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A KRASNOSELSKII-MANN PROXIMITY ALGORITHM FOR

MARKOWITZ PORTFOLIOS WITH ADAPTIVE EXPECTED

RETURN LEVEL

YIZUN LIN, YONGXIN HE, AND ZHAO-RONG LAI∗

Abstract. Markowitz’s criterion aims to balance expected return and risk when optimizing the

portfolio. The expected return level is usually fixed according to the risk appetite of an investor,
then the risk is minimized at this fixed return level. However, the investor may not know which
return level is suitable for her/him and the current financial circumstance. It motivates us to
find a novel approach that adaptively optimizes this return level and the portfolio at the same

time. It not only relieves the trouble of deciding the return level during an investment but also
gets more adaptive to the ever-changing financial market than a subjective return level. In order
to solve the new model, we propose an exact, convergent, and efficient Krasnoselskii-Mann Prox-
imity Algorithm based on the proximity operator and Krasnoselskii-Mann momentum technique.

Extensive experiments show that the proposed method achieves significant improvements over
state-of-the-art methods in portfolio optimization. This finding may contribute a new perspective
on the relationship between return and risk in portfolio optimization.

Key words. Markowitz portfolio, adaptive expected return, ℓ1 regularization, Krasnoselskii-
Mann algorithm.

1. Introduction

Portfolio optimization (PO) with machine learning methods has become a prospec-
tive approach in advancing the interdiscipline of financial engineering [1, 2, 3, 4]. Ev-
er since the first proposal of the mean-variance (MV) approach by Markowitz [5], his
criterion has become the most popular one for many PO models [6, 7, 8, 9, 10, 11].
In brief, the original MV (OMV) model is

ŵ = argmin
w∈RN

w⊤Σw,

s. t. w⊤1N = 1, w⊤µ = ρ,
(1)

where w denotes the N -dimensional portfolio (with respect to N assets); µ and Σ
denote the expected return and the return covariance of theseN assets, respectively.
Constraint w⊤1N = 1 (1N denotes the vector of N ones) is the self-financing con-
straint, which indicates that no additional money can be used and full re-investment
is compulsory. Constraint w⊤µ = ρ means that the expected portfolio return is
fixed at a level of ρ. The objective is to minimize the portfolio variance w⊤Σw
(considered as the portfolio risk) at this return level.

Based on many theoretical and practical milestone researches in finance, such as
the Capital Asset Pricing Model (CAPM, [12]), the mutual fund performance [13]
and the efficient market theory [14], a higher portfolio return w⊤µ accompanies
a higher portfolio risk w⊤Σw. Thus they are usually treated as a pair, and the
corresponding Pareto optimals form the efficient frontier [12] of all the feasible
portfolios. In this sense, different individuals may choose different return levels ρ
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according to their risk appetites. This convention continues in both theoretical and
practical portfolio management today.

On the other hand, machine learning methods have been extending the method-
ology scope of PO. For example, sparsity methods have been employed to increase
portfolio concentration. Brodie et al. [9] impose ℓ1-regularization [15, 16] on the
portfolio to make it sparse and stable. Lai et al. [2] adopt the alternating direction
method of multipliers (ADMM, [17]) to solve a short-term sparse PO model. Luo
et al. [18] find several closed-form solutions for a short-term sparse PO model with
ℓ0-regularization. Different from constructing a sparse portfolio, Lai et al. [3] focus
on covariance estimation in PO. They construct a covariance estimate in the per-
spective of operators and operator spaces. The latter 3 methods are based on the
Exponential Growth Rate (EGR) criterion [19, 20], which has a different investing
philosophy from the MV criterion [4]. Therefore, machine learning methods for the
MV criterion are still in great demand.

In the perspective of machine learning, we are inspired to investigate whether it
is possible to use an adaptive and flexible return level ρ that fits the ever-changing
financial market. It also makes sense in finance: the investor may have no idea about
what return level ρ is suitable for her/him, or for the current financial market;
All he/she wants may be just getting a reasonable return from the market and
getting rid of the trouble to choose a subjective ρ. Nevertheless, it is nontrivial
to optimize ρ and w simultaneously, especially to achieve satisfactory investing
performance. It motivates us to develop a novel PO model named Markowitz
Portfolio with Adaptive Expected Return Level (MPAERL), which can dynamically
balance return and risk. Our main contributions can be summarized as follows.

1) We develop a new PO model with adaptive expected return level, which
including ℓ1-regularization, equality constraints and inequality constraints.

2) We propose a convergent and efficient Krasnoselskii-Mann Proximity Algo-
rithm (KMPA) which based on the proximity operator and the Krasnoselskii-
Mann momentum technique to solve this new PO model.

3) Our proposed KMPA can be directly extended to solve a class of two-term
convex optimization models with inequality constraints.

The rest of this paper presents the following contents. Section 2 introduces some
related works in this field. Section 3 establishes the MPAERL model. In section
4, we develop an efficient Krasnoselskii-Mann Proximity Algorithm (KMPA) to
solve the MPAERL model. We analyze the convergence of the KMPA in section
5. Section 6 conducts extensive experimental results to assess the performance
of MPAERL. Section 7 draws conclusions. Last, we provide the proofs of some
technical results in the appendices.

2. Related Works

Brodie et al. [9] propose the Sparse and Stable Markowitz Portfolios (SSMP)
formulated in Lasso [15]

ŵ = argmin
w∈RN

{
1

T
∥Rw − ρ1T ∥22 + τ∥w∥1

}
,

s. t. w⊤µ̂ = ρ,w⊤1N = 1,

(2)

where R ∈ RT×N is the sample asset return matrix (T trading times and N assets),
r(t) denotes the t-th row of R (i.e., the asset returns at time t), µ̂ := 1

TR
⊤1T is

a column vector of sample mean returns, ρ ∈ R is a given expected return level,
τ > 0 is the regularization parameter, ∥ · ∥2 is the ℓ2-norm and ∥ · ∥1 is the ℓ1-norm.
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In this model, the portfolio risk is embedded in the quadratic form 1
T ∥Rw−ρ1T ∥2,

which computes the mean squared error of the sample portfolio return r(t)w fitting
the given level ρ. Therefore, SSMP tries to obtain a sparse portfolio that minimizes
the risk at the return level ρ. To see the relationship between (2) and (1), one can
expand 1

T ∥Rw − ρ1T ∥2 as 1
T (w

⊤R⊤Rw − 2ρ1⊤
TRw + ρ2T ), which is a quadratic

function of w with the symmetric matrix 1
TR

⊤R. On the other hand, the sample

estimator Σ̂ for (1) is 1
T−1R

⊤(IT − 1
T 1T1

⊤
T )R, which is a centralized version of

1
TR

⊤R. By this way, (2) essentially follows the Markowitz’s criterion.
Ho et al. [10] propose a Weighted Elastic Net Penalized Portfolio (WENPP)

that replaces the ℓ1-regularization with the elastic net regularization [21]

ŵ = argmin
w∈RN

{
w⊤Σ̂w −w⊤µ̂+

N∑
i=1

τi|wi|+
N∑
i=1

κi|wi|2
}
,(3)

where w := (w1, w2, . . . , wN )⊤, {τi}Ni=1 and {κi}Ni=1 are the mixing parameters for
the ℓ1 and ℓ2 regularization, respectively. This model can be transformed into a
Lasso one via variable changes.

Lai et al. [2] propose a Short-term Sparse Portfolio Optimization (SSPO) that
minimizes the negative potential portfolio return with ℓ1-regularization

ŵ = argmin
w∈RN

{
w⊤φ+ τ∥w∥1

}
, s. t. w⊤1N = 1,

where φ denotes the negative potential asset return, and τ is the regularization
parameter.

Luo et al. [18] propose that if the portfolio is further constrained in the simplex

(4) ∆N :=

{
w ∈ RN+ :

N∑
i=1

wi = 1

}
,

where RN+ is theN -dimensional nonnegative space, then the SSPO with ℓ0-regularization

has closed-form solutions based on the following asset selection Ĩminφ :

ŵ = argmin
w∈RN

{
w⊤φ+ τ∥w∥0

}
, s. t.w ∈ ∆N ,(5)

Ĩminφ :=

{
i ∈ NN : φi 6 min

j∈NN

φj + ϵ

}
,(6)

where φ := (φ1, φ2, . . . , φN )⊤, NN := {1, 2, . . . , N}, ϵ > 0 is a slack variable that
allows more assets to be selected and takes the regularizing function of τ∥w∥0.

To fill the gap of covariance estimation in PO, Lai et al. [3] propose a rank-one
covariance estimate

Σ̂RO := u1ζ
∗
1u

⊤
1

in the principal rank-one tangent space at the price relative matrixX := R+1T×N ,
where u1 ∈ RN is the principal right eigenvector in the singular value decomposition
of X and ζ∗1 is a computed spectral energy. Then they propose a loss control PO
scheme (SPOLC)

ŵ = argmax
w∈∆N

{
( min
16t6T

x(t)w)− γw⊤Σ̂ROw

}
with Σ̂RO, where x(t) is the t-th row of X, min16t6T x(t)w represents the worst
increasing factor in the considered time span. SPOLC exploits a trade-off between
this worst increasing factor and the risk with a parameter γ > 0, and shows robust
performance to the downside risk.
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To exploit trend representation in PO, Lai et al. [22] propose a Reweighted Price
Relative Tracking (RPRT) system which automatically assigns and updates sepa-
rate weights to the price relative predictions according to each asset’s performance.

ŵt+1 = argmax
w∈∆N

(w − ŵt)
⊤Dt+1(φ̂t+1 − φ̄t+11N ),

s. t. (w − ŵt)
⊤(D−1

t+1)
2(w − ŵt) 6

(max{ϵ− ŵ⊤
t φ̂t+1, 0})2

∥φ̂t+1 − φ̄t+11N∥22
,

where Dt+1 reweights the normalized price relative prediction (φ̂t+1 − φ̄t+11N ).
The constraint controls the generalized Mahalanobis distance between the candidate
weight w and the current weight ŵt with the square inverse adjustment matrix
(D−1

t+1)
2.

In recent years, researchers have focused not only on single-period portfolio s-
trategies but also on multi-period investment strategies. The essence of multi-period
investment strategies lies in the recognition that the investment outcomes of the
current period can influence the risk tolerance or expected return level of the subse-
quent period. Consequently, the introduction of dynamic risk tolerance/expected-
return constraint in portfolio selection was considered more valuable. Along this
line of thinking, Wang et al. [23] investigated the multi-period portfolio optimiza-
tion problem with dynamic risk and expected return levels within the mean-variance
framework. Later, Gong et al. formulated two multi-period portfolio fuzzy opti-
mization models with certain constraints in [24], namely the wealth maximization
model with constrained risk (MCFPS(I)) and the risk minimization model with
constrained return (MCFPS(II)). Furthermore, a parameter a was introduced to
signify investors attitudes (optimistic, pessimistic, or neutral) towards the stock
market.

3. MPAERL Model

In this section, we propose the Markowitz Portfolio with Adaptive Expected Re-
turn Level (MPAERL). In the SSMP model (2), the expected return level ρ is given
manually and fixed according to the risk appetite of an investor, then the portfolio
risk is minimized at this return level, which forms a return-risk balancing strate-
gy. However, an investor may not know which return level is suitable for her/him.
Besides, this fixed return level may not be suitable for the current financial circum-
stance. These problems motivate us to design an adaptive expected return level
scheme and a more flexible return-risk balancing strategy. To be specific, we allow
the expected return level ρ change in an interval and optimize it simultaneously
with the portfolio w as follows:

(ŵ, ρ̂) = argmin
w∈RN , ρ∈R

{
1

T
∥Rw − ρ1T ∥22 + τ∥w∥1

}
,

s. t. w⊤µ̂ = ρ, w⊤1N = 1, ρ1 6 ρ 6 ρ2,

(7)

where ρ1, ρ2 ∈ (0,+∞) are the given lower and upper bounds of ρ, respectively.
By this way, we give ρ a loose interval to adapt the financial circumstance, and
address the relationships between the return, the risk and the portfolio in a unified
framework (abbreviated as MPAERL). In this model, investors can easily adjust
the lower bound ρ1 and upper bound ρ2 to suit their requirements, without the
necessity of tuning the expected return level ρ.

Before developing an efficient algorithm to solve model (7), we rewrite it as a
more compact form. To this end, we let IN denote the N ×N identity matrix, 0N
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denote the vector of N zeros, and define

v :=

(
w
ρ

)
, R̃ := (R, −1T ) , Ĩ := (IN , 0N ) ,

A :=

(
µ̂⊤ −1
1⊤
N 0

)
, b :=

(
0
1

)
,

B :=

(
0⊤
N 1

0⊤
N −1

)
, c :=

(
ρ1
−ρ2

)
.

Then MPAERL can be rewritten as

v̂ = argmin
v∈RN+1

{
1

T
∥R̃v∥22 + τ∥Ĩv∥1

}
,

s. t. Av = b, Bv > c.

(8)

Note that an equality constraint can be equivalently rewritten as two inequality
constraints. By further defining

(9) D :=

 A
−A
B

 and d :=

 b
−b
c

 ,

model (8) then becomes the following two-term optimization model with an in-
equality constraint:

(10) v̂ = argmin
v∈RN+1

{
1

T
∥R̃v∥22 + τ∥Ĩv∥1

}
, s. t. Dv > d.

4. Krasnoselskii-Mann Proximity Algorithm

In this section, we develop an efficient Krasnoselskii-Mann proximity algorithm
to solve model (10). Note that D ∈ R6×(N+1). To simplify the notation and make
the derivation more general, we let m1 := N + 1, m2 := 6, and define

(11) f(v) :=
1

T
∥R̃v∥22, g(v) := τ∥Ĩv∥1, for v ∈ Rm1 .

We denote by Γ0(Rm) the class of all proper lower semicontinuous convex functions
from Rm to R ∪ {+∞}. A function ψ : Rm → [−∞,+∞] is said to be proper if
−∞ /∈ ψ(Rm) and {x ∈ Rm|ψ(x) < +∞} ̸= ∅. It is easy to see that f ∈ Γ0(Rm1)
and it is differentiable with a Lipschitz continuous gradient, and g ∈ Γ0(Rm1). In
fact, model (10) can be characterized as an equivalent fixed-point problem. To this
end, we recall the definitions of proximity operator, subdifferential and conjugate
function. Let ψ ∈ Γ0(Rm). The proximity operator of ψ at x ∈ Rm is defined by

proxψ(x) := argmin
u∈Rm

{
1

2
∥u− x∥22 + ψ(u)

}
.

The subdifferential of ψ at x ∈ Rm is defined by

∂ψ(x) := {y ∈ Rm|ψ(u) > ψ(x) + ⟨y,u− x⟩ for all u ∈ Rm},

where ⟨·, ·⟩ is the inner product defined by ⟨x,y⟩ := x⊤y for x,y ∈ Rm. The
conjugate function of ψ is given by

(12) ψ∗(x) := sup
u∈Rm

{⟨x,u⟩ − ψ(u)}, for x ∈ Rm.

For an operator T : Rm → Rm, x ∈ Rm is called a fixed point of T if x = T x. We
denote the set of all fixed points of T by Fix(T ). Given an initial vector x0 ∈ Rm,
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the fixed-point iteration (Picard iteration) of T is given by xk+1 = T xk. We also
define the indicator function ιd : Rm2 → R ∪ {+∞} with respect to vector d by

(13) ιd(x) :=

{
0, if x ≥ d,

+∞, else.

Note that ιd is also convex since the set {x ∈ Rm2 | x > d} is a convex set.
Moreover, ιd ∈ Γ0(Rm2).

We shall construct an operator Tβ,η : Rm1+m2 → Rm1+m2 such that a solution
of model (10) can be identified as a vector consisting of the first m1 components of
a fixed point of Tβ,η. To this end, we let

(14) E :=

(
Im1 −βD⊤

ηD Im2

)
,P :=

(
βIm1

ηIm2

)
,

where β and η are introduced to add two degrees of freedom for controlling the
averaged nonexpansiveness of the operator, thereby ensuring the convergence of

the algorithm to be proposed subsequently. For z :=

(
v
y

)
with v ∈ Rm1 and

y ∈ Rm2 , we define function r : Rm1+m2 → R and operator F : Rm1+m2 → Rm1+m2

by

(15) r(z) := f(v) and F(z) :=

(
proxβg(v)
proxηι∗d(y)

)
,

respectively. Then the operator corresponding to the fixed-point characterization
of model (10) is given by

(16) Tβ,η(z) := F(Ez − P∇r(z)), for z ∈ Rm1+m2 .

To establish this equivalent result, we recall three known facts (Theorem 16.3 of
[25], Proposition 2.6 of [26] and Theorem 23.5 of [27]) in the following lemma that
indicate the relationships between minimizer, subdifferential, proximity operator
and conjugation.

Lemma 1. Let ψ ∈ Γ0(Rm). Then the following facts hold:

(i) (Fermat’s rule). x̂ is a minimizer of ψ if and only if 0 ∈ ∂ψ(x̂).
(ii) y ∈ ∂ψ(x) if and only if x = proxψ(x+ y).
(iii) y ∈ ∂ψ(x) if and only if x ∈ ∂ψ∗(y).

Theorem 2. Let Tβ,η be defined by (16), z :=

(
v
y

)
with v ∈ Rm1 and y ∈ Rm2 .

(i) If v is a solution of model (10), then for any β, η ∈ (0,+∞), there exists
y ∈ Rm2 such that z ∈ Fix(Tβ,η).

(ii) If there exist β, η ∈ (0,+∞) such that z ∈ Fix(Tβ,η), then v is a solution
of model (10).

Proof. We first prove item (i). According to the definition of ιd, model (10) is
equivalent to

(17) v̂ = argmin
v∈Rm1

{f(v) + g(v) + ιd(Dv)} .

Suppose that v is a solution of model (10), that is, a solution of model (17). By
Fermat’s rule (Fact (i) of Lemma 1) and the chain rule of the subdifferential, we
have that

(18) 0 ∈ ∇f(v) + ∂g(v) +D⊤∂ιd(Dv),
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that is,

−β∇f(v) ∈ ∂βg(v) + βD⊤∂ιd(Dv), for any β > 0.

Thus, there exists y ∈ Rm2 such that

(19) y ∈ ∂ιd(Dv)

and

(20) −β(∇f(v) +D⊤y) ∈ ∂βg(v).

Employing Fact (ii) of Lemma 1 for (20), we see that

(21) v = proxβg(v − β(∇f(v) +D⊤y)).

In addition, it follows from (19) and Fact (iii) of Lemma 1 that ηDv ∈ ∂ηι∗d(y),
which together with Fact (ii) of Lemma 1 implies that

(22) y = proxηι∗d(y + ηDv).

Now z = Tβ,η(z) follows from (21), (22) and the definition of operator Tβ,η imme-
diately.

We next prove item (ii). Suppose that z is a fixed point of Tβ,η for some β, η ∈
(0,+∞). By the definition of Tβ,η, we know that (21) and (22) hold. Hence, (19)
and (20) hold, which yield (18). Then it follows from Fermat’s rule that v is a
solution of model (17), that is, a solution of model (10).

According to Theorem 2, to solve model (10), it suffices to find a fixed point of
operator Tβ,η. As shown in [28], the direct fixed-point iteration of Tβ,η may not
converge sinceE is expansive. To guarantee the convergence, we can revise operator
Tβ,η by employing the matrix splitting technique and obtain a new operator that
has the same fixed points as Tβ,η [28, 29]. Specifically, we let

G :=

(
Im1

−βD⊤

−ηD Im2

)
,

(23) W := P−1G =

( 1
β Im1 −D⊤

−D 1
ηIm2

)
and define operators TG : Rm1+m2 → Rm1+m2 and TW : Rm1+m2 → Rm1+m2 by

(24) TG : z →
{

u : (z,u) satisfies that
u = F((E −G)u+Gz)

}
,

(25) TW := TG ◦ (I −W−1∇r),
where I denote the identity operator. We note that G and E are essentially the
same except for the sign of the lower left block. This is to ensure that E − G is
a strictly lower block triangular matrix, allowing the implicit fixed-point iteration
vk+1 = F

(
(E−G)vk+1+Gvk

)
to have an explicit form. We show in the following

proposition that operator TG is well-defined, and the two fixed point sets Fix(TW )
and Fix(Tβ,η) are equivalent.

Proposition 3. Let TG and TW be defined by (24) and (25), respectively. Then
the following hold:

(i) For any given z ∈ Rm1+m2 , there exists a unique u ∈ Rm1+m2 such that
TG(z) = u.

(ii) Fix(TW ) = Fix(Tβ,η).

Proof. See Appendix A.
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Now to solve model (10), it suffices to find a fixed point of operator TW , which
can be obtained by the fixed-point iteration

(26) zk+1 = TW (zk)

with a given initial vector z0 ∈ Rm1+m2 . The convergence of this fixed-point
iteration shall be illustrated in next section. We then give the explicit form of the

fixed-point iteration (26). For zk =

(
vk

yk

)
with vk ∈ Rm1 and yk ∈ Rm2 ,

zk+1 = TW (zk) = TG
(
zk −W−1∇r(zk)

)
⇔ zk+1 = F

(
(E −G)zk+1 +G

(
zk −W−1∇r(zk)

))
⇔ zk+1 = F

(
(E −G)zk+1 +Gzk − P∇r(zk)

)
(27)

⇔

{
vk+1 = proxβg

(
vk − β(∇f(vk) +D⊤yk)

)
yk+1 = proxηι∗d

(
yk + ηD(2vk+1 − vk)

)
.

We remark that the second equivalence above holds since the definition of W in
(23) implies that GW−1 = P . It is also worth mentioning that the elements of the
block matrix E −G are all zeros except those in the lower left block, which turns
the implicit iteration in (27) into an explicit one (see the third equivalence).

For the computation of proxηι∗d , we need the well-known Moreau decomposition

[30], which is recalled as a lemma.

Lemma 4 (Moreau decomposition). Let ψ ∈ Γ0(Rm). Then for any x ∈ Rm,
x = proxψ(x) + proxψ∗(x).

Define ψ(y) := ηιd (y/η), y ∈ Rm2 . Then it is easy to verify from the definition
of proxψ(y) that

(28) proxψ(y) = η · prox 1
η ιd

(
1

η
y

)
.

We next verify that ψ∗ = ηι∗d. By the definition of conjugate function in (12), for
any y ∈ Rm2 , we have that

ψ∗(y) = sup
u∈Rm2

{
⟨y,u⟩ − ηιd

(
u

η

)}
= η sup

u∈Rm2

{⟨
y,

u

η

⟩
− ιd

(
u

η

)}
= η sup

x∈Rm2

{⟨y,x⟩ − ιd(x)} = ηι∗d(y).

Then the fact ψ∗ = ηι∗d together with Lemma 4 and (28) implies that

proxηι∗d(y) = proxψ∗(y) = y − proxψ(y)

= η(I − prox 1
η ιd

)

(
1

η
y

)
, for y ∈ Rm2 .(29)

To implement iteration (26), we still need the closed forms of proxβg and prox 1
η ιd

,

where g and ιd are defined by (11) and (13), respectively. By the definition of the
indicator function ιd, we know that ιd = 1

η ιd, which together with the definition of

proximity operator yields that

prox 1
η ιd

(y) = proxιd(y) = max(y,d),
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where the maxima in the above equation is taken component-wise. In addition, it
is easy to verify that for v ∈ Rm1 ,

proxβg(v) = proxβτ∥·∥1◦Ĩ(v)

=
(
proxβτ |·|(v1),proxβτ |·|(v2), . . . ,proxβτ |·|(vm1−1), vm1

)⊤
,

where

proxβτ |·|(x) = max(|x| − βτ, 0) · sign(x), for x ∈ R
is the soft thresholding operator (see Example 2.3 of [26]).

Though the fixed-point iteration of TW can guarantee the convergence, we may
also care about the speed of convergence. To accelerate the convergence speed while
preserving the theoretical convergence, the Krasnoselskii-Mann (KM) momentum
technique can be utilized. The use of KM momentum scheme obtains a better
approximation of the solution by adding the current fixed-point update to the dif-
ference between the current fixed-point update and the update from prior iteration.
Specifically, the KM iteration for solving model (10) is given by

(30) zk+1 = Tθkzk = TW zk + θk
(
TW zk − zk

)
,

where

(31) Tθk := (1 + θk)TW − θkI, k ∈ N,

N denotes the set of all nonnegative integers. Throughout this paper, the mo-
mentum parameter is set to θk = ϱk

k+δ , where δ ∈ (0,+∞), ϱ ∈ (−1, 1), k ∈ N.
According to the explicit form of iteration (27) and Equation (29), the KM itera-
tion in (30) can be written as

ṽk+1 = proxβg
(
vk − β(∇f(vk) +D⊤yk)

)
ỹk+1 = η(I − prox 1

η ιd
)
(

1
ηy

k +D(2ṽk+1 − vk)
)

θk = ϱk
k+δ

vk+1 = (1 + θk)ṽ
k+1 − θkv

k

yk+1 = (1 + θk)ỹ
k+1 − θky

k

.

The last two steps in the above iteration is the KM momentum scheme. We call
this iterative scheme Krasnoselskii-Mann Proximity Algorithm (KMPA).

The setting of θk is grounded in reference [29], ensuring both convergence and
the robustness of convergence. We also remark that the KMPA can be extended
to solve portfolio optimization models with non-convex constraints, such as cardi-
nality and bounding constraints, which are common in portfolio optimization to
ensure diversification across a specified number of assets and to limit the capital
allocated to each asset. However, in the non-convex case, it can only guarantee the
convergence to a critical point or locally optimal solution rather than a globally
optimal solution.

5. Convergence Analysis of KMPA

In this section, we analyze the convergence of KMPA. To this end, we recall the
definitions of nonexpansiveness, firm nonexpansiveness and averaged nonexpansive-
ness. Let H ∈ Rm×m be a symmetric positive definite matrix. The weighted norm
∥ · ∥H is defined by ∥x∥H := ⟨x,Hx⟩ 1

2 , for x ∈ Rm. An operator T : Rm → Rm
is called nonexpansive with respect to H if ∥T x − T y∥H 6 ∥x − y∥H for all
x,y ∈ Rm. If ∥T x−T y∥2H 6 ⟨T x−T y,x−y⟩H for all x,y ∈ Rm, we say that T
is firmly nonexpansive with respect to H. If there exists a nonexpansive operator
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N : Rm → Rm with respect to H and α ∈ (0, 1) such that T = (1 − α)I + αN ,
we say that T is α-averaged nonexpansive with respect to H. We also recall the
following KM theorem [25, 31, 32], which is crucial for the proof of convergence.
It is easy to see from this theorem that an averaged nonexpansive operator has a
convergent fixed-point iteration.

Theorem 5 (KM theorem). Let N : Rm → Rm be a nonexpansive operator with
respect to some symmetric positive definite matrix, such that Fix(N ) ̸= ∅. For
{αk}k∈N ⊂ [0, 1] and x0 ∈ Rm, define

xk+1 := (1− αk)x
k + αkNxk, k ∈ N.

If
∑∞
k=0 αk(1− αk) = +∞, then {xk}k∈N converges to a fixed point of N .

We then show the averaged nonexpansiveness of operator TW . We denote by
λmin(W ) the minimum eigenvalue of W , L ∈ (0,+∞) the Lipschitz constant of
∇f , that is, ∥∇f(x)−∇f(y)∥2 6 L∥x− y∥2 for all x,y ∈ Rm1 , and define

(32) ζ :=
2λmin(W )

4λmin(W )− L
.

Proposition 6. Let W and TW be defined by (23) and (25), respectively. If
λmin(W ) > L

2 , then W is symmetric positive definite and TW is ζ-averaged non-
expansive with respect to W .

Proof. See Appendix B.
We also recall Lemma 6.2 of [33] as the following Lemma 7.

Lemma 7. For symmetric positive definite matrices E1 ∈ Rn×n, E2 ∈ Rm×m and

an m × n real matrix C, let F :=

(
E1 C⊤

C E2

)
and C̃ := E

− 1
2

2 CE
− 1

2
1 . Then F

is positive definite if and only if ∥C̃∥2 < 1.

Corollary 8. Let W be defined by (23) and ξ ∈ (0,+∞), If β ∈
(
0, 2ξL

)
and

η ∈
(
0, 2ξ(2ξ−βL)

4βξ2∥D∥2
2+L(2ξ−βL)

)
, then λmin(W ) > L

2ξ .

Proof. To prove that λmin(W ) > L
2ξ , it suffices to show that

W − L

2ξ
Im1+m2 =

 (
1
β − L

2ξ

)
Im1

−D⊤

−D
(

1
η − L

2ξ

)
Im2


is positive definite. Since β ∈

(
0, 2ξL

)
and η ∈

(
0, 2ξ(2ξ−βL)

4βξ2∥D∥2
2+L(2ξ−βL)

)
, we have

that 1
β − L

2ξ > 0 and 1
η − L

2ξ > 0. Let D̃ := 1√
( 1

β− L
2ξ )(

1
η− L

2ξ )
D. It follows from

Lemma 7 that W − L
2ξIm1+m2 is positive definite if and only if ∥D̃∥2 < 1, that is,(

1

β
− L

2ξ

)(
1

η
− L

2ξ

)
> ∥D∥22.

Using the facts β ∈
(
0, 2ξL

)
and η ∈

(
0, 2ξ(2ξ−βL)

4βξ2∥D∥2
2+L(2ξ−βL)

)
again, we obtain(

1

β
− L

2ξ

)(
1

η
− L

2ξ

)
>

(
1

β
− L

2ξ

)(
4βξ2∥D∥22 + L(2ξ − βL)

2ξ(2ξ − βL)
− L

2ξ

)
=

2ξ − βL

2βξ
· 2βξ∥D∥22
2ξ − βL

= ∥D∥22,
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which completes the proof.
According to Proposition 6 and Corollary 8, we have the following Proposition

9 that provides the ranges of β and η to guarantee the averaged nonexpansiveness
of TW .

Proposition 9. Let W , TW and ζ be defined by (23), (25) and (32), respectively.

If β ∈
(
0, 2

L

)
and η ∈

(
0, 2(2−βL)

4β∥D∥2
2+L(2−βL)

)
, then TW is ζ-averaged nonexpansive

with respect to W .

Proof. According to Proposition 6, to prove the desired result, it suffices to verify
that λmin(W ) > L

2 , which follows from Corollary 8 with ξ = 1 immediately.
It has been shown in Proposition 9 that TW is ζ-averaged nonexpansive with

respect to the symmetric positive definite matrix W for appropriate choices of β
and η. Then by employing Theorem 5, we know that the sequence generated by the
fixed-point iteration of TW converges to a fixed point of TW , that is, a minimizer
of model (10). In addition, we have the following convergence result for KMPA.

Theorem 10. Let TW be defined by (25), ξ := 1−max{ϱ, 0}, z0 ∈ Rm1+m2 be any

initial vector, {zk}k∈N be the sequence generated by (30) and xk :=
(
zk1 , z

k
2 , . . . , z

k
m1

)⊤
,

k ∈ N. If β ∈
(
0, 2ξL

)
and η ∈

(
0, 2ξ(2ξ−βL)

4βξ2∥D∥2
2+L(2ξ−βL)

)
, then {xk}k∈N converges to

a solution of model (10).

Proof. Since ϱ ∈ (−1, 1), we have ξ ∈ (0, 1]. Corollary 8 yields that λmin(W ) >
L
2ξ >

L
2 . Then it follows from Proposition 6 that W is positive definite and TW

is ζ-averaged nonexpansive with respect to W , where ζ is defined by (32). This
implies that there exists a nonexpansive operator M with respect to W such that
TW = (1− ζ)I + ζM. Hence

Tθk = (1 + θk)[(1− ζ)I + ζM]− θkI
= [1− (1 + θk)ζ]I + (1 + θk)ζM,(33)

for all k ∈ N. To employ Theorem 5 to prove this theorem, it suffices to verify that
(1 + θk)ζ ∈ [0, 1] and

∞∑
k=0

(1 + θk)ζ[1− (1 + θk)ζ] = +∞.

Recall that θk = ϱk
k+δ ∈ (−|ϱ|, |ϱ|). This yields that (1 + θk)ζ > (1 − |ϱ|)ζ > 0.

Let ζ ′ := (1 + max{ϱ, 0})ζ. Then ζ ′ > 0 and (1 + θk)ζ < ζ ′. In addition, the
inequality λmin(W ) > L

2ξ , combined with ξ = 1−max{ϱ, 0}, gives that max{ϱ, 0} <
1 − L

2λmin(W ) , and hence 1 + max{ϱ, 0} < 4λmin(W )−L
2λmin(W ) . Then we see from the

definitions of ζ ′ and ζ that

ζ ′ = (1 +max{ϱ, 0}) 2λmin(W )

4λmin(W )− L
< 1.

Now we conclude that

(34) 0 < (1− |ϱ|)ζ < (1 + θk)ζ < ζ ′ < 1.

Note that (1− |ϱ|)ζ(1− ζ ′) is a positive constant. Then (34) implies that

∞∑
k=0

(1 + θk)ζ[1− (1 + θk)ζ] >
∞∑
k=0

(1− |ϱ|)ζ(1− ζ ′) = +∞.
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To employ Theorem 5 for proving the convergence of {zk}k∈N, we still need the
existence of fixed point of TW . This can be achieved as long as model (10) has
a solution (see Theorem 2 (i) and Proposition 3 (ii)). Note that the objective
function in model (10) is proper, lower semicontinuous, convex and coercive. The
constraint set of this model is closed and convex. Then it follows from Proposition
11.15 of [25] that model (10) has a solution, and hence Fix(TW ) ̸= ∅.

Now according to Theorem 5, we know that {zk}k∈N converges to a fixed point
z∗ of TW . We also know from Theorem 2 and Item (ii) of Proposition 3 that
the vector composed by the first m1 components of z∗ is a solution of model (10).
Therefore, {xk}k∈N converges to a solution of model (10).

To close this section, we summarize the whole MPAERL strategy as the following
Algorithm 1.

Algorithm 1. Whole MPAERL strategy

Input: Given the sample asset price relative matrix X ∈ RT×N , the regularization
parameter τ > 0, the lower bound ρ1 and the upper bound ρ2 of the expected
return level, the momentum parameters ϱ ∈ (−1, 1) and δ > 0. Set the tolerance
tol = 10−8 and the maximum iteration number MaxIter = 104.

Initialization: Compute the sample asset return matrix R = X − 1T×N and the
sample mean return vector µ̂ = 1

TR
⊤1T . Set v0 = 1

N 1N+1, v
0
N+1 = 1

2 (ρ1 + ρ2),

y0 = Dv0; and let R̃ = (R, −1T ), D and d be given by (9).

1. Compute the Lipschitz constant L = 2
T ∥R̃

⊤R̃∥2.
2. ξ = 1−max{ϱ, 0}, β = ξ

L , η = ξ(2ξ−βL)
4βξ2∥D∥2

2+L(2ξ−βL)
and k = 0.

repeat

3. ṽk+1 = proxβτ∥·∥1◦Ĩ

(
vk − β

(
2
T R̃

⊤R̃vk +D⊤yk
))

4. ỹk+1 = η(I − proxιd)
(

1
ηy

k +D(2ṽk+1 − vk)
)

5. θk = ϱk
k+δ

6. vk+1 = (1 + θk)ṽ
k+1 − θkv

k

7. yk+1 = (1 + θk)ỹ
k+1 − θky

k

8. k = k + 1

until ∥vk−vk−1∥2

∥vk−1∥2
6 tol or k > MaxIter.

9. ŵ = vk(1 : N).
Output: The portfolio ŵ.

We remark that the KMPA can be directly extended to solve general constrained
optimization models of the form

(35) x̂ = argmin
x∈Rm

{f(x) + g(x)} , s. t. Qx > q,

where f ∈ Γ0(Rm) is differentiable with a Lipschitz continuous gradient, g ∈
Γ0(Rm) has a closed form of its proximity operator, Q ∈ Rn×m and q ∈ Rn.
Model (10) is a special case of model (35) with n := 6, m := N + 1, Q := D,
q := d, and f , g given by (11).

6. Experimental Results

In this section, we present the performance of the proposed algorithm. We con-
duct extensive experiments on 6 benchmark data sets from Kenneth R. French’s
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Data Library1 (a standard and widely-used data library for long-term PO), named
FF25, FF25EU, FF32, FF48, FF100 and FF100MEOP. FF25 contains 25 portfo-
lios (they can also be considered as “assets” in our experiments) formed on BE/ME
(book equity to market equity) and investment from the US market. FF25EU con-
tains 25 portfolios formed on ME and prior return from the European market. FF32
contains 32 portfolios developed by BE/ME and investment from the US market.
FF48 contains 48 industry portfolios from the US market. FF100 contains 100
portfolios formed on ME and BE/ME, while FF100MEOP contains 100 portfolios
formed on ME and operating profitability, all from the US market. All these data
sets are monthly price relative sequences, which is a conventional frequency setting
for long-term PO. Their profiles are shown in Table 1.

Table 1. Information of 6 benchmark data sets from real-world
financial markets.

Data Set Region Time Months Assets

FF25 US Jul/1971 ∼ May/2023 623 25
FF25EU EU Nov/1990 ∼ May/2023 391 25
FF32 US Jul/1971 ∼ May/2023 623 32
FF48 US Jul/1971 ∼ May/2023 623 48

FF100 US Jul/1971 ∼ May/2023 623 100
FF100MEOP US Jul/1971 ∼ May/2023 623 100

We compare the proposed MPAERL with 9 state-of-the-art PO models (intro-
duced in Section 2): SSMP [9], SSPO [2], SPOLC [3], RPRT [22], S1, S2, S3 [18],
MCFPS(I) and MCFPS(II) [24], as well as 2 trivial baseline models: 1/N [34] and
Market [1]. S1, S2 and S3 are 3 slightly different algorithms that solve (5) and (6),
in which S1 is deterministic but S2 and S3 are randomized. Additionally, [24] em-
ploys a genetic algorithm with inherent randomness to address the MCFPS(I) and
MCFPS(II) models. Thus we run S2, S3 and the genetic algorithm used to solve
model MCFPS(I) and MCFPS(II) for 10 times and report their average results in
this section. The 1/N strategy rebalances the portfolio to be equally weighted on
each trading period, while the Market strategy sets an equally weighted portfolio
at the beginning and does not rebalance till the end.

We adopt the moving-window trading framework [4] in the experiments, which
is consistent with practical portfolio management. In brief, a window size T and
the initial wealth S(0) = 1 are preset for a strategy, then the price relatives in
the time window t = [1 : T ] are used to update the portfolio ŵ(T+1) for the next
trading period. Then we proceed to (T + 1) and update the cumulative wealth
S(T+1) = (x(T+1) · ŵ(T+1))S(T ). In the next round, the price relatives in the time
window t = [2 : (T + 1)] are used to update the portfolio ŵ(T+2), and the above
procedure is repeated, till the last period T of the investment. The equal-weight
portfolio can be used at the beginning where there are insufficient samples to run
a strategy. By this way, we obtain a backtest sequence {S(t)}T

t=0 of cumulative
wealths, which can be used to compute several evaluation scores for the investing
performance and the risk assessment.

6.1. Parameter Setting. Before setting the parameters, we conduct sensitivity
analyses for the parameters in MPAERL by using two important evaluation in-
dicators Cumulative Wealth (CW) and Sharpe Ratio (SR), whose definitions are
provided later in Section 6.2 and 6.4, respectively. Table 2 presents the CW and SR

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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of MPAERL under various regularization parameters, indicating that our model is
not sensitive to the regularization parameter around 1, thus we casually set τ = 1.
Table 3 shows the CW and SR of MPAERL with different lower bounds, which
demonstrate that the CW and SR obtained by MPAERL exhibit a certain degree
of variation with changes in the lower bound ρ1. After comprehensive consideration
of the performance of both CW and SR metrics, we select ρ1 = 0.03 as the lower
bound of expected return level for all subsequent experiments. Table 4 shows that
MPAERL is not sensitive to ρ2 around 0.1. So we casually set ρ2 = 0.1 in the
subsequent experiments.

Since SSMP and MPAERL are both based on the Markowitz’s criterion, we em-
pirically set the same regularization parameter τ and tune the same window size
T = 18 for these two methods. The expected return ρ in SSMP is set as 0.066 ac-
cording to [9]. Based on the convergence analysis of KMPA in Section 5, we always

let δ = 3, ϱ = 0.8, ξ = 1 − ϱ, L = 2
T ∥R̃

⊤R̃∥2, β = ξ
L and η = ξ(2ξ−βL)

4βξ2∥D∥2
2+L(2ξ−βL)

.

We repeat Algorithm 1 until the equality tolerance ∥vk−vk−1∥2

∥vk−1∥2
< 10−8 or the max-

imum iteration number 10, 000 is reached. For the MCFPS(I) and MCFPS(II)
models, the invested proportion of the risk-free asset was set to 0, while the re-
maining parameters were set as in [24]. Additionally, based on their performance
on the CW, an evaluation indicator to be introduced in the next subsection, the
parameter a was set to 1 for the MCFPS(I) model and 1.5 for the MCFPS(II)
model. As for other compared methods, we set their parameters by the defaults in
their original papers.

6.2. Cumulative Wealth. The cumulative wealth (CW) sequence {S(t)}T
t=0 is

the most important evaluation score for a strategy throughout an investment. We
plot the CW sequences for different strategies on the benchmark data sets in Figure
1. It shows that the proposed MPAERL outperforms other competitors to a large
extent in most time of the investment. The final CWs for different strategies are
given in Table 5, which show that MPAERL achieves the highest scores on all the
benchmark data sets. Its final CWs are more than doubling the second highest CWs
on FF25EU, FF32, FF100 and FF100MEOP. In particular, MPAERL outperforms
the 2 trivial strategies 1/N and Market on FF100, where SSMP could not beat them.
It indicates that the proposed adaptive expected return level scheme is effective.

6.3. α Factor. In the finance industry, it is also important to evaluate the relative
performance of a nontrivial strategy with respect to the Market strategy. The
reason is that a portfolio is established from the underlying financial market. If
all the asset prices in the financial market drop, the CW cannot rise no matter
how we manage the portfolio. In this case, if a nontrivial strategy performs not as
badly as the market, it can be considered as effective. Based on the Capital Asset
Pricing Model (CAPM) [12], the α factor [35] can be used to evaluate this relative
performance. Denote rs and rm as the returns for a nontrivial strategy and the
Market strategy, respectively. The α factor can be computed as follows:

E(rs) = βE(rm) + α,(36)

β̂ =
ĉ(rs, rm)

σ̂2(rm)
, α̂ = r̄s − β̂r̄m,

where E(·) denotes the mathematical expectation, ĉ(·, ·) and σ̂(·) denote the sample
covariance and the sample standard deviation (STD) computed on the T trading
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Figure 1. Cumulative wealths of different strategies with respect
to trade time on 6 benchmark data sets.

Table 5. Final cumulative wealths of different strategies on 6
benchmark data sets.

Strategy FF25 FF25EU FF32 FF48 FF100 FF100MEOP

1/N 355.98 13.05 424.42 235.48 364.87 348.70

Market 413.79 43.13 543.80 199.85 505.68 419.44

SSMP 618.17 46.34 472.58 1588.12 132.84 565.56
SSPO 25.70 1.95 11.58 0.84 1.13 8.70
SPOLC 66.71 1.25 47.61 11.90 13.00 26.54

RPRT 28.30 0.96 3.03 2.34 0.34 17.19
S1 45.45 3.88 44.13 0.96 2.22 13.96
S2 44.47 3.91 40.90 0.93 1.94 7.43
S3 44.81 3.74 40.55 0.96 2.15 14.94

MCFPS(I) 279.33 21.96 581.68 272.61 458.42 746.63
MCFPS(II) 321.21 21.67 372.83 471.44 262.31 731.91

MPAERL 998.54 102.66 1802.79 2343.57 1776.51 1578.05
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months, respectively. r̄s denotes the sample mean, which can be computed by

r̄s =
1
T

∑T
t=1 r

(t)
s where r

(t)
s = S

(t)
s /S

(t−1)
s − 1 and S

(t)
s is the CW of this nontrivial

strategy on the t-th trading month. r̄m can be computed likewise. Since (36)
is essentially a linear regression model, a right-tailed t-test can be implemented
to see whether α is significantly greater than 0. If so, this nontrivial strategy is
significantly better than the Market strategy.

The α factors and the p-values for different strategies are given in Table 6.
MPAERL outperforms all the competitors to a large extent on all the benchmark
data sets. Besides, it is the only nontrivial strategy that achieves positive α factors
on all the data sets. Moreover, its p-values are all smaller than 0.02, which indicates
that its α factors are greater than 0 at a confidence level of 98% on all 6 data sets.
To summarize, MPAERL outperforms other state-of-the-art competitors and the
Market strategy significantly on the α factor.

6.4. Sharpe Ratio. Besides return, an investor should also consider the risk of the
portfolio. The sample STD of the portfolio return σ̂(rs) is a basic risk measurement
in the finance industry. Furthermore, Sharpe Ratio (SR) [13] is a kind of risk-
adjusted return based on CAPM:

SR =
r̄s − rf
σ̂(rs)

,

where rf denotes the return of some risk-free asset. Since we do not consider risk-
free assets in this paper, we let rf = 0. Then SR becomes a quotient of return over
risk.

The (monthly) SRs of different strategies are shown in Table 7. Note that we need
not necessarily annualize the SRs to make comparisons, thus we directly present
the computed monthly SRs. The results show that the 2 trivial strategies 1/N and
Market outperform other state-of-the-art competitors except the MCFPS and the
proposed MPAERL on 4 data sets and 6 data sets, respectively. The reason is
that these 2 trivial strategies aim to diversify the risk over all the assets, which
is essentially a risk control scheme. Previous researches [34] also verify that such
trivial strategies are very competitive in the risk-adjusted return. Moreover, while
MCFPS(I) surpasses the 2 trivial strategies 1/N and Market on 3 data sets, our
MPAERL outperforms both trivial and nontrivial strategies on all data sets. M-
PAERL not only allows for an adaptive expected return level but also reduces the
risk at this level, and this return-risk balance can be dynamically adaptive to the
ever-changing financial market.

6.5. Maximum Drawdown. In the finance industry, it is important to examine
the extreme loss of a strategy during an investment as part of the risk assessment.
A widely-used metric is the maximum drawdown (MDD) [36] that measures the
maximum percentage loss of CW from a peak to a subsequent valley in the whole
investment

MDD := max
l∈[1,T ]

max
t∈[1,l]

S(t) − S(l)

max
t∈[1,l]

S(t)
= 1− min

l∈[1,T ]

 S(l)

max
t∈[1,l]

S(t)

 .

It lets the current time l pass from 1 to T , and searches the past time t ∈ [1, l] for
the peak and the valley CWs to compute the maximum percentage loss. Note that
the MDD is a nonnegative value, i.e., the absolute value of the actual percentage
loss. As the investing time T increases, MDD would not decrease. Hence it is
difficult to keep a relatively low MDD in a long investment.
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Table 7. Sharpe Ratios of different strategies on 6 benchmark
data sets.

Strategy FF25 FF25EU FF32 FF48 FF100 FF100MEOP

1/N 0.2278 0.1576 0.2236 0.2059 0.2089 0.2077
Market 0.2287 0.2254 0.2240 0.2093 0.2187 0.2132

SSMP 0.2251 0.2102 0.1890 0.2080 0.1495 0.1840
SSPO 0.1132 0.0602 0.0925 0.0517 0.0486 0.0851

SPOLC 0.1438 0.0412 0.1363 0.0905 0.0931 0.1120
RPRT 0.1142 0.0334 0.0620 0.0677 0.0276 0.0978
S1 0.1299 0.0879 0.1259 0.0511 0.0591 0.0944
S2 0.1212 0.0860 0.1176 0.0478 0.0524 0.0809

S3 0.1277 0.0857 0.1222 0.0512 0.0584 0.0951
MCFPS(I) 0.2241 0.1861 0.2404 0.2272 0.2066 0.2272
MCFPS(II) 0.2207 0.1827 0.2120 0.2280 0.1854 0.2149

MPAERL 0.2423 0.2531 0.2553 0.2493 0.2503 0.2504

MDDs of different strategies are shown in Table 8. MPAERL outperforms other
state-of-the-art competitors on 5 out of 6 data sets, which shows a good capability
of downside risk control. In general, the risk inevitably increases as the return
increases for any strategy, but MPAERL enjoys high CWs while keeping competitive
MDDs at the same time. Hence MPAERL is effective in balancing return and risk
due to its adaptive expected return level scheme.

Table 8. Maximum drawdowns of different strategies on 6 bench-
mark data sets.

Strategy FF25 FF25EU FF32 FF48 FF100 FF100MEOP

SSMP 0.5096 0.5865 0.5252 0.4683 0.7083 0.5653
SSPO 0.8456 0.7570 0.6848 0.9587 0.8586 0.8427

SPOLC 0.6892 0.7087 0.6267 0.9024 0.7792 0.7107
RPRT 0.8141 0.7509 0.7324 0.9383 0.9352 0.7945
S1 0.8439 0.6920 0.6716 0.9661 0.8735 0.8195
S2 0.8560 0.7030 0.7146 0.9758 0.8869 0.8558

S3 0.8479 0.6945 0.6753 0.9657 0.8777 0.8125
MCFPS(I) 0.5077 0.6078 0.5159 0.5538 0.6495 0.5797
MCFPS(II) 0.5317 0.6256 0.5250 0.5632 0.6246 0.5602

MPAERL 0.5012 0.5730 0.5006 0.5586 0.5703 0.4970

6.6. Transaction Cost. The transaction cost is an important practical issue for a
strategy to be adopted in the real-world investment. We introduce the proportional
transaction cost model [37, 38, 39, 4] to fix the CW at the beginning of the t-th
trading month as follows:

SνT = S(0)
T∏
t=1

[(x(t)ŵ(t)) · (1− ν

2

N∑
i=1

|ŵ(t)
i − w̃

(t−1)
i |)],

w̃
(t−1)
i =

ŵ
(t−1)
i · x(t−1)

i

x(t−1)ŵ(t−1)
,

where x(t) is the asset price relative vector of the t-th month (i.e., the t-th row of the

price relative matrix X), w̃
(t−1)
i is the adjusted portfolio of Asset i at the end of the

(t− 1)-th month and w̃(0) is set as the vector 0N . Given the transaction cost rate

ν ∈ [0, 1), the term ν
2

∑N
i=1 |ŵ

(t)
i − w̃

(t−1)
i | computes the proportional transaction

cost when the adjusted portfolio w̃(t−1) is updated as the next portfolio ŵ(t).
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We let ν change in 0 ∼ 0.5% (0.5% is a rather high transaction cost rate in
the real-world finance industry) and plot the final CWs of different strategies in
Figure 2. It shows that MPAERL outperforms other state-of-the-art competitors
on all 6 data sets in all the cases, which suggests that MPAERL is also effective in
controlling transaction costs while managing the portfolio adaptively.
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Figure 2. Final cumulative wealths of different strategies with
respect to different transaction cost rates on 6 benchmark data
sets.

7. Conclusion

We propose a novel Markowitz Portfolio with Adaptive Expected Return Level
(MPAERL) to improve the traditional return-risk balance scheme in the finance
industry. Specifically, traditional portfolio management presets a fixed expected
return level according to the preferred risk appetite, then tries to minimize the
portfolio risk at this return level. Such a scheme may not favor nonprofessional
investors that do not know their risk appetites well, and may not be adaptive to
the ever-changing financial market. To fill this gap, we propose to optimize the
expected return level and the portfolio simultaneously, in order to dynamically
balance the return and the risk of a portfolio. Moreover, we propose an exact,
convergent, and efficient Krasnoselskii-Mann Proximity Algorithm (KMPA) based
on the proximity operator and the Krasnoselskii-Mann momentum technique to
solve the proposed model. KMPA can solve not only the proposed model, but also
a general two-term optimization problem with inequality constraints.

Extensive experiments are conducted on 6 benchmark data sets from the French’s
widely-used public data library. The results show that MPAERL outperforms oth-
er state-of-the-art competitors in several major evaluation scores for investing per-
formance, including the cumulative wealth, the α factor, and the Sharpe Ratio.
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MPAERL also has a competitive capability of downside risk control according to
the maximum drawdown experiments, which indicates that its adaptive scheme can
effectively balance return and risk. As for practical issues, MPAERL outperforms
other state-of-the-art competitors in most cases of the transaction cost experiments.
Therefore, this adaptive expected return level approach merits further exploration,
with potential future research efforts focused on developing novel return-risk bal-
ancing mechanisms. The limitation of MPAERL may lie in the following aspec-
t. Investing strategies based on mathematical finance assume that assets can be
bought or sold according to the market price. But in the real world, the actual
transaction price is affected by the impact cost. This may have a little influence in
the investing performance.
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Comptes rendus hebdomadaires des séances de l’Académie des sciences, vol. 255, pp. 2897–

2899, 1962.
[31] M. A. Krasnosel’skii, Two remarks on the method of successive approximations, Uspekhi

Matematicheskikh Nauk, vol. 10, no. 1, pp. 123–127, 1955.

[32] W. R. Mann, Mean value methods in iteration, Proceedings of the American Mathematical
Society, vol. 4, no. 3, pp. 506–510, 1953.

[33] Q. Li, L. Shen, Y. Xu, and N. Zhang, Multi-step fixed-point proximity algorithms for solving
a class of optimization problems arising from image processing, Advances in Computational

Mathematics, vol. 41, no. 2, pp. 387–422, 2015.
[34] V. DeMiguel, L. Garlappi, and R. Uppal, Optimal versus naive diversification: How inefficient

is the 1/N portfolio strategy? The Review of Financial Studies, vol. 22, no. 5, pp. 1915–1953,
May 2009.

[35] J. Lintner, The valuation of risk assets and the selection of risky investments in stock portfolios
and capital budgets, Review of Economics and Statistics, vol. 47, no. 1, pp. 13–37, Feb. 1965.

[36] M. Magdon-Ismail and A. F. Atiya, Maximum drawdown, Risk Magazine, vol. 10, pp. 99–102,
2004.

[37] A. Blum and A. Kalai, Universal portfolios with and without transaction costs, Machine
Learning, vol. 35, no. 3, pp. 193–205, 1999.

[38] B. Li, S. C. Hoi, D. Sahoo, and Z.-Y. Liu, Moving average reversion strategy for on-line

portfolio selection, Artificial Intelligence, vol. 222, pp. 104–123, 2015.
[39] D. Huang, J. Zhou, B. Li, S. C. H. Hoi, and S. Zhou, Robust median reversion strategy for

online portfolio selection, IEEE Transactions on Knowledge and Data Engineering, vol. 28,
no. 9, pp. 2480–2493, Sep. 2016.

[40] J.-B. Baillon and G. Haddad, Quelques propriétés des opérateurs angle-bornés etn-
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Appendix A. Proof of Proposition 3

In this appendix, we provide the proof of Proposition 3. To this end, we first
recall the definition of coercivity and prove in the following lemma that the prox-
imity operator of a function in Γ0(Rm) is well-defined. Let ψ : Rm → [−∞,+∞].
We say that ψ is coercive if lim∥x∥2→+∞ ψ(x) = +∞.

Lemma 11. If ψ ∈ Γ0(Rm), then for any x ∈ Rm, proxψ(x) exists and is unique.

Proof. Let ψ̃(u) := 1
2∥u − x∥22 + ψ(u) for u ∈ Rm. Since ψ ∈ Γ0(Rm) and the

quadratic term in ψ̃ is coercive and strictly convex, we know that ψ̃ ∈ Γ0(Rm)
and it is also coercive and strictly convex. Then the existence and the uniqueness

of proxψ(x) follow from Proposition 11.15 of [25] and the strict convexity of ψ̃
immediately.

We then give the proof of Proposition 3 as follows.

Proof of Proposition 3. We first prove Item (i). Let u1 := (u1, u2, . . . , um1)
⊤

and
u2 := (um1+1, um1+2, . . . , um1+m2)

⊤ for u ∈ Rm1+m2 . For a given vector z :=(
v
y

)
with v ∈ Rm1 and y ∈ Rm2 , the implicit fixed-point equation in (24) can

be written as {
u1 = proxβg(v − βD⊤y),(A.1a)

u2 = proxηι∗d(2ηDu1 − ηDv + y).(A.1b)

Since vectors v and y are given, the existence and uniqueness of u1 in (A.1a) follows
from the fact βg ∈ Γ0(Rm1) and Lemma 11. Now that a unique u1 is given, to prove
the existence and uniqueness of u2 in (A.1b), it suffices to show that ηι∗d ∈ Γ0(Rm2),
which follows from Corollary 13.38 of [25] and the fact ιd ∈ Γ0(Rm2). In conclusion,
for any given z ∈ Rm1+m2 in the equation contained in (24), there exists a unique
solution u.

We next prove Item (ii).

z ∈ Fix(TW ) ⇔ z = TG
(
z −W−1∇r(z)

)
⇔ z = F

(
(E −G)z +G

(
z −W−1∇r(z)

))
⇔ z ∈ Fix(Tβ,η).

The third equivalence above holds since the definition of W in (23) implies that
GW−1 = P . This completes the proof.

Appendix B. Proof of Proposition 6

In this appendix, we provide the proof of Proposition 6. To this end, we first
recall the Baillon-Haddad theorem [40] and Proposition 2.4 of [41] as the following
Lemma 12 and Lemma 13, and then prove the firm nonexpansiveness of operator
F in Lemma 14.

Lemma 12. Suppose that ψ : Rm → R is a differentiable convex function. Then
∇ψ is L-Lipschitz for some L > 0 if and only if

∥∇ψ(x)−∇ψ(y)∥22 6 L⟨x− y,∇ψ(x)−∇ψ(y)⟩,
for all x,y ∈ Rm.
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Lemma 13. Let H ∈ Rm×m be a symmetric positive definite matrix, α1, α2 ∈
(0, 1). If T1 : Rm → Rm and T2 : Rm → Rm are α1-averaged nonexpansive and α2-
averaged nonexpansive with respect to H, respectively, then T1 ◦T2 is α1+α2−2α1α2

1−α1α2
-

averaged nonexpansive with respect to H.

Lemma 14. Let F : Rm1+m2 → Rm1+m2 and P be defined by (15) and (14),
respectively. Then F is firmly nonexpansive with respect to P−1.

Proof. Since βg ∈ Γ0(Rm1) and ηι∗d ∈ Γ0(Rm2), it follows from Lemma 2.4 of [42]
that proxβg and proxηι∗d are both firmly nonexpansive with respect to I. For u :=(

u1

u2

)
with u1 ∈ Rm1 , u2 ∈ Rm2 and v :=

(
v1

v2

)
with v1 ∈ Rm1 , v2 ∈ Rm2 , by

letting p1 := proxβg(u1)− proxβg(v1), p2 := proxηι∗d(u2)− proxηι∗d(v2), and using

the firm nonexpansiveness of proxβg and proxηι∗d , we have ∥p1∥22 6 ⟨p1,u1 − v1⟩

and ∥p2∥22 6 ⟨p2,u2 − v2⟩. Let p :=

(
p1

p2

)
. Then

∥F(u)−F(v)∥2P−1

=∥p∥2P−1 =
1

β
∥p1∥22 +

1

η
∥p2∥22

6 1

β
⟨p1,u1 − v1⟩+

1

η
⟨p2,u2 − v2⟩

=⟨p,u− v⟩P−1 = ⟨F(u)−F(v),u− v⟩P−1 ,

which implies the desired result.
We are now in a position to prove Proposition 6.

Proof of Proposition 6. It is obvious that W is symmetric. We know from
λmin(W ) > L

2 > 0 that W is positive definite. According to the definition of TW
in (25) and Lemma 13, to prove the averaged nonexpansiveness of TW , it suffices
to show that TG and I −W−1∇r are both averaged nonexpansive.

We first show the averaged nonexpansiveness of TG. Let u = TG(x), v = TG(y)
for x,y ∈ Rm1+m2 , and a1 = G(x− u), a2 = G(y − v). Then

(B.1)

{
u = F ((E −G)u+Gx) = F (Eu+ a1) ,

v = F ((E −G)v +Gy) = F (Ev + a2) .

From Lemma 14, we know that F is firmly nonexpansive with respect to P−1,
where P is defined by (14), which together with (B.1) yields that

∥u− v∥2P−1 6 ⟨u− v,E(u− v) + (a1 − a2)⟩P−1 ,

that is,

(B.2) ⟨u− v,a1 − a2⟩P−1 > ⟨u− v, Ẽ(u− v)⟩,

where Ẽ := P−1(I − E) =

(
0 −D⊤

D 0

)
. Note that Ẽ⊤ = −Ẽ. For any

z ∈ Rm1+m2 ,

⟨z, Ẽz⟩ = z⊤Ẽ⊤z = −z⊤Ẽz = −⟨z, Ẽz⟩,
which implies that ⟨z, Ẽz⟩ = 0. Then (B.2) becomes

⟨u− v,a1 − a2⟩P−1 > 0,

that is, ∥u−v∥2W 6 ⟨u−v,x−y⟩W . Hence TG is firmly nonexpansive with respect
to W . It shows in Remark 4.34 of [25] that firm nonexpansiveness is equivalent
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to 1
2 -averaged nonexpansiveness. Therefore, TG is 1

2 -averaged nonexpansive with
respect to W .

We next show that operator I −W−1∇r is averaged nonexpansive with respect

to W . Let α := L
2λmin(W ) and Ñ := I − 1

αW
−1∇r. Then

α ∈ (0, 1) and I −W−1∇r = (1− α)I + αÑ .

By the definition of averaged nonexpansiveness, it suffices to show that Ñ is non-
expansive with respect to W . For this purpose, we verify that matrix 2α

L I −W−1

is positive semi-definite. We note that W−1 is symmetric positive definite with the
maximum eigenvalue λmax(W

−1) = 1
λmin(W ) . Then

2α
L I −W−1 is symmetric with

the minimum eigenvalue

λmin

(
2α

L
I −W−1

)
=

2α

L
− 1

λmin(W )
= 0,

which implies that 2α
L I − W−1 is positive semi-definite. It is easy to see from

the definition of function r in (15) that r is convex and differentiable with an L-
Lipschitz continuous gradient. By Lemma 12, for any x,y ∈ Rm1+m2 , defining
z := ∇r(x)−∇r(y), we have ∥z∥22 6 L⟨x−y,z⟩, which together with the positive
semi-definiteness of matrix 2α

L I −W−1 gives

2α⟨x− y, z⟩ − ⟨z,W−1z⟩

>2α

L
∥z∥22 − ⟨z,W−1z⟩

=

⟨
z,

(
2α

L
I −W−1

)
z

⟩
> 0.

We then have that∥∥∥Ñx− Ñy
∥∥∥2
W

=

∥∥∥∥(x− y)− 1

α
W−1z

∥∥∥∥2
W

=∥x− y∥2W +
1

α2
∥W−1z∥2W − 2

α
⟨x− y,W−1z⟩W

=∥x− y∥2W − 1

α2

(
2α⟨x− y, z⟩ − ⟨z,W−1z⟩

)
6∥x− y∥2W ,

that is, Ñ is nonexpansive with respect to W , and hence I−W−1∇r is α-averaged
nonexpansive with respect to W .

Now by employing Lemma 13, we conclude from the 1
2 -averaged nonexpansive-

ness of TG and the L
2λmin(W ) -averaged nonexpansiveness of I −W−1∇r (with re-

spect to W ) that TW is 2λmin(W )
4λmin(W )−L -averaged nonexpansive with respect to W ,

which completes the proof.
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