and more prominent enhancement effects (the
blue line in Figure 8(e)). And our method is significantly better than the advanced
methods compared (see details in Figures. 8(b) and (d)).

(a) Input (b) GFES [21] (c) Ours

(d) GFES [21] (e) Ours

Figure 8. Visual results of image detail enhancement with differ-
ent approaches. (a) Input. The smoothed/enhanced results of (b)
GFES [38] and (c) our method. (d) and (e) is the 1-D plot of the
highlight regions.

4.2.2. Edge extraction. Generally, because natural images usually contain many
textures and unexpected noises, it is difficult to achieve high accuracy by directly
detecting their edges. Therefore, image smoothing can also be used as a useful tool
for accurate texture image edge detection. Before the edge detection, the structure
edge of the image can be directly extracted by smoothing the image. Here, we
choose the model L0 [39] and SD filter [12] which are commonly used for edge
detection for quantitative and quantitative comparison.

We use a confusion matrix for quantitative comparison, mainly the measurement
of Precision, Recall, F -score:

(17)

Precision = TP/(TP + FP ),

Recall = TP/(TP + FN),

F -score = 2Precision ·Recall/(Precision+Recall),
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(a) Input (b) L0 [39] (c) SD filter [12] (d) Ours

(e) Edge of (a) (f) Edge of (b) (g) Edge of (c) (h) Edge of (d)

Figure 9. The results of edge extraction. (a)-(d) are the results of
different methods. (e)-(d) are obtained by a Canny edge detector.
For each smoothed result, the zoomed-in patches of the smoothed
output are shown at the bottom.

(a) Input (b) RTV [41] (c) L0 [39] (d) SSTF [29]

(e) GFES [38] (f) TGHF [19] (g) NRCS [46] (h) Ours

Figure 10. Visual results of clip-art compression artifact removal
with different approaches.

where TP means the correct number of edge pixels, FP is the wrong number of
edge pixels and FN indicates the number of undetected edge pixels. Here, we adopt
the public dataset in [41] and the canny operator for testing.

Table 2 presents the measurement results of the confusion matrix. Since the
canny operator detects almost all possible edges, only the canny operator can obtain
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Table 2. Numerical results of edge detection.

Method Canny
Canny+
L0

Canny+
SD filter

Canny+
Our

Precision 24.05% 70.30% 83.65% 84.85%
Recall 21.91% 15.58% 9.41% 16.73%
F-measure 20.04% 23.59% 16.43% 27.54%

the highest Recall. In addition, in terms of Precision and F -score, our method
greatly improves the edge detection ability of the canny operator and is superior to
the other two methods. Further, Figure 9 demonstrates the visual results of edge
extraction with different methods. The L0 cannot remove most of the textures in
the image, while the SD filter ignores the details of this image. On the contrary,
the edge extraction results generated after preprocessing by our method contain
more structural details.

4.2.3. Clip-Art Compression Artifact Removal. The cartoon/clip-art com-
pression artifact removal is also an important application of image smoothing. The
traditional JPEG compression technology makes it difficult to balance the image
quality and space, which leads to artifacts and affects the visual effect. This task
requires us to smooth undesirable artifacts while preserving the overall structure of
the image. Based on this, we can solve it well with our proposed method. Figure
10 demonstrates the artifact removal effect of different methods. It can be observed
that the artifacts of L0, GFES, and TGHF are not completely removed, and there
are still obvious artifacts in the enlarged area. On the contrary, although RTV,
SSTF, and NRCS have removed the artifacts, the edge processing of the details
is not in place, resulting in blurring. In contrast, our proposed method performs
better in removing artifacts and protecting weak edges.

To facilitate quantitative comparison, four high-quality original images were se-
lected and nine JPEG-compressed images were generated for each original image.
The quality factors for the nine compressed images were 10, 20, , and 90, respec-
tively. A total of 36 JPEG compressed images with varying quality factors can be
generated for the four original images. Nine distinct image smoothing techniques
were employed to eliminate artifacts from the JPEG-compressed images, and the
image quality was evaluated using PSNR and SSIM values. Table 3 illustrates the
mean PSNR and SSIM values for the four images at varying quality factors, with
the optimal outcomes highlighted in bold. As evidenced by the data presented in
the table, our method demonstrably outperforms the other compared methods in
terms of image quality.

4.2.4. Image Denoising. Image smoothing can become an effective tool in image
denoising. By smoothing the image with a given noise level, a clean image without
noise and containing the main structure can be obtained. Here, we compare the
denoising performance of the model under different noise levels in Figure 11 and
Figure 12. The classical L0 method yields some residual noise. The PNLS and
NRCS methods blur the edges. The result of our method is closer to the clean
input image. In addition, from the numerical point of view, our method achieves
the highest PSNR values under the two noise levels.

4.2.5. Image Abstraction. Image abstraction is to simplify image content and
retain or even emphasize its important sensory characteristics. Most of this task is
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Table 3. Quantitative comparison results (PSNR and SSIM) of
clip-art compression artifact removal.

PSNR

Quality 10 20 30 40 50 60 70 80 90 Ave.
L0[39] 29.77 30.87 32.18 32.65 33.10 33.45 33.84 34.36 34.96 32.80
RTV[41] 29.95 31.12 32.25 32.75 33.06 33.46 33.76 34.28 34.71 32.82
RGF[44] 29.66 30.65 31.34 31.60 31.69 31.86 31.93 32.06 32.17 31.44
SSTF[29] 29.50 30.25 30.81 31.00 31.10 31.22 31.28 31.40 31.48 30.89
GFES[21] 29.65 30.83 31.61 32.08 32.19 32.45 32.65 32.94 33.07 31.94
LF[19] 29.27 30.55 30.99 31.48 31.81 32.08 32.46 32.99 33.38 31.67
NRCS[46] 29.66 30.80 31.69 32.12 32.42 32.71 32.99 33.42 33.80 32.18
Ours 30.14 31.13 32.41 32.91 33.25 33.63 33.92 34.39 34.94 32.97

SSIM

Quality 10 20 30 40 50 60 70 80 90 Ave.
L0[39] 0.9605 0.9597 0.9624 0.9622 0.9630 0.9629 0.9637 0.9654 0.9687 0.9632
RTV[41] 0.9691 0.9740 0.9772 0.9780 0.9799 0.9809 0.9811 0.9834 0.9853 0.9787
RGF[44] 0.9684 0.9746 0.9773 0.9777 0.9794 0.9802 0.9802 0.9820 0.9836 0.9781
SSTF[29] 0.9692 0.9739 0.9761 0.9763 0.9779 0.9786 0.9784 0.9801 0.9815 0.9769
GFES[21] 0.9702 0.9790 0.9811 0.9812 0.9830 0.9832 0.9828 0.9845 0.9848 0.9811
LF[19] 0.9645 0.9729 0.9765 0.9791 0.9808 0.9836 0.9854 0.9882 0.9895 0.9800
NRCS[46] 0.9648 0.9711 0.9738 0.9744 0.9761 0.9766 0.9873 0.9885 0.9899 0.9780
Ours 0.9701 0.9798 0.9845 0.9857 0.9877 0.9887 0.9888 0.9902 0.9908 0.9851

(a) Input (b) Noisy input(PSNR:20.64) (c) L0 [39](PSNR:25.91)

(d) PNLS [38](PSNR:25.42) (e) NRCS [46](PSNR:27.15) (f) Ours(PSNR:27.64)

Figure 11. Denoising performance by different smoothing approaches.

to create new digital art forms, make images easier to understand, and can also be
used as preprocessing for transforming into other art styles (such as pencil drawing
and watercolor). This task has two main tasks: extract the edge of the image by
Gaussian filtering after bilateral filtering. The obtained image has certain regional
visual specificity and can be directly applied to edge detection. We perform image
abstraction by replacing bilateral filtering with our method. Figure 13 shows the
results of image abstraction. We can see that our results significantly enhance the
edge, and the visual effect is pleasant. Our result can make the image easy to
understand and helpful for subsequent artistic creation.

4.3. Parameter analysis. The regularization parameter λ is crucial in our model
since its selection has a direct impact on the smoothed results. For this reason, we
design an adaptive regularization parameter method to estimate λ. To further verify
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(a) Input (b) Noisy input(PSNR:23.57) (c) L0 [39](PSNR:25.55)

(d) PNLS [38](PSNR:25.84) (e) NRCS [46](PSNR:27.87) (f) Ours(PSNR:29.61)

Figure 12. Denoising performance by different smoothing approaches.

(a) Input

(b) Abstracted Image

Figure 13. Image abstraction results of our method.

the effectiveness of our parameter adaptation method, we analyze the visual images
of different pairs of images. Figure 14 shows the images when λ = 0.01, λ = 0.02,
and λ = 0.05 and the proposed parameter adaptation method, respectively. It
is worth noting that our adaptive strategy has achieved ideal results: eliminated
texture, and obvious edges. Although the smoothing effect of Figure 14(c) and
Figure 14(d) is relatively close, the edge of Figure 14(d) is clearer. This shows that
the parameter obtained by the adaptive method is more appropriate.
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(a) λ = 0.01 (b) λ = 0.03

(c) λ = 0.05 (d) Parameter adaptation

Figure 14. Different λ values and adaptive parameter adjustment results.

5. Conclusion

In this paper, we explore a novel regularizer in the optimization framework to
achieve texture smoothing of natural images. Our contributions were twofold. First-
ly, we introduce a novel image smoothing model based on an adaptive weighted L0

regularization to preserve weak edges. Unlike the classical L0 regularization, we
design a weighted matrix T to give different weights to different gradient direc-
tions. By selecting the appropriate weighted matrix, the model retains the main
structure and enhances the ability to remove texture. Secondly, we apply the
discrepancy principle to estimate the regularization parameter λ. The designed
parameter selection scheme can adaptively select an appropriate parameter, reduc-
ing the inconvenience of the parameter adjustment process. In addition, we have
also applied the new model to a variety of applications. Both quantitative and
qualitative experiments show the advantages of our method.
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