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FROM OBSTACLE PROBLEMS TO NEURAL INSIGHTS:

FEEDFORWARD NEURAL NETWORK MODELING OF ICE

THICKNESS

KAPIL CHAWLA, WILLIAM HOLMES, AND ROGER TEMAM

Abstract. In this study, we integrate the established obstacle problem formulation from ice sheet
modeling [1, 2] with cutting-edge deep learning methodologies to enhance ice thickness predictions,
specifically targeting the Greenland ice sheet. By harmonizing the mathematical structure with an

energy minimization framework tailored for neural network approximations, our method’s efficacy
is confirmed through both 1D and 2D numerical simulations. Utilizing the NSIDC-0092 dataset for
Greenland [22] and incorporating bedrock topography for model pre-training, we register notable
advances in prediction accuracy. Our research underscores the potent combination of traditional

mathematical models and advanced computational techniques in delivering precise ice thickness
estimations.

Key words. Neural networks, ice thickness estimation, obstacle problems, feedforward neural
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1. Introduction

The melting of ice sheets, driven by climate change, is a topic of mounting
concern across various scientific disciplines. This phenomenon is pivotal for under-
standing the dynamic processes of Earth’s climate, particularly in regions such as
Greenland. The melting of Greenland’s ice sheet not only contributes to global sea
level rise but also provides insights into intricate climate interactions and feedback
loops. As such, mathematicians have developed complex models to delve deeper
into ice sheet dynamics. Among these models, obstacle problems [3] offer a unique
lens, presenting challenges in partial differential equations (PDEs). Over the years,
numerous numerical methods have been devised to address these challenges. Most
of these methods focus on providing approximation solutions to the weak variation-
al inequality. Techniques like the Galerkin least squares finite element method ([5],
[4], [6]), multigrid algorithm ([8], [7]), piecewise linear iterative algorithm [9], the
first-order least-squares method [10], the level set method [11], and the dynamical
functional particle method [12] have been employed with varying degrees of success.

In the wake of technological advancements, deep learning has emerged as a
promising tool in many scientific applications. It has recently gained significan-
t traction in solving differential equations and inverse problems ([13], [14], [15],
[16], [17], [18]). Despite this momentum, its application to variational inequalities
remains in its infancy. Some studies ([20], [21]) have innovatively applied deep
learning to the traditional obstacle problem, whereas others [19] have ventured into
using deep learning techniques for elliptic hemivariational inequalities. A common
observation, however, is that many of these studies prioritize computations over
theoretical insights.

With this backdrop, our paper endeavors to bridge this gap. We explore both
traditional ice-sheet models [1, 2] and introduce a computational approach using

Received by the editors on May 14, 2024 and, accepted on September 3, 2024.

2000 Mathematics Subject Classification. 68T01, 35R35, 65N99.

1



2 K. CHAWLA, W. HOLMES, AND R. TEMAM

deep learning to address the obstacle problem, deriving inspiration from its varia-
tional form. A central theme of our work is to discern the influence of parameters
such as network size and training samples on the outcomes. Through rigorous
numerical experiments, we substantiate the efficacy of our proposed method.

This article is organized as follows: Section 2 introduces the mathematical formu-
lation of the model and elucidates the ice-thickness variational inequality. Section
3 sheds light on the energy minimization formulation. Section 4 delineates the ap-
proximation of the solution using fully connected feedforward deep neural networks,
detailing its architecture, universality as an approximator, and the composite loss
function tailored for optimal training and optimization. Section 5 showcases numer-
ical experiments for one and two-dimensional problems, accompanied by solution
visualizations and error analysis. Section 6 applies our model to data sourced from
Greenland. We wrap up in Section 7, offering a concise summary of our study’s
principal insights and findings.

2. Mathematical Formulation of the Model

In this section, we present the mathematical formulation of the model, which is
adapted from the work presented in [1, 2].

Let Rn denote the n-dimensional Euclidean space, equipped with the standard
Euclidean norm. A domain Ω in Rn is defined as a bounded and connected open
subset of Rn, whose boundary is Lipschitz continuous. Consider a subset Ω residing
within R2. For any point x = (x1, x2) contained within the closure of Ω, denoted as
Ω̄, we will utilize common mathematical operators without going into their detailed
definitions here.

The bedrock elevation is denoted by the function b : Ω̄ → R. It’s noteworthy
that a positive value of b represents elevations above sea level, while negative values
correspond to depths below the sea level.

Similarly, the elevation of the top surface of the ice sheet is characterized by the
function h : Ω̄ → R. It is imperative to emphasize that throughout the domain
Ω, h always maintains a value greater than or equal to b. A visual representation
of this relationship is provided in Figure 1. Consequently, the thickness of the ice,
denoted as H : h− b, consistently remains nonnegative throughout Ω̄. This insight
underscores the observation that studying changes in ice thickness is tantamount to
addressing an obstacle problem, where the bedrock acts as the primary constraint.

Figure 1. Cross-sectional view of an ice sheet with the respective
notation, based on Jouvet et al. (2012).

This particular constraint implies the existence of a free boundary. Let’s define

(1) Ω+ = {h > b} = {H > 0}
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as the region within Ω where the ice is present. Accordingly, the associated free
boundary can be expressed as:

(2) Γf = Ω ∩ ∂Ω+.

For a continuous ice sheet, wherein Ω+ is populated, the source function a should
inherently display a positive value, denoting ice accumulation, within specified re-
gions of Ω+. However, considering a defined free margin and the continuity of a, a
is expected to yield a negative value, indicative of ablation, outside Ω+, especially
within Ω− = Ω\(Ω+ ∪Γ). It is in this dynamic that the ice migrates from accumu-
lation zones to areas dominated by ablation, resulting in the ice sheet tapering to
an imperceptible thickness at its edges.

Moreover, the ice thickness is also influenced by the basal sliding velocity, Ub.
This velocity can be conceptualized as a specific vector field within R2, which is
contingent solely on its lateral position. This can be formally described as:

Ub : Ω̄ → R2.

As documented in references such as [23], it is generally accepted that, when the
ice base is in a frozen state, Ub inherently equals zero.

The horizontal ice flow velocity is represented by the vector field U : Ω̄×R → R2.
The viscosity of the ice is described in terms of the Glen power law with ice softness
coefficient A(x, z) and exponent 2.8 ≤ p ≤ 5. The attainable values for p are
suggested by laboratory experiments [26]. The vector field U can be computed
using the surface elevation h and its gradient as discussed in [23].

(3) U(x, z) = −(2ρg)p−1

[∫ z

b

A(s)(h− s)p−1ds

]
|∇h|p−2∇h+ Ub.

Here, ρ denotes the ice’s density and g symbolizes the gravitational acceleration.
The morphology of ice sheets is independent of the surface equation, which cor-

relates the ice surface’s motion with the ice velocity and the mass balance data
a = a(x, z) [24]. Equivalently for this incompressible flow, in steady state a con-
tinuity equation applies to the flow where the volume flux is characterized by the
vector field q, defined as the integral of the ice flow velocity U concerning the
vertical direction [23]:

(4) ∇ · q = a.

Given by:

(5) q =

∫ h

b

U(z)dz.

By inclusion of (3) and (5) into (4), the equation for surface elevation h can be
formulated as:

(6) −∇ ·
(
−(2ρg)p−1

[∫ z

b

A(s)(h− s)p−1ds

]
|∇h|p−2∇h− (h− b)Ub

)
= a.

For a scenario where A(x, z) = A0 remains constant, Equation (6) simplifies to:

(7) −∇ ·
(
K(h− b)p+1|∇h|p−2∇h− (h− b)Ub

)
= a,

with K being a positive constant. It’s imperative to note that Equations (6) and
(7) are only applicable within the domain containing ice.

To form a weak solution for problem (7) over the entire domain Ω, one must
posit the absence of a volumetric ice flow towards Ω−:

(8) q · ν = 0 and H = 0 on Γf .
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Here, ν represents the outward unit normal vector along Γ. Taking (8) into account,
it’s intuitive to extrapolate the volume flux q as zero outside Ω+:

(9) q = 0 in Ω−.

Let’s introduce v as a smooth test function that satisfies v ≥ b throughout Ω̄ and
multiply (5) by (v−h), subsequently integrating over Ω. Applying Gauss’s theorem
yields:

(10) −
∫
Ω

q ·∇(v−h) =

∫
Ω−

(∇·q)(v−h)+

∫
Ω+

(∇·q)(v−h)−
∫
Γf

[(v−h)q ·ν]+−.

Here, the difference across Γf is represented by [ ]+−. Given the conditions q = 0
and a ≤ 0 within Ω−, it follows that ∇ · q ≥ a in Ω−. Moreover, since q · ν = 0 on
Γf , we deduce:

(11) −
∫
Ω

q · ∇(v − h) ≥
∫
Ω

a(v − h).

Expressing q based on (7), we encounter the subsequent variational inequality:(
(2ρg)p−1

[∫ z

b

A(s)(h− s)p−1ds

]
|∇h|p−2∇h− (h− b)Ub

)
· ∇(v − h)

≥
∫
Ω

a(v − h).(12)

An essential observation to make is that q displays a degenerate behavior at the free
boundary. To navigate the gradient degeneracy proximate to the free boundary, a
transformation was introduced in [27]:

(13) H = u(p−1)/(2p).

This results in a transformed version of Equation (7):

(14) −∇ ·
(
µ(x, u)|∇u− Φ(x, u)|p−2∇u− (h− b)Ub

)
= a,

where µ(x, u) and Φ(x, u) are specifically defined functions. Given this transforma-
tion, further study would reveal the implications and applications of the aforemen-
tioned equations.

In the present work, we focus on simplifying the nonlinear dynamics by making
specific assumptions to address a more tractable problem. Specifically, we consider
the scenario where Ub = 0. Under this assumption, we set Ψ(x, u) = 0 and treat
µ(x, u) as a constant, denoted µ0. By adopting these assumptions, the inequality
expressed in (12) simplifies to the following:

(15)

∫
Ω

(
µ0|∇u− Φ(x, u)|p−2(∇u− Φ(x, u))

)
· ∇(v − u) ≥

∫
Ω

a(v − u).

This inequality holds for all v ≥ 0 defined over Ω and p ≥ 2. For simplification, we
take µ0 = 1.

In the seminal work by the original authors, several inherent nonlinearities were
identified but not thoroughly explored. Recognizing the significance and impli-
cations of these nonlinearities, we have taken steps in this paper to address and
analyze them more holistically. Specifically, we have chosen to focus on two prima-
ry nonlinearities that were presented but not fully addressed in the original study
[1]:
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(1) A p-Laplace-type nonlinearity arising from Glens flow law. Notably, while
the original authors noted the simplification of this nonlinearity when p = 2,
resulting in |∇u−Φ(x, u)|p−2 = 1, our investigation delves deeper into cases
where p > 2, thereby introducing and emphasizing the complexities of this
nonlinearity.

(2) An intricate nonlinearity in Φ(x, u) due to the bedrock gradient, ∇b. In
our research, we consider scenarios where the bedrock elevation isn’t flat,
which introduces another layer of nonlinearity. This is in contrast to the
original paper where the implications of a non-flat bedrock weren’t fully
explored, resulting in Φ(x, u) = 0.

By focusing on these areas, our aim is to provide a more comprehensive under-
standing of the problem, shedding light on aspects that were previously left in the
shadows. As we delve deeper into our discourse, our approach becomes particu-
larly evident. We will explicitly address these nonlinearities, offering insights and
solutions that not only build upon but also augment and enhance the foundation
set by the original author, especially as we transition into the energy minimization
formulation.

3. Energy Minimization Formulation

Consider a Hilbert space V such that V ∈ H1(Ω). Let the subspace U be defined
by

U =
{
v ∈ V : v

∣∣
∂Ω

= 0
}
.

Furthermore, we introduce the constraint set K as

K =
{
v ∈ V : v ≥ b in Ω and v

∣∣
∂Ω

= 0
}
.

Given these definitions, our variational inequality problem, as specified in (15),
can be equivalently posed as an energy minimization problem:

(16) Find u ∈ K such that J(u) ≤ J(v) for all v ∈ K,

with the energy functional J given by

J(v) = B(v, v)− ⟨a, v⟩,
where

B(v, v) =
1

p

∫
Ω

|∇v −Ψ|p dx.

We introduce a regularization term to the energy functional and define the aug-
mented energy functional as

(17) L(v) = J(v) + α

∫
Ω

[b(x)− v(x)]2+ dx,

where α is a positive constant and

[b(x)− v(x)]+ = max{0, b(x)− v(x)}.
Based on the findings from [28], the unique solution u of problem (17) approaches
the solution of (16) as α grows significantly large. This leads us to the following
minimization problem:

(18) min
v∈V

L(v),

with the energy functional given by

(19) L(v) =
1

p

∫
Ω

|∇v −Ψ|p dx−
∫
Ω

av dx+ α

∫
Ω

[b− v]2+ dx,
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where α is again a positive constant.
In numerical computations, this continuous energy functional is approximated

by its discrete counterpart:

(20) L̄(v) =
|Ω|
N

N∑
i=1

[
1

p
∥∇v(Xi)−Ψ(Xi)∥p2 − a(Xi)v(Xi) + α[b(Xi)− v(Xi)]

2
+

]
,

where {Xk}Nk=1 are i.i.d random variables sampled from the uniform distribution
U(Ω).

If the solution on the boundary is non-zero, the minimization problem can be
generalized to:

(21) min
v∈V

L(v),

with the modified energy functional:

(22) L(v) =
1

p

∫
Ω

|∇v −Ψ|p dx−
∫
Ω

av dx+ α

∫
Ω

[b− v]2+ dx+ β

∫
∂Ω

(v − h)2,

where h denotes the solution on the boundary.
With the energy functional clearly defined, the next step is to seek efficient com-

putational or approximation methods for solutions. Here, Deep Neural Networks
(DNNs) emerge as an especially promising tool. Their ability to capture intricate
nonlinear relationships and represent functions make them apt for approximating
our energy functional. In the following section, we delve into how we can leverage
these networks for our purpose.

4. Solution Approximation Using Deep Neural Networks

We utilize a fully connected feedforward neural network, denoted as f : Rd →
RND , to approximate our solution. This neural network comprises multiple layer-
s, with each layer introducing nonlinearity through an activation function. This
ensures that the network can function as a universal approximator, capturing the
complex relationships inherent to this problem. The weights and biases in the net-
work are iteratively refined using backpropagation based on the minimization of a
loss function associated with the energy minimization formulation above.

To measure the accuracy and efficacy of our deep neural network approximation,
we employ a composite loss function derived from three primary components:

• Residual Loss (loss1):

(23) loss1 =
1

N

N∑
i=1

[
1

p
∥∇u∗(Xi)−Ψ(Xi)∥p − a(Xi)u

∗(Xi)

]
.

This term captures the degree to which the current state of the solution
fails to satisfy the PDE. Minimizing this is equivalent to convergence to a
solution of the PDE.

• Obstacle Loss (loss2):

(24) loss2 =
1

N

N∑
i=1

[b(Xi)− u∗(Xi)]
2
+ .

This term penalizes the discrepancy between the network’s output and the
obstacle function, b. This component helps ensure the resulting solution
lies above the constraint.
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• Boundary Condition Loss (loss3):

(25) loss3 =
1

M

M∑
j=1

[u∗(Yj)− h(Yj)]
2
.

This component ensures our solution adheres to known values on the bound-
ary of our domain, effectively representing the boundary condition loss.

The total loss function is then a weighted combination of the aforementioned
losses:

(26) L(θ) = loss1 + α · loss2 + β · loss3.

The weighting coefficients α and β balance the importance of loss components
for PDE satisfaction, constraint satisfaction, and boundary condition satisfaction
respectively. Their optimal values, attained through iterative trial and error, ensure
a balanced representation of all problem constraints in the loss function. Our
training uses a batch approach, where data subsets iteratively refine the network
parameters. With this foundational understanding, we now explore the neural
network’s practical applications in subsequent sections, showcasing its versatility
and efficacy.

5. Numerical Illustrations: 1D and 2D Examples

Before describing the specific case studies, we outline the sequence of numerical
experiments we will perform. Initially, we will use the “method of manufactured
solutions” (MMS) to test this approach. This technique, commonly used in compu-
tational science, involves creating an exact solution (the “manufactured solution”)
for an augmented form of partial differential equation. This is done by choosing a
solution function (that satisfies obstacle and boundary constraints), computing the
residual arising from that function not satisfying the PDE, and augmenting that
PDE with an inhomogeneity that offsets that residual exactly. The manufactured
solution is then a solution to the inhomogeneity augmented PDE. The MMS allows
for a comprehensive assessment of the numerical method in question as it provides
a “ground truth” against which numerical approximations can be rigorously com-
pared. By applying MMS in our preliminary experiments, we aim to validate the
robustness and accuracy of this deep learning approach.

This problem is comprised of both a complex PDE and an obstacle constraint.
We will thus first apply this approach to a simpler PDE with an obstacle constratint
followed by the more complex PDE of interest with the constraint. This will be
performed on both 1D and 2D domains. Following this we will test this approach
on the motivating problem of trying to find the elevation profile of ice above the
bedrock of Greenland.

For the solution approximator, we adopt an architecture comprising a minimum
of 5 hidden layers, each equipped with 128 neurons. We utilized the squared Rec-
tified Linear Unit (ReLU2) in our study to leverage its improved differentiability
and empirical performance, particularly enhancing the accuracy and convergence
in solving complex Partial Differential Equations (PDEs).Furthermore, to foster a
consistent learning environment, layer normalization techniques are integrated into
the model. The optimization phase employs the Adam variant of the stochastic
gradient descent (SGD) method. The learning rate is initially set to 5 × 10−4 for
the first 500 iterations. After which, it reduces by half from the 500 to 750 itera-
tions, and then further reduces by half for the remaining iterations. This learning



8 K. CHAWLA, W. HOLMES, AND R. TEMAM

Figure 2. Comparison of the 1D solution, obstacle function (de-
noted b), and the exact solution.

rate schedule was determined through trial and error. The primary objective re-
mains the minimization of the associated loss function. For the implementation
and training processes, we relied on the capabilities offered by the Pytorch library
[25]. We note that there are many variations on this network and training structure
that could be investigated. Here we are mainly investigating whether this approach
is feasible and refinement is left for future study.

5.1. 1D Example: Case with p = 2. To initiate our numerical exploration, we
consider a one-dimensional problem with p = 2. For this instance, we use for the
following obstacle function:

(27) b(x) =


10 sin(2πx), for 0 ≤ x ≤ 0.25,

5 cos(π(4x− 1)) + 5, for 0.25 ≤ x ≤ 0.75,

10 sin(2π(1− x)), for 0.75 ≤ x ≤ 1.0.

The exact solution is characterized as:

(28) uexact(x) =


10 sin(2πx), for 0 ≤ x ≤ 0.25,

10, for 0.25 ≤ x ≤ 0.75,

10 sin(2π(1− x)), for 0.75 ≤ x ≤ 1.0.

Refer to Figure 2 for the corresponding visualization. To train a solution approx-
imator for this problem, we follow the approach outlined above with appropriate
modifications for the problems specifics. The points {Xk}Nk=1 for evaluation are
drawn from a uniform distribution over the interval [0, 1].

In our experimental setup, the neural network undergoes training over 2000 iter-
ations with the regularization parameter α and β fixed at 4000. We then assess the
performance of our methodology on a mesh grid, uniformly spaced and marked by
a fine resolution of 10−3. The resultant numerical solution is presented in Figure 2,
where it is juxtaposed against both the obstacle function and the exact solution.
Delving deeper into the training dynamics, Figure 3 charts the evolution of various
loss metrics, including the total loss, Loss 1, Loss 2 and Loss 3. A notable observa-
tion from our experiments is the efficiency of the proposed technique; it typically
converges within a mere 500 iterations, underscoring its robustness and efficacy.
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Figure 3. Evolution of different losses during training, plotted
against the number of iterations on a logarithmic scale (with base
10). (a) Total Loss, represented as “Log Loss Value” on the y-axis
and computed from Equation (26), symbolizes the amalgamation
of all individual loss terms. (b) Loss 1, denoted as “Log Loss
Value” on the y-axis from Equation (23), illustrates the residual
loss term. (c) Loss 2, weighted by coefficient α and articulated as
“Log Loss Value” on the y-axis in Equation (24), encapsulates the
obstacle loss term. (d) Loss 3, accentuated by coefficient β and
reflected as “Log Loss Value” on the y-axis from Equation (25),
highlights the boundary loss inherent in the problem.

In our analysis, the difference between the exact and approximated solutions is
quantified using the L1 norm, defined as:

lossexact =
1

N

N∑
i=1

|Uinner pred,i − Uexact inner,i|,

where N denotes the total number of grid points or samples, and Uinner pred,i and
Uexact inner,i represent the approximated and exact solutions, respectively, at the
i-th sample. A plot of this loss versus the iterations provides insight into the
convergence behavior and accuracy of the neural network’s predictions. These
results demonstrate that this approach learns a neural network approximator that
accurately learns to solve the PDE subject to the given constraints.

5.1.1. Analysis of Relative Error in the Context of Sample Variability.
We next analyze the accuracy of this approach as a function of the number of sam-
pled points at which the PDE loss is computed. This analysis provides insights into
how the sampling granularity can influence the accuracy of the derived solution.
These sample points are systematically chosen from a uniform grid, ensuring con-
sistent and unbiased assessment. Figure 5 portrays the relationship between sample
size and the resultant relative error. In our analysis regarding the number of sam-
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Figure 4. Evolution of the L1 error between the approximated
solution u∗ and the exact solution uexact over training iterations.
The plot showcases the difference in magnitudes as training pro-
gresses, shedding light on the convergence and accuracy of the
neural network’s predictions.

Figure 5. Graphical representation of relative error against vary-
ing sample sizes. The blue dashed line represents the regression line
with a slope of −0.83, which lies between the theoretical slopes of
−1/2 (red) and −1 (gray).

ples, Figure 5 highlights the reduction in relative error as sample count augments.
To better visualize the expected linear scaling of error with the number of points, a
line with a −1 slope was added to the plot. This represents the ideal trend where,
if the error scales as 1

N , then log(error) directly corresponds to − log(N).
To further analyze the error scaling, we performed a linear regression on the log-

transformed data points, resulting in a slope of approximately -0.83. This regression
line, shown in the updated plot, lies between the theoretical slopes of −1 and −1/2.
Therefore, the actual slope from our data indicates that the error reduction behavior
in our analysis is intermediate between these two theoretical expectations.

In the analysis (Figure 5) illustrates the reduction in relative error as the compu-
tational grid is refined. Common computational PDE approaches (finite difference,
finite element, etc.) produce errors that scale as 1/N [29] while Monte Carlo ap-
proaches commonly lead to errors that scale as 1/sqrt(N) [30]. To visualize the
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Table 1. Relative errors corresponding to a spectrum of regular-
ization parameters.

Parameter (α) Parameter (β) Relative Error
100 100 0.40
500 100 0.015
1000 500 0.0035
4000 4000 0.0010
5000 4000 0.0023

scaling relationship between error and number of points (N) Figure 5 is plotted
on log-log axes and a regression line is fit to the error magnitude to compute the
scaling slope. Results indicate that errors decay faster than 1/sqrt(N) but more
slowly than 1/N for the range used.

In our comprehensive analysis, we not only explored the impact of sampling but
also assessed the influence of varying regularization parameters and loss weighting
parameters α and β on relative error. Understanding these dynamics is vital, as
they shed light on the model’s sensitivity to its central hyperparameters, ensuring
that it captures underlying patterns effectively without the pitfalls of overfitting or
underfitting.

Table 1 illustrates the relative errors for different values of the regularization
parameter. These results illustrates that a proper balance between the different
loss components is needed to ensure optimal training.

5.2. 2D Problem: General Case with Any p ≥ 2. We now consider the 2D
problem with p ≥ 2. For this analysis, we use the collocation points that are
uniformly sampled from the unit square. For simplicity and to facilitate the use of
the MMS approach, we use a circularly symmetric obstacle function:

(29) b(r) =

{
1−

(
r

p
p−1 − (1− r)

p
p−1 + 1− p

p−1r
)

for r ≤ r∗

0 for r > r∗
,

where r represents the radial distance in our 2D space and r∗ = 0.75 is a threshold
value defining the boundary of the obstacle’s influence.

We construct an exact solution within this domain Ω = [0, 1]× [0, 1] given by:

(30) uexact(r) =


1− (F (r)−G(r) + 1− E(r)) for r ≤ r∗

−
(

p
p−1

)
r∗

1
p−1 + (1− r∗)(1/(p−1))−1(r − r∗)

+1− r∗(p/(p−1)) − (1− r∗)(p/(p−1)) + 1− E(r∗) for r > r∗

,

where

F (r) = r
p

p−1 ,(31)

G(r) = (1− r)
p

p−1 ,(32)

E(r) =
p

p− 1
r.(33)

uexact is continuous and differentiable (i.e., C1). Moreover, the value of uexact can
be freely chosen for r > r∗ without violating its C1 smoothness. The obstacle
function, exact solution, and the neural network’s approximation are shown for
p = 3 (Figure 6):
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Figure 6. (a) Obstacle function plot, (b) Exact solution plot, and
(c) Approximated solution plot.

Figure 7. Evolution of different losses during training plotted on
a log scale versus the number of iterations. (a) Total Loss, as
described in Equation (26). (b) Loss 1 from Equation (23). (c)
Loss 2 influenced by coefficient α, from Equation (24). (d) Loss 3,
affected by coefficient β, as per Equation (25).

In this study, we set weighting parameters α and β both to 100 and train the
network for 2000 iterations. All losses are shown on a logarithmic scale against the
number of iterations to illustrate the efficiency of the training process (Figure 7).
The L1 norm of the difference between the approximated and true solutions as a
function of training iteration is further shown in Figure 8.

For the case p = 4, Building upon our previous methodologies, we present the
results for this scenario. Visual representations of the obstacle function, exact
solution, and the neural network’s approximation for p = 4 are shown in Figure 9.

Post-training, we juxtapose the exact solution and the neural network’s approx-
imation for a more comprehensive visual comparison for p = 4 (Figure 9). Similar
to the previous cases, we showcase the loss behavior during training for p = 4 in
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Figure 8. Evolution of the L1 error for p = 3 between the approx-
imated solution u∗ and the exact solution u over training iterations.
As with the previous case, this plot gives insight into the neural
network’s convergence behavior and prediction accuracy for this
parameter setting.

Figure 9. (a) Obstacle function plot, (b) Exact solution plot, and
(c) Approximated solution plot.

the Figure 10. To assess the efficiency of the neural network’s predictions for p = 4,
we compute the L1 error (Figure 11):

These results demonstrate this approach can well approximate the solution of the
obstacle constrained ice sheet PDE in simplified 1D and 2D domains. We next apply
this approach to solve this PDE with a realistic obstacle geometry: the Greenland
bedrock elevation taken from real-world data. The challenges and nuances of this
dataset offer a rigorous testbed to evaluate the adaptability and robustness of our
proposed algorithms.

6. Application to Greenland Data

In this section, we apply the techniques developed earlier to a dataset derived
from Greenland. This dataset, available from the National Snow and Ice Da-
ta Center (NSIDC), offers a comprehensive view of various parameters related
to Greenland’s ice melt and movement. Specifically, we utilize data from the
[NSIDC-0092 dataset [22]](https://nsidc.org/data/nsidc-0092/versions/1),
which captures detailed information on ice-thickness. The NSIDC-0092 dataset

https://nsidc.org/data/nsidc-0092/versions/1
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Figure 10. Evolution of different losses during training plotted
on a log scale versus the number of iterations. (a) Total Loss, as
described in Equation (26). (b) Loss 1 from Equation (23). (c)
Loss 2 influenced by coefficient α, from Equation (24). (d) Loss 3,
affected by coefficient β, as per Equation (25).

Figure 11. Evolution of the L1 error for p = 4 between the ap-
proximated solution u∗ and the exact solution uexact over itera-
tions, highlighting the convergence and prediction accuracy.

offers detailed insights into Greenland’s topography, presenting Digital Elevation
Models (DEMs), ice thickness, and bedrock elevation data. The parameter range is
extensive: DEM values range from -0.1 m to 3278.3 m, ice thickness measurements
extend from 0 m to 3366.5 m, and bedrock elevation data vary between -963.1 m
and 3239.0. These data are organized into ASCII text grids with a spatial resolution
of 5 km, comprising 301 columns by 561 rows. This grid resolution ensures that the
dataset provides a comprehensive and granular view of the ice sheet and bedrock
topography across Greenland, suitable for precise climatological and glaciological
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Figure 12. Bedrock topography of Greenland derived from the
NSIDC-0092 dataset. This representation serves as our obstacle
function for the subsequent analysis.

analyses. The interpolation to a 5 km grid underscores the dataset’s utility in mod-
eling and analyzing the dynamics of Greenland’s ice sheet and underlying bedrock
with considerable detail.

To provide context, we begin by visualizing the bedrock topography from the
dataset (Figure 12):

6.1. Neural Network Initialization and Training. Translating this method
to the bedrock obstacle data from the Greenland’s ice-thickness data introduces a
specific challenge. Notably, when employing conventional random initialization, the
neural network behaved erratically, at least in part because it failed to satisfy the
obstacle, leading to numerical issues. The resulting solutions were not only char-
acterized by high error rates but were also noticeably distant from the anticipated
results. Such deviations and unpredictable behavior underscored the need for an
alternative approach to initialize the neural network.

To overcome this, we took a two-stage modeling approach. In the first, we
intelligently initialize the NN. In the second, we train that initialized network to
approximate the PDE (the same method as previously).

To initialize the network, we trained it to mimic the bedrock elevation as illus-
trated in Figure 12. This preliminary training phase enabled the neural network
to learn and approximate the patterns of the bedrock topography. This is not a
solution to the problem, only a method of initializing the network.

Once this stage achieved satisfactory convergence, we retained the optimized
weights of the network. These pre-trained weights were then employed as initial-
ization parameters. By harnessing the pre-trained weights, the neural network
exhibited a more efficient learning process and showed considerable improvements
in error reduction. To summarize, we pre-trained the network to mimic a reason-
able starting function, then used a second phase of training (same as previously
discussed) to construct a solution to the PDE.

For the training process, we set the penalty parameters as α = β = 4000. This
was chosen by trail and error to ensure all weighted components of the loss are the
same order of magnitude. For the solution approximation, we adopt an architecture
comprising 15 hidden layers, each equipped with 320 neurons. The neural network
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Figure 13. Visualization of the neural network after pre-training
on the bedrock elevation. This pre-training produces an initializa-
tion for the network that is subsequently used as a starting point
for training.

Figure 14. Comparison over Greenland: (a) Neural network-
derived approximation for p = 4 and (b) precise data from the
NSIDC-0092 dataset.

underwent training for a total of 22000 iterations to ensure accurate convergence
and approximation of the Greenland ice-thickness data (Figure 15).

Following the training process and the application of our methodology, we ob-
tained the approximated solution. For a clear comparison, we juxtapose this solu-
tion alongside the exact ice thickness data derived from the NSIDC-0092 dataset
(Figure 14).

6.2. Analysis of Training Losses. Determining how well the approximated so-
lution does at satisfying the PDE is challenging for two reasons: 1) there is no exact
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Figure 15. Comparison of various loss components for p = 3.
Each plot showcases the loss trajectory over iterations, with the
red dashed line representing the loss upon data input, and the
blue solid line symbolizing computational loss.

solution to compare against and 2) the magnitude of training losses are not inter-
pretable in absolute terms. To circumvent this issue, we compare the properties of
the neural network solution to this problem with the ice-sheet thickness data. Note
however that the thickness data is itself not necessarily a solution to the PDE, a
research question that is beyond the scope of this article. Thus we will not directly
compare the solution to the data. Instead, to get a benchmark for comparison, we
compute the losses that would be found from inserting the measured ice sheet data
into the three loss terms. These form the dashed lines against which training losses
are compared in Figures 15 and 16. These dashed lines provide a scale reference to
compare the model training losses against.

Figure 15 shows the trajectory of the losses as a function of training iteration.
Results show that all losses converge to an absolute level that is consistent with the
real ice sheet thickness data’s satisfaction of the PDE. This, in combination with
the visual comparison of the approximated solution to the real data suggests this
approach well approximates the solution to this PDE. Similar analysis was carried
out for p = 4 with similar results (Figures 16).

7. Summary

This paper embarked on an exploration of the integration between the realm of
mathematical modeling and deep learning to address intricate problems related to
the dynamics of Greenland’s ice sheet. We first established a robust theoretical
framework, illustrating the underpinnings of the variational inequalities and obsta-
cle problems. Adopting a novel approach, we leveraged the power of neural networks
to seek solutions, demonstrating both its theoretical and practical applications.

A key highlight of our methodology was the integration of pre-training. By first
acquainting the neural network with a representation of the bedrock topography,
we ensured a more efficient learning process when the actual ice-thickness data was
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Figure 16. Comparison of various loss components for p = 4.
Each plot showcases the loss trajectory over iterations, with the
red dashed line representing the loss upon data input, and the
blue solid line symbolizing computational loss.

introduced. This strategic move not only optimized our results but also underscores
the importance of judicious model initialization in complex problem-solving.

When applied to the NSIDC-0092 dataset, our method displayed remarkable
accuracy. The approximated solutions closely mirrored the exact data, which stands
as a testament to the promise and potential of this interdisciplinary approach.

Furthermore, this study illuminates the broader implications for climate science.
As the melting of Greenland’s ice sheet plays a pivotal role in global climate dy-
namics, having precise and efficient computational methods becomes paramount.
The methodologies explored here can be adapted and extended to other similar
domains, making it a versatile tool in the scientific community’s arsenal.

In this paper, we’ve shown how deep learning can work together with mathe-
matical models to study Greenland’s ice sheet dynamics. As we collect more data
and face more complex challenges in the future, using both these tools together will
help us find better solutions. This combination is promising for future research and
problem-solving.
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