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A FINITE VOLUME METHOD PRESERVING THE INVARIANT

REGION PROPERTY FOR THE QUASIMONOTONE

REACTION-DIFFUSION SYSTEMS

HUIFANG ZHOU∗, YUCHUN SUN, AND FUCHANG HUO

Abstract. We present a finite volume method preserving the invariant region property (IRP) for

the reaction-diffusion systems with quasimonotone functions, including nondecreasing, decreasing,
and mixed quasimonotone systems. The diffusion terms and time derivatives are discretized using
a finite volume method that satisfies the discrete maximum principle (DMP) and the backward

Euler method, respectively. The discretization leads to an implicit and nonlinear scheme, and
it is proved to preserve the invariant region property unconditionally. We construct an iterative
algorithm and prove the invariant region property at each iteration step. Numerical examples are
provided to confirm the accuracy and invariant region property of our scheme.

Key words. Reaction-diffusion systems, quasimonotone, nonlinear finite volume scheme, invari-
ant region, distorted meshes, existence, model.

1. Introduction

Reaction-diffusion systems are mathematical models that describe the behav-
iors of a wide range of physical, biological, chemical, and electrical phenomena
[1, 2, 11, 13, 14, 16, 23, 24]. They are used to simulate the variations in chemical
substance concentrations caused by local reactions and diffusions in the field of
chemistry, the spread of infectious diseases and population growth [5] in biology,
the neutron diffusion theory and the Ginzburg-Landau equations for modeling su-
perconductivity [6] in physics, and the FitzHugh-Nagumo model for simulating the
transmission of electrical impulses in neurology, among others.

It is of great importance for the numerical methods to preserve the IRP. The IRP
refers to the property of reaction-diffusion systems where the solution lies within
the range of the initial and boundary values, reflecting the physical constraints of
the unknown variables. Hence, the numerical solution is expected to preserve the
IRP as well. Additionally, the IRP of numerical schemes is crucial to establishing
a prior estimates, as well as existence and stability of the solution [22]. Proposing
the IRP-preserving schemes for reaction-diffusion equations is necessary for both
physical and mathematical aspects. The finite difference methods [3, 10, 12, 15]
have been widely applied to solve the reaction-diffusion equations due to their
simplicity. A fully implicit time-discretization method is employed in [12], where
the IRP and stability of the scheme are established using M-matrix analysis. In [15],
the authors use the exponential time differencing method and overlapping domain
decomposition technique to develop a maximum bound principle (MBP) preserving
method for one-component reaction-diffusion equations. MBP is considered as a
specific form of invariant region. The nonstandard finite difference method together
with a time-accurate and highly stable explicit method are combined in [3] to
construct a positivity-preserving scheme for the reaction-diffusion model describing
vegetation evolution in arid environments. The θ-weighted time-stepping scheme
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and corresponding iterative approach are developed in [10] to solve a class of
semilinear parabolic equations. The discrete MBP is preserved under specified
constraints on the time step and mesh size. However, most finite difference methods
are restricted to rectangular meshes. Furthermore, the finite element method with
implicit-explicit Euler time-discretization is utilized to solve 3D reaction-diffusion
systems in [9], where the IRP is preserved on Delaunay triangular meshes. The
nonlinear Galerkin method is employed in [17] to solve the system of reaction-
diffusion equations. This approach requires to calculate the orthonormal basis
for the space spanned by the eigenvectors of the diffusion operator. In [25], the
finite volume method preserving the IRP is applied to a specific type of reaction-
diffusion systems known as FitzHugh-Nagumo equation on polygonal meshes. A
unified framework that covers many numerical schemes is established in [7] to yield
an MBP-preserving method for semilinear parabolic equations.

The goal of this paper is to propose an IRP-preserving finite volume method
solving coupled quasimonotone parabolic systems on distorted meshes. Compared
to our previous work in [25], which could only handle specific nonlinear reaction
terms, namely f1(u, v) = u(1−u)(u−a)−v and f2(u, v) = ρu−γv, this work could
handle more general nonlinear reaction terms. We employ the DMP-preserving fi-
nite volume scheme to discretize the spatial derivatives and utilize a fully implicit
scheme to discretize the temporal derivatives. For the problems with three basic
types of quasimonotone functions, we demonstrate that the implicit scheme is un-
conditionally IRP-preserving and has at least one solution. To solve the nonlinear
scheme, we introduce a specific linear term into the iterative algorithm and prove
the IRP preservation of the iterative method. Numerical experiments demonstrate
that our scheme achieves second-order accuracy in the spatial direction and pre-
serves the IRP for different problems. Additionally, we present a comparison with
the nine-point scheme to demonstrate that the nine-point scheme fails to preserve
the IRP.

This paper is organized as follows. Section 2 introduces the model problem
and its corresponding invariant region theory. Section 3 presents the fully implicit
finite volume scheme and analyze the preservation of the IRP. In Section 4, the
iterative approach is described and its IRP is analyzed. In Section 5, we provide
numerical experiments to demonstrate the accuracy and preservation of the IRP.
Finally, Section 6 offers a summary of this paper.

2. Invariant region theory of the model problem

In this paper, we investigate the coupled system of two parabolic equations on
a bounded space-time domain QT = Ω× (0, T ] as

∂tu−∇ · (κ1∇u) = f1(u, v), in QT ,(1)

∂tv −∇ · (κ2∇v) = f2(u, v), in QT ,(2)

subject to the initial conditions u(x, 0) = u0(x) and v(x, 0) = v0(x) on Ω and
Dirichlet boundary conditions u(x, t) = g1(x, t) and v(x, t) = g2(x, t) on ST =
∂Ω× (0, T ]. Assume that Ω is an open bounded polygonal domain in R2, ∂Ω ∈ C2,
κ1 and κ2 are coercive tensor-valued functions, and f1 and f2 are nonlinear functions
of u and v.

The notations of standard Sobolev spaces are employed, with (·, ·) representing
the L2(QT ) inner product. Define bilinear forms B1(u, ϕ1) = (−u∂tϕ1+κ1∇u,∇ϕ1)
and B2(v, ϕ2) = (−v∂tϕ2 + κ2∇v,∇ϕ2). We say a pair of functions (u, v) ∈
[W 1,1

2 (QT )
∩
L∞(QT )]

2 is a weak solution to the problem (1)-(2) provided that
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(i) for any (ϕ1, ϕ2) ∈ [
•
W 1,1

2 (QT )]
2 and (ϕ1(x, T ), ϕ2(x, T )) = 0 a.e. in Ω, there

hold that

B1(u, ϕ1) = (f1(u, v), ϕ1),

B2(v, ϕ2) = (f2(u, v), ϕ2);

(ii) u(x, 0) = u0(x), v(x, 0) = u0(x) a.e. in Ω in the sense of trace;
(iii) u(x, t) = g1(x, t), v(x, t) = g2(x, t) a.e. on ST in the sense of trace.

Definition 1. (Invariant region property) A closed set Σ = [m1,M1]×[m2,M2]
in R2 is called an invariant region of the problem (1)-(2) if for almost every (u0, v0)
and (g1, g2) ∈ Σ, the corresponding solution (u, v) ∈ Σ for all 0 < t ≤ T .

The following lemma demonstrates that the quasimonotone reaction-diffusion
systems possess the invariant region property under certain hypotheses. The proof
can be found in [8].

Lemma 1. Suppose κ1, κ2 ∈ [L∞(QT )]
2×2 are uniformly positive definite in QT ,

(u0, v0) ∈ [H1(Ω)]2 and there exists (G1, G2) ∈
[
W 2,1 (QT )

]2
such that (G1, G2)|ST

=
(g1, g2). Denote Σ = [m1,M1] × [m2,M2], where m1,M1,m2,M2 are constants.
Suppose (u0, v0) and (g1, g2) ∈ Σ, f = (f1, f2) is quasimonotone and Lipschitz
continuous in Σ and satisfies the following relations

f1(m1, v) ≥ 0, f1(M1, v) ≤ 0,

f2(u,m2) ≥ 0, f2(u,M2) ≤ 0, ∀(u, v) ∈ Σ,
(3)

then, the coupled system (1)-(2) has a weak solution (u, v) ∈ Σ in [W 1,1
2 (QT )

∩
L∞(QT )]

2 and is unique in Σ.

Remark 1. (i) When f is quasimonotone nondecreasing, the condition (3) is e-
quivalent to f1(m1,m2) ≥ 0, f1(M1,M2) ≤ 0, f2(m1,m2) ≥ 0, f2(M1,M2) ≤ 0.

(ii) When f is quasimonotone nonincreasing, the condition (3) is equivalent to
f1(m1,M2) ≥ 0, f1(M1,m2) ≤ 0, f2(M1,m2) ≥ 0, f2(m1,M2) ≤ 0.

(iii) When f is mixed quasimonotone with nonincreasing f1 and nondecreasing
f2, the condition (3) is equivalent to f1(m1,M2) ≥ 0, f1(M1,m2) ≤ 0, f2(m1,m2) ≥
0, f2(M1,M2) ≤ 0.

(iv) When f is mixed quasimonotone with nondecreasing f1 and nonincreasing
f2, the condition (3) is equivalent to f1(m1,m2) ≥ 0, f1(M1,M2) ≤ 0, f2(M1,m2) ≥
0, f2(m1,M2) ≤ 0.

3. The IRP-preserving finite volume scheme

In this section, an IRP-preserving finite volume scheme is constructed to solve
the coupled semilinear parabolic equations (1)-(2). The numerical method employs
the DMP-preserving finite volume method [21] in space and the backward Euler
method in time, resulting in a nonlinear scheme.

In order to present the numerical scheme, it is necessary to introduce the follow-
ing notations, as indicated in Table 1 and Fig. 1. Define the barycenter of the cell
as its cell center. We assume that each polygonal cell is star-shaped with respect
to its cell center.
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Table 1. The notations.

K or L the cell or the cell center
A or B the vertex of the cell edge
m(K) the area of cell K
h the maximum diameter of all cells
σ the cell edge
|σ| the length of σ
I the midpoint of σ
Jin the set of cells
Jout the set of cell edges on ∂Ω
J J = Jin ∪ Jout
EK the set of cell edges of K
E the set of all cell edges
nK,σ the unit outward normal vector on σ of cell K
τKI (resp. τLI ) the unit tangential vector of KI (resp. LI)
νKI (resp. νLI ) the unit normal vector of KI (resp. LI)
θK,σ (resp. θL,σ) the angle between vectors τKI and nK,σ (resp. τLI and nL,σ)

tn+1 tn+1 = (n + 1)∆t, ∆t = T
N

Fn+1
K,σ

(resp. Fn+1
L,σ

) the continuous normal flux of u on edge σ of the cell K at tn+1(resp. L)

F̃n+1
K,σ

(resp. F̃n+1
L,σ

) the continuous normal flux of v on edge σ of the cell K at tn+1(resp. L)

Fn+1
K,σ

(resp. Fn+1
L,σ

) the discrete normal flux of u on edge σ of the cell K at tn+1(resp. L)

F̃n+1
K,σ

(resp. F̃n+1
L,σ

) the discrete normal flux of v on edge σ of the cell K at tn+1(resp. L)

Un+1
X

(X = K,L,A,B, I, · · · ) the discrete solution U defined at the point X at tn+1

V n+1
X

(X = K,L,A,B, I, · · · ) the discrete solution V defined at the point X at tn+1

Figure 1. The notations.

Integrating the diffusion parts of (1)-(2) over cell K at tn+1 and using Green’s
formula gives

−
∫
K

∇ · (κ1∇u)
∣∣
t=tn+1dx =

∑
σ∈EK

Fn+1
K,σ ,

−
∫
K

∇ · (κ2∇v)
∣∣
t=tn+1dx =

∑
σ∈EK

F̃n+1
K,σ ,

where Fn+1
K,σ = −

∫
σ
(nK,σ ·κT

1 ∇u)
∣∣
t=tn+1dl and F̃n+1

K,σ = −
∫
σ
(nK,σ ·κT

2 ∇v)
∣∣
t=tn+1dl

represent the continuous normal flux on edge σ for u and v, respectively.
Next, we give the discretization of Fn+1

K,σ . The discretization of F̃n+1
K,σ is similar

and is omitted here. Without ambiguity, the superscript n + 1 is also omitted in
the rest of this section. We employ the DMP-preserving numerical fluxes proposed
in [21], which are both nonlinear and conservative.

Let τKI and nK,σ denote the unit tangential vector of KI and unit outward
normal vector on edge σ of cell K, respectively. Let θK,σ denote the angle between
vectors τKI and nK,σ. It is obvious that θK,σ ∈ (−π/2, π/2). The vector κT

1 nK,σ
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can be decomposed into

κT
1 nK,σ = −αKτBA + βKτKI ,

where

αK :=
1

cos θK,σ
νKI ·

(
κT
1 nK,σ

)
, βK :=

1

cos θK,σ
nK,σ ·

(
κT
1 nK,σ

)
.

Similarly, we define αL and βL. Let αK,σ, αL,σ, βK,σ and βL,σ denote the integral
means of αK , αL, βK and βL on edge σ, respectively. Since θK,σ ∈ (−π/2, π/2)
and κ1 is coercive, we can infer that βK,σ > 0.

Using Taylor expansion, we obtain

FK,σ = αK,σ(u(A)− u(B))− |AB|
|IK|

βK,σ(u(I)− u(K)) +O(h2),

FL,σ = αL,σ(u(B)− u(A))− |AB|
|IL|

βL,σ(u(I)− u(L)) +O(h2).

(4)

The positivity of βK and βL implies that βK,σ > 0 and βL,σ > 0.
Utilizing the continuity of normal flux, FK,σ +FL,σ = 0 and omitting the O(h2)

terms of FK,σ and FL,σ, we derive the expression for u(I). Subsequently, substi-
tuting u(I) into (4) leads to

FK,σ = τσ(u(K)− u(L)) + τσDσ(u(A)− u(B)) +O(h2),

FL,σ = τσ(u(L)− u(K)) + τσDσ(u(B)− u(A)) +O(h2),
(5)

where τσ = |AB|
|IK|
βK,σ

+
|IL|
βL,σ

, Dσ =
|IK|αK,σ

|AB|βK,σ
+

|IL|αL,σ

|AB|βL,σ
. It can be observed that τσ > 0

due to the fact that βK > 0. However, Dσ, with its sign being dependent on the
diffusion tensor and the geometry of the cell.

Using the second-order method in [18] to approximate the vertex unknowns u(A)
and u(B), it follows that

u(A) =

JA∑
i=1

ωAiu(KAi),

u(B) =

JB∑
i=1

ωBi
u(KBi

),

where KAi denotes the cell-centered unknowns involved in the approximation of
u(A), and JA denotes the number of KAi . Similarly, we define KBi and JB. The

weighted coefficients satisfy
∑JA

i=1 ωAi = 1 and
∑JB

i=1 ωBi = 1, and they are not
restricted to being nonnegative.

Substituting the expressions of u(A) and u(B) into (5) yields the following ex-
pressions

FK,σ = τσ(u(K)− u(L)) + τσDσ

(
JA∑
i=1

ωAiu(KAi)−
JB∑
i=1

ωBiu(KBi)

)
+O(h2),

FL,σ = τσ(u(L)− u(K))− τσDσ

(
JA∑
i=1

ωAiu(KAi)−
JB∑
i=1

ωBiu(KBi)

)
+O(h2).
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Denote by FNP
K,σ and FNP

L,σ as the numerical fluxes of the nine-point scheme [18], we
have

FNP
K,σ = τσ(UK − UL) + ∆σ,

FNP
L,σ = τσ(UL − UK)−∆σ,

(6)

where ∆σ = τσDσ

(
JA∑
i=1

ωAiUKAi
−

JB∑
i=1

ωBiUKBi

)
, and U denotes the discrete so-

lution.
Denote UK1 and UK2 such that

UK1 = min
K̄∈JK

UK̄ ,

UK2 = max
K̄∈JK

UK̄ ,
(7)

where JK denotes the set of cells that have common vertices with cell K except for
K.

In the numerical algorithm, we introduce two small positive constants ε0 and ε1,
where ε0, ε1 ≤ Ch2. For our numerical experiments, we choose ε0 = ε1 = 10−10.

If |∆σ| ≤ ε0, we define the numerical fluxes as follows:

FK,σ = τσ (UK − UL) ,

FL,σ = τσ (UL − UK) .

If |∆σ| > ε0, then the construction contains two cases:
Case 1. There exist UK′ and UL′ such that

∆σ(UK − UK′) > 0,

∆σ(UL′ − UL) > 0,
(8)

where UK′ and UL′ are the cell-centered unknowns surrounding K and L, respec-
tively. UK′ and UL′ can be taken as UK1 or UK2 in (7). In this case, the numerical
fluxes are defined as

FK,σ = τσ (UK − UL) + ηK,σ(UK − UK′),

FL,σ = τσ (UL − UK) + ηL,σ(UL − UL′),

where ηK,σ = ∆σ

UK−UK′
and ηL,σ = ∆σ

UL′−UL
. It can be observed that the nonlinear

coefficients ηK,σ > 0 and ηL,σ > 0 since ∆σ and UK − UK′ , UL′ − UL are of the
same sign in this case.

Case 2. There do not exist UK′ and UL′ such that (8) holds. It is equivalent to

∆σ(UK − UK′) ≤ 0(9)

for any K ′ ∈ JK , or

∆σ(UL′ − UL) ≤ 0(10)

for any L′ ∈ JL. It implies that U reaches its maximum or minimum on cell K or
L, and from (9) and (10) we have

∆σ(UK − UL) ≤ 0.(11)

Rewrite the linear numerical fluxes (6) as

FNP
K,σ = (1− γ0)τσ (UK − UL) + ∆σ + γ0τσ(UK − UL),

FNP
L,σ = (1− γ0)τσ (UL − UK)−∆σ + γ0τσ(UL − UK),
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where γ0 is a nonlinear coefficient determined later. To preserve the IRP, the
numerical flux needs to satisfy the DMP structure, i.e., the numerical flux should
be the convex combinations of UK − UKj . To guarantee 1− γ0 > 0, the coefficient
γ0 should satisfy

0 ≤ γ0 ≤ 1− ε1.

In this case, we define the final nonlinear numerical fluxes:

FK,σ = (1− γ0)τσ (UK − UL) ,

FL,σ = (1− γ0)τσ (UL − UK) .

If |UK − UL| = 0, we set γ0 = 1− ε1, otherwise, we set

γ0 =


−∆σ

τσ (UK − UL)
, if

−∆σ

τσ (UK − UL)
≤ 1− ε1,

1− ε1, else.

The inequality (11) guarantees the nonnegativity of γ0.
Up to now, we have constructed the numerical flux with a DMP-preserving

structure, where the numerical flux is conservative and nonlinear.

Remark 2. This paper presents a DMP-preserving finite volume method in [21]
for the discretization of the diffusion term. It’s important to note that the choice
of discretization is flexible. As long as the discretization of the diffusion term
is a DMP-preserving finite volume scheme (for example, the methods provided in
[4, 19, 20]), the invariant region analysis in this paper is valid.

To discretize the time derivative, we utilize the Backward Euler method. Hence,
we obtain the nonlinear finite volume scheme (12)-(17):

m(K)
Un+1
K − Un

K

∆t
+
∑
σ∈EK

Fn+1
K,σ = m(K)f1(U

n+1
K , V n+1

K ), ∀K ∈ Jin,(12)

m(K)
V n+1
K − V n

K

∆t
+
∑
σ∈EK

F̃n+1
K,σ = m(K)f2(U

n+1
K , V n+1

K ), ∀K ∈ Jin,(13)

Un+1
K = g1(K, tn+1), ∀K ∈ Jout,(14)

V n+1
K = g2(K, tn+1), ∀K ∈ Jout,(15)

U0
K = u0(K), ∀K ∈ Jin ∪ Jout,(16)

V 0
K = v0(K), ∀K ∈ Jin ∪ Jout.(17)

We demonstrate that the finite volume scheme (12)-(17) can preserve the IRP for
the semilinear parabolic systems with three basic types of quasimonotone functions,
as shown in Theorem 1 and Theorem 2.

Theorem 1. Assume that f = (f1, f2) satisfies (3) and is mixed quasimonotone
and Lipschitz continuous in Σ = [m1,M1] × [m2,M2] with Lipschitz constant λ.
Assume further that the initial and boundary conditions satisfy (u0, v0), (g1, g2) ∈ Σ.

When the time-step size ∆t <
1

λ
, the finite volume scheme (12)-(17) has a solution

satisfying

(Un
K , V n

K) ∈ Σ, ∀K ∈ J , 0 ≤ n ≤ N.(18)
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Proof. This theorem is proved by induction. For mixed quasimonotone reaction-
diffusion systems, we only prove the theorem in the case where f1 is quasimonotone
nonincreasing and f2 is quasimonotone nondecreasing; the other case can be proved
similarly. Since (u0, v0), (g1, g2) ∈ Σ, it is obvious that (18) holds for n = 0.
Suppose that (18) holds for any n ≤ m, if (18) is proved for n = m + 1, where
m ≥ 0, then the theorem follows immediately.

First, construct the prolongation functions f̄1(u1, u2) and f̄2(u1, u2) as follows.
For any u1 ∈ R and u2 ∈ R, define

f̄1(u1, u2) =


f1(u1,m2), if u2 < m2,

f1(u1, u2), if m2 ≤ u2 ≤ M2,

f1(u1,M2), if u2 > M2.

and

f̄2(u1, u2) =


f2(m1, u2), if u1 < m1,

f2(u1, u2), if m1 ≤ u1 ≤ M1,

f2(M1, u2), if u1 > M1.

Note that (f̄1, f̄2) is also mixed quasimonotone in R2. It is easy to check that f̄1
and f̄2 are Lipschitz continuous in R2 and λ is still the Lipschitz constant of f̄1 and
f̄2, and there hold

f̄1(M1,m2) ≤ 0 ≤ f̄1(m1,M2),

f̄2(M1,M2) ≤ 0 ≤ f̄2(m1,m2).

Next, for a given (Um, V m) ∈ Σ, denote (Ūm+1, V̄ m+1) as the solution to the
following problem:

m(K)
Ūm+1
K − Um

K

∆t
+
∑
σ∈EK

Fm+1
K,σ = m(K)f̄1(Ū

m+1
K , V̄ m+1

K ), ∀K ∈ Jin,(19)

m(K)
V̄ m+1
K − V m

K

∆t
+
∑
σ∈EK

F̃m+1
K,σ = m(K)f̄2(Ū

m+1
K , V̄ m+1

K ), ∀K ∈ Jin,(20)

Ūm+1
K = g1(K, tm+1), ∀K ∈ Jout,(21)

V̄ m+1
K = g2(K, tm+1), ∀K ∈ Jout,(22)

where Fm+1
K,σ and F̃m+1

K,σ are constructed by Ūm+1
K and V̄ m+1

K .
Denote Kmax,U , Kmin,U , Kmax,V , Kmin,V such that

Ūm+1
Kmax,U

= max
K∈J

Ūm+1
K , Ūm+1

Kmin,U
= min

K∈J
Ūm+1
K ,

V̄ m+1
Kmax,V

= max
K∈J

V̄ m+1
K , V̄ m+1

Kmin,V
= min

K∈J
V̄ m+1
K .

If (18) does not hold for n = m+ 1, then one of the following cases holds:

Case 1: Ūm+1
Kmax,U

> M1. Case 2: Ūm+1
Kmin,U

< m1.

Case 3: V̄ m+1
Kmax,V

> M2. Case 4: V̄ m+1
Kmin,V

< m2.

We shall prove by contradiction that none of the above cases hold true. Let us
suppose Case 1 holds. Since Ūm+1 attains its maximum on Kmax,U and the nu-

merical flux has DMP-preserving structure, it follows that Fm+1
Kmax,U ,σ ≤ 0 for any
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σ ∈ EKmax,U
. From Um

Kmax,U
∈ [m1,M1] and (12), we can get

Ūm+1
Kmax,U

−M1

∆t
≤

Ūm+1
Kmax,U

− Um
Kmax,U

∆t
≤ f̄1(Ū

m+1
Kmax,U

, V̄ m+1
Kmax,U

).(23)

(A) V̄ m+1
Kmax,U

≥ m2.

Since f̄1 is nonincreasing with respect to v, we have f̄1(M1, V̄
m+1
Kmax,U

) ≤ f̄1(M1,m2)

≤ 0. According to (23) and Lipschitz continuity of f̄1, we have

Ūm+1
Kmax,U

−M1

∆t
≤ f̄1(Ū

m+1
Kmax,U

, V̄ m+1
Kmax,U

)− f̄1(M1, V̄
m+1
Kmax,U

)

≤ λ(Ūm+1
Kmax,U

−M1).

(24)

When ∆t <
1

λ
, (24) implies that Ūm+1

Kmax,U
≤ M1, which contradicts the assumption

that Ūm+1
Kmax,U

> M1.

(B) V̄ m+1
Kmax,U

< m2.

From V̄ m+1
Kmax,U

< m2, we have V̄ m+1
Kmin,V

< m2. Since V̄ m+1 attains its minimum

on Kmin,V , similar to (23), we can obtain

V̄ m+1
Kmin,V

−m2

∆t
≥

V̄ m+1
Kmin,V

− V̄ m
Kmin,V

∆t
≥ f̄2(Ū

m+1
Kmin,V

, V̄ m+1
Kmin,V

).(25)

(B.1) Ūm+1
Kmin,V

≥ m1.

Since f̄2 is nondecreasing with respect to u, we have f̄2(Ū
m+1
Kmin,U

,m2) ≥ f̄2(m1,m2)

≥ 0. Similar to the derivation of (24), it follows that

V̄ m+1
Kmin,V

−m2

∆t
≥ f̄2(Ū

m+1
Kmin,V

, V̄ m+1
Kmin,V

)− f̄2(Ū
m+1
Kmin,U

,m2) ≥ λ(V̄ n+1
Kmin,V

−m2).(26)

When ∆t <
1

λ
, (26) implies V̄ m+1

Kmin,V
≥ m2, which contradicts V̄ m+1

Kmin,V
< m2.

(B.2) Ūm+1
Kmin,V

< m1.

The assumption Ūm+1
Kmin,V

< m1 implies Ūm+1
Kmin,U

< m1. Since Ūm+1 attains its

minimum on Kmin,U , we can obtain

Ūm+1
Kmin,U

−m1

∆t
≥

Ūm+1
Kmin,U

− Um
Kmin,U

∆t

≥ f̄1(Ū
m+1
Kmin,U

, V̄ m+1
Kmin,U

).

(27)

(B.2.a) V̄ m+1
Kmin,U

≤ M2.

Since f̄1 is nonincreasing with respect to v, we have f̄1(m1, V̄
m+1
Kmin,U

) ≥ f̄1(m1,M2)

≥ 0. According to (27) and the Lipschitz continuity of f̄1, we have

Ūm+1
Kmin,U

−m1

∆t
≥ f̄1(Ū

m+1
Kmin,U

, V̄ m+1
Kmin,U

)− f̄1(m1, V̄
m+1
Kmin,U

) ≥ λ(Ūm+1
Kmin,U

−m1),

which means that Ūm+1
Kmin,U

≥ m1 when ∆t <
1

λ
. This contradicts Ūm+1

Kmin,U
< m1.

(B.2.b) V̄ m+1
Kmin,U

> M2.
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The assumption V̄ m+1
Kmin,U

> M2 implies V̄ m+1
Kmax,V

> M2. Since V̄ m+1 attains its

maximum on Kmax,V , similar to (23), we can obtain

V̄ m+1
Kmax,V

−M2

∆t
≤

V̄ m+1
Kmax,V

− V m
Kmax,V

∆t
≤ f̄2(Ū

m+1
Kmax,V

, V̄ m+1
Kmax,V

).(28)

(B.2.b(i)) Ūm+1
Kmax,V

≤ M1.

Since f̄2 is nondecreasing with respect to u, we have f̄2(Ūm+1
Kmax,V

,M2) ≤ f̄2(M1,M2)

≤ 0. According to (28) and the Lipschitz continuity of f̄2, we have

V̄ m+1
Kmax,V

−M2

∆t
≤ f̄2(Ū

m+1
Kmax,V

, V̄ m+1
Kmax,V

)− f̄2(Ū
m+1
Kmax,V

,M2)

≤ λ(V̄ m+1
Kmax,V

−M2),

(29)

which means V̄ m+1
Kmax,V

≤ M2 provided that ∆t <
1

λ
. This contradicts V̄ m+1

Kmax,V
> M2.

(B.2.b(ii)) Ūm+1
Kmax,V

> M1.

Since f̄1 is nonincreasing with respect to v and V̄ m+1
Kmax,U

> M2 > m2, we have

f̄1(M1, V̄
m+1
Kmax,U

) ≤ f̄1(M1,m2) ≤ 0. Similar to the derivation of (24), it holds that

Ūm+1
Kmax,U

−M1

∆t
≤ λ(Ūm+1

Kmax,U
−M1),

which implies Ūm+1
Kmax,U

≤ M1 provided that ∆t <
1

λ
. This contradicts Ūm+1

Kmax,U
>

M1.

In conclusion, Case 1 does not hold provided that ∆t <
1

λ
. Similarly, the oth-

er cases do not hold when ∆t <
1

λ
. Hence (Ūm+1

K , V̄ m+1
K ) ∈ Σ for any K ∈

Jin∪Jout, it follows that f̄1(Ū
m+1
K , V̄ m+1

K ) = f1(Ū
m+1
K , V̄ m+1

K ), f̄2(Ū
m+1
K , V̄ m+1

K ) =

f2(Ū
m+1
K , V̄ m+1

K ). We obtain that (Ūm+1
K , V̄ m+1

K ) ∈ Σ is also the solution of follow-
ing scheme

m(K)
Um+1
K − Um

K

∆t
+
∑
σ∈EK

Fm+1
K,σ = m(K)f1(U

m+1
K , V m+1

K ), ∀K ∈ Jin,

m(K)
V m+1
K − V m

K

∆t
+
∑
σ∈EK

F̃m+1
K,σ = m(K)f2(U

m+1
K , V m+1

K ), ∀K ∈ Jin,

Um+1
K = g1(K, tm+1), ∀K ∈ Jout,

V m+1
K = g2(K, tm+1), ∀K ∈ Jout,

which means that the finite volume scheme (12)-(17) has a solution (Um+1, V m+1)
in the invariant region. This completes the proof. �

We shall now demonstrate that the finite volume scheme can preserve the IRP
for the semilinear parabolic systems with quasimonotone nondecreasing reaction
function. The same method can be applied for the case of a quasimonotone nonin-
creasing reaction function, which we will omit for brevity.

Theorem 2. Assume that f = (f1, f2) satisfies (3) and is quasimonotone nonde-
creasing (or vice versa) and Lipschitz continuous in Σ = [m1,M1] × [m2,M2], the

initial and boundary conditions satisfy (u0, v0), (g1, g2) ∈ Σ. When ∆t <
1

2λ
, the
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finite volume scheme has a solution satisfying

(Un
K , V n

K) ∈ Σ, ∀K ∈ J , 0 ≤ n ≤ N.(30)

Proof. We shall adopt the same procedure as in the proof of Theorem 1. It is
obvious that (30) holds for n = 0. Suppose that (30) holds for any n ≤ m, where
m ≥ 0. Our objective is to demonstrate that (30) holds for n = m+ 1.

The definitions of prolongation functions f̄1(u1, u2) and f̄2(u1, u2) are the same
as in the proof of Theorem 1, and (f̄1, f̄2) is also quasimonotone nondecreasing in
R2 and satisfies

f̄1(M1,M2) ≤ 0 ≤ f̄1(m1,m2),

f̄2(M1,M2) ≤ 0 ≤ f̄2(m1,m2).

Similar to the proof of Theorem 1, we define (Ūm+1, V̄ m+1) as the solution of the
finite volume scheme corresponding to (f̄1, f̄2). The definitions of Kmax,U , Kmin,U ,
Kmax,V and Kmin,V are also the same as those in Theorem 1.

Suppose that (30) does not hold for n = m+ 1, then one of the following cases
holds:

Case 1: Ūm+1
Kmax,U

> M1. Case 2: Ūm+1
Kmin,U

< m1.

Case 3: V̄ m+1
Kmax,V

> M2. Case 4: V̄ m+1
Kmin,V

< m2.

Let us suppose Case 1 holds. We can obtain that (23) holds since Ūm+1 attains its
maximum on Kmax,U .

(A) V̄ m+1
Kmax,U

≤ M2.

Since f̄1 is nondecreasing with respect to v, we have f̄1(M1, V̄
m+1
Kmax,U

) ≤ f̄1(M1,M2)

≤ 0. Similar to the derivation of (24), we obtain

Ūm+1
Kmax,U

−M1

∆t
≤ λ(Ūm+1

Kmax,U
−M1).(31)

(31) implies Ūm+1
Kmax,U

≤ M1 provided that ∆t <
1

λ
, which contradicts the assumption

of Case 1.
(B) V̄ m+1

Kmax,U
> M2.

The assumption V̄ m+1
Kmax,U

> M2 implies V̄ m+1
Kmax,V

> M2. It follows that (28) since

V̄ m+1
Kmax,V

is the maximum of V̄ m+1.

(B.1) Ūm+1
Kmax,V

≤ M1.

Since f̄2 is nondecreasing with respect to u, we have f̄2(Ū
m+1
Kmax,V

,M2) ≤ f̄2(M1,M2)

≤ 0. Similar to the derivation of (29), we have

V̄ m+1
Kmax,V

−M2

∆t
≤ λ(V̄ m+1

Kmax,V
−M2).(32)

When ∆t <
1

λ
, (32) implies that V̄ m+1

Kmax,V
≤ M2, which contradicts V̄ m+1

Kmax,U
> M2.

(B.2) Ūm+1
Kmax,V

> M1.

The assumption Ūm+1
Kmax,V

> M1 implies that Ūm+1
Kmax,U

> M1. From the Lipschitz

continuity of f̄1 and f̄1(M1,M2) ≥ 0, it follows that

Ūm+1
Kmax,U

−M1

∆t
≤ λ(Ūm+1

Kmax,U
−M1) + λ(V̄ m+1

Kmax,U
−M2).(33)
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From (33), we can obtain

Ūm+1
Kmax,U

−M1 ≤ λ∆t

1− λ∆t
(V̄ m+1

Kmax,U
−M2).(34)

Similar to the derivations of (33) and (34), V̄ m+1
Kmax,V

satisfies the following inequal-

ities

V̄ m+1
Kmax,U

−M2

∆t
≤ f̄2(Ū

m+1
Kmax,V

, V̄ m+1
Kmax,V

)− f̄2(M1,M2)

≤ λ(Ūm+1
Kmax,V

−M1) + λ(V̄ m+1
Kmax,V

−M2),

and

Ūm+1
Kmax,V

−M1 ≥ 1− λ∆t

λ∆t
(V̄ m+1

Kmax,V
−M2).(35)

Combining (34) and (35), we see that
λ∆t

1− λ∆t
(V̄ m+1

Kmax,U
−M2) ≥

1− λ∆t

λ∆t
(V̄ m+1

Kmax,V
−

M2). We have
λ∆t

1− λ∆t
>

1− λ∆t

λ∆t
provided that ∆t <

1

2λ
, which derives that

V̄ m+1
Kmax,U

≤ M2. It contradicts the assumption that V̄ m+1
Kmax,U

> M2. Hence, Case 1

does not hold when ∆t <
1

2λ
. The proofs of other cases follow similarly.

In conclusion, we have proved that (Ūm+1
K , V̄ m+1

K ) ∈ Σ for any K ∈ Jin ∪
Jout, then we have f̄1(Ū

m+1
K , V̄ m+1

K ) = f1(Ū
m+1
K , V̄ m+1

K ) and f̄2(Ū
m+1
K , V̄ m+1

K ) =

f2(Ū
m+1
K , V̄ m+1

K ). It means that (Ūm+1, V̄ m+1) is also the solution of the finite
volume scheme (12)-(17), which completes the proof. �

The existence of a solution for the nonlinear finite volume scheme (12)-(17) can
be established using the same method as Theorem 4 in [25], and this proof is
therefore omitted.

Theorem 3. Suppose that f = (f1, f2) is quasimonotone and Lipschitz continuous
in Σ = [m1,M1] × [m2,M2], and satisfies (3), the initial and boundary conditions

satisfy (u0, v0), (g1, g2) ∈ Σ. When ∆t <
1

2λ
, the nonlinear finite volume scheme

(12)-(17) has at least one solution.

4. The iterative method preserving the IRP

In this section, we design an iterative method to solve the nonlinear scheme (12)-
(17) and then prove the IRP of the iteration. To design the iterative scheme, we first
linearize the nonlinear numerical flux. Denote Un+1,s+1 and V n+1,s+1 the (s+1)-th
iterative numerical solutions at tn+1. We use the solution Un+1,s to calculate the
coefficients ηn+1,s

K,σ , ηn+1,s
L,σ , γn+1,s

0 and ∆n+1,s
σ . For Case 1 in the algorithm, the

numerical flux Fn+1,s+1
K,σ and Fn+1,s+1

L,σ are defined as

Fn+1,s+1
K,σ = τn+1

σ

(
Un+1,s+1
K − Un+1,s+1

L

)
+ ηn+1,s

K,σ

(
Un+1,s+1
K − Un+1,s+1

K′

)
,

Fn+1,s+1
L,σ = τn+1

σ

(
Un+1,s+1
L − Un+1,s+1

K

)
+ ηn+1,s

L,σ

(
Un+1,s+1
L − Un+1,s+1

L′

)
,

and for Case 2, Fn+1,s+1
K,σ and Fn+1,s+1

L,σ are defined as

Fn+1,s+1
K,σ = (1− γn+1,s

0 )τn+1
σ

(
Un+1,s+1
K − Un+1,s+1

L

)
,

Fn+1,s+1
L,σ = (1− γn+1,s

0 )τn+1
σ

(
Un+1,s+1
L − Un+1,s+1

K

)
.
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Similarly, we define F̃n+1,s+1
K,σ and F̃n+1,s+1

L,σ .
The treatment of the nonlinear source term is crucial for preserving IRP dur-

ing the iteration. For given Un+1,s and V n+1,s, the solution of the iteration
(Un+1,s+1, V n+1,s+1) satisfies

m(K)
Un+1,s+1
K − Un

K

∆t
+
∑
σ∈EK

Fn+1,s+1
K,σ + λm(K)Un+1,s+1

K

=m(K)
(
λUn+1,s

K + f1(U
n+1,s
K , V n+1,s

K )
)
,

(36)

m(K)
V n+1,s+1
K − V n

K

∆t
+
∑
σ∈EK

F̃n+1,s+1
K,σ + λm(K)V n+1,s+1

K

=m(K)
(
λV n+1,s

K + f2(U
n+1,s+1
K , V n+1,s

K )
)
,

(37)

for anyK ∈ Jin, and subject to Un+1,s+1
K = g1(K, tn+1) and V n+1,s+1

K = g2(K, tn+1)
for any K ∈ Jout, U

0
K = u0(K) and V 0

K = v0(K) for any K ∈ Jin ∪ Jout, where
n ≥ 0, s ≥ 0. The iterative algorithm is described in Algorithm 1, where we set
ε = 10−8 in the numerical experiments.

Algorithm 1 The IRP-preserving iteration

1: Compute the initial vector (U0, V 0);
2: n = 0;
3: while tn+1 ≤ T do
4: Let s = 0;
5: Take (Un+1,0, V n+1,0) = (Un, V n);
6: while ||Un+1,s+1 − Un+1,s||∞ > εnon or ||V n+1,s+1 − V n+1,s||∞ > εnon do
7: Solve the linear system (36)-(37);
8: Let s = s+ 1;
9: end while

10: Let n = n+ 1;
11: end while

We prove that the iterative method can preserve the IRP for the coupled quasi-
monotone parabolic system.

Theorem 4. Assume that f = (f1, f2) is quasimonotone and Lipschitz continuous
in Σ = [m1,M1] × [m2,M2] and satisfies (3), the initial and boundary conditions
satisfy (u0, v0) ∈ Σ, (g1, g2) ∈ Σ. Then for any ∆t > 0, the solution of the iteration
(36)-(37) satisfies

(Un,s
K , V n,s

K ) ∈ Σ, ∀K ∈ J , 0 ≤ n ≤ N, s ≥ 0.(38)

Proof. The proof of this theorem is similar to that of Theorem 1. We assume
that the reaction function is mixed quasimonotone, where f1 is quasimonotone
nonincreasing and f2 is quasimonotone nondecreasing. The proofs for other types
of quasimonotone reaction functions are similar. It is easy to see that (U0

K , V 0
K) ∈ Σ

for any K ∈ Jin ∪ Jout. Suppose that (38) holds for any n ≤ m+ 1, s ≤ s0, where
m ≥ 0, s0 ≥ 0. If (38) is proved for n = m+1, s = s0+1, then the theorem follows
immediately.
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Denote Kmax,U , Kmin,U , Kmax,V , Kmin,V such that

Um+1,s0+1
Kmax,U

= max
K∈J

Um+1,s0+1
K , Um+1,s0+1

Kmin,U
= min

K∈J
Um+1,s0+1
K ,

V m+1,s0+1
Kmax,V

= max
K∈J

V m+1,s0+1
K , V m+1,s0+1

Kmin,V
= min

K∈J
V m+1,s0+1
K .

The proof can be divided into two steps. The first step is to prove that Um+1,s0+1
Kmax,U

≤ M1.
Let us suppose that Um+1,s0+1

Kmax,U
> M1 holds. Starting from (36) and using a

derivation similar to (23), it follows that

Um+1,s0+1
Kmax,U

−M1

∆t
≤
Um+1,s0+1
Kmax,U

− Um
Kmax,U

∆t

≤λ(Um+1,s0
Kmax,U

− Um+1,s0+1
Kmax,U

) + f1(U
m+1,s0
Kmax,U

, V m+1,s0
Kmax,U

).

(39)

Since f1 is nonincreasing with respect to v, we have f1(U
m+1,s0
Kmax, U

, V m+1, s0
Kmax, U

) ≤
f1(U

m+1, s0
Kmax, U

, m2). Similar to the derivation of (24), it holds that

Um+1,s0+1
Kmax,U

−M1

∆t

≤ λ(Um+1,s0
Kmax,U

− Um+1,s0+1
Kmax,U

) + f1(U
m+1,s0
Kmax,U

,m2)− f1(M1,m2)

≤ λ(Um+1,s0
Kmax,U

−M1) + λ(M1 − Um+1,s0
Kmax,U

)

= 0,

(40)

which contradicts Um+1,s0+1
Kmax,U

> M1. Hence we have Um+1,s0+1
Kmax,U

≤ M1. Similarly,

Um+1,s0+1
Kmin,U

≥ m1 can be proved. It means that Um+1,s0+1
K ∈ [m1,M1] for any

K ∈ J .
The second step is to show that V m+1,s0+1 ∈ [m2,M2].

If V m+1,s0+1 ∈ [m2,M2] does not hold, then we have V m+1,s0+1
Kmax,V

> M2 or

V m+1,s0+1
Kmin,V

< m2. Let us suppose that V m+1,s0+1
Kmax,V

> M2 holds. Similar to (39), it

follows that

V m+1,s0+1
Kmax,V

−M2

∆t
≤ λ(V m+1,s0

Kmax,V
− V m+1,s0+1

Kmax,V
) + f2(U

m+1,s0+1
Kmax,V

, V m+1,s0
Kmax,V

).(41)

According to the monotonicity of f2 with respect to u, we have f2(U
m+1,s0+1
Kmax,V

, V m+1,s0
Kmax,V

)

≤ f2(M1, V
m+1,s0
Kmax,V

). Similar to the derivation of (40), it can be shown that

V m+1,s0+1
Kmax,V

−M2

∆t
≤ 0,

which contradicts V m+1,s0+1
Kmax,V

> M2. Hence we have V m+1,s0+1
Kmax,V

≤ M2. Similarly,

we can prove that V m+1,s0+1
Kmin,V

≥ m2. It means that V m+1,s0+1
K ∈ [m2,M2] for any

K ∈ J . This completes the proof. �

5. Numerical experiments

In this section, numerical examples with different models are presented to demon-
strate the accuracy and the IRP-preserving property of the finite volume scheme.
Comparison results with the nine-point scheme are provided to illustrate that the
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nine-point scheme fails to preserve the invariant regions, indicating the advantage
of the IRP-preserving scheme. In the numerical examples, we use

ε2u =

[ ∑
K∈Jin

(UK − u(K))
2
m(K)

]1/2
,

ε2v =

[ ∑
K∈Jin

(VK − v(K))
2
m(K)

]1/2
,

εFu =

[∑
K∈J

(FK,σ −FK,σ)
2

]1/2
,

εFv =

[∑
K∈J

(
F̃K,σ − F̃K,σ

)2]1/2
to evaluate approximate the L2 errors and the normal flux errors of u and v, re-
spectively.

5.1. Example 1. In the first example, we consider the problem with continuous
diffusion coefficients on Ω = (0, 1) × (0, 1). The coefficients κ1 = R1D1R

T
1 and

κ2 = R2D2R
T
2 , where R1, R2, D1 and D2 are given by

R1 =

(
cos θ1 − sin θ1
sin θ1 cos θ1

)
, D1 =

(
k1 0
0 k2

)
and

R2 =

(
cos θ2 − sin θ2
sin θ2 cos θ2

)
, D2 =

(
k3 0
0 k4

)
.

We take θ1 = 5π
12 , θ2 = π

3 , k1 = 1 + 2x2 + y2, k2 = 1 + x2 + 2y2, k3 = 1 + x2+ 2y2,

k4 = 1 + 2x2 + y2. We set f1(u, v) = u(1 − u)(u − 0.1) and f2(u, v) = u − v and
take the exact solution

u(x, y, t) = e−t sin(πx) sin(πy),

v(x, y, t) = e−t cos(πx) cos(πy).

The exact solution provides the Dirichlet boundary conditions. We add linear
source terms in the right sides of the model (1)-(2), which can be calculated from
the exact solution correspondingly.

We set the final time T = 1 and a sufficiently small time step ∆t = 1E-4. This
example only tests the spatial convergence order, and no investigation on IRP was
conducted. Let Nc denote the number of cells. We display the L2 errors and
flux errors on the random quadrilateral and triangular meshes in Tables 2 and 3,
respectively. The two types of random meshes are presented in Fig. 2. From these
tables, we observe that the L2 errors achieve a second-order convergence rate on
both the random quadrilateral and triangular meshes, and the flux errors achieve a
first-order convergence rate on the random quadrilateral meshes and obtain higher
than first-order convergence rate on random triangular meshes.

5.2. Example 2. In this example, we test the accuracy of our scheme under the
problem with discontinuous diffusion coefficient on Ω = (0, 1)× (0, 1). We consider
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The random quadrilateral meshes. The random triangular meshes.

Figure 2. The random meshes.

Table 2. The errors for Example 1 on the random quadrilateral meshes.

Nc 144 576 2304 9216
ε2u 1.21E-03 3.98E-04 1.04E-04 2.21E-05
order 1.61 1.93 2.23
εFu 1.80E-02 8.27E-03 3.90E-03 2.02E-03
order 1.12 1.08 0.94
ε2v 1.60E-03 4.14E-04 1.05E-04 2.63E-05
order 1.94 1.98 1.99
εFv 1.95E-02 8.50E-03 4.00E-03 1.96E-03
order 1.19 1.08 1.02

Table 3. The errors for Example 1 on the random triangular meshes.

Nc 288 1152 4608 18432
ε2u 9.32E-04 2.45E-04 5.96E-05 1.38E-05
order 1.92 2.03 2.10
εFu 1.98E-02 6.23E-03 2.16E-03 9.31E-04
order 1.66 1.52 1.21
ε2v 8.97E-04 2.52E-04 6.31E-05 1.56E-05
order 1.83 1.99 2.01
εFv 1.87E-02 6.65E-03 2.69E-03 1.11E-03
order 1.49 1.30 1.27

the exact solution

u(x, y, t) =

{
e−t

(
x− 2

3

) (
x3 + y3

)
, if x ≤ 2

3 ,

4e−t
(
x− 2

3

) (
x3 + y3

)
, if x > 2

3 ,

v(x, y, t) =

{
e−t

(
x− 2

3

) (
x2 − y2

)
, if x ≤ 2

3 ,

4e−t
(
x− 2

3

) (
x2 − y2

)
, if x > 2

3 ,
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and take the diffusion coefficient

κ1 = κ2 =

{
4I, if x ≤ 2

3 ,

I, if x > 2
3 .

The functions f1(u, v) and f2(u, v) are

f1(u, v) = u2 − ev,

f2(u, v) = u3 − v,

and the linear source functions are calculated correspondingly.
We set the final time T = 1 and a sufficiently small time step ∆t = 1E-4 in order

to test the spatial accuracy; no investigation of IRP was conducted. Tables 4 and 5
provide the L2 norm of errors of solutions and fluxes on two types of random meshes.
The numerical results reveal that our scheme achieves a second-order convergence
rate for the L2 errors of solutions and a convergence rate higher than first-order for
the flux errors.

Table 4. The errors for Example 2 on the random quadrilateral meshes.

Nc 144 576 2304 9216
ε2u 3.44E-03 8.96E-04 2.26E-04 5.67E-05
order 1.94 1.98 1.99
εFu 2.14E-02 7.63E-03 3.03E-03 1.43E-03
order 1.48 1.33 1.08
ε2v 2.26E-03 5.77E-04 1.45E-04 3.66E-05
order 1.96 1.99 1.98
εFv 1.62E-02 5.84E-03 2.38E-03 1.11E-03
order 1.47 1.29 1.10

Table 5. The errors for Example 2 on the random triangular meshes.

Nc 288 1152 4608 18432
ε2u 2.02E-03 5.44E-04 1.36E-04 3.42E-05
order 1.89 1.99 1.99
εFu 1.41E-02 4.61E-03 1.53E-03 6.10E-04
order 1.61 1.59 1.32
ε2v 7.40E-04 2.00E-04 4.94E-05 1.27E-05
order 1.88 2.01 1.95
εFv 1.00E-02 3.24E-03 1.09E-03 4.00E-04
order 1.62 1.56 1.45

5.3. Example 3. In Example 3, we consider a semilinear parabolic system il-
lustrating the superconductivity of liquids, where κ1 and κ2 are positive definite
diagonal matrices, and the nonlinear reaction-diffusion terms are as follows:

f1(u, v) = (1− u2 − v2)u,

f2(u, v) = (1− u2 − v2)v.

(f1, f2) is quasimonotone nonincreasing in [0,+∞)× [0,+∞). The domain of this
example is set to be a square with a hole Ω = (0, 1)2\[4/9, 5/9]2, where internal
and external boundaries are denoted by Γ1 and Γ2, respectively. Let the diffusion
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coefficients κ1 and κ2 be discontinuous at Γ, where Γ is composed of four edges
of the square (2/9, 7/9)2. The domain Ω is divided into two parts by Γ, where
Ω1 = (0, 1)2\[2/9, 7/9]2 and Ω2 = Ω\Ω1. We take the diffusion coefficients

κ1 =


2I, in Ω1,(

y2 + ε −(1− ε)xy

−(1− ε)xy x2 + ε

)
, in Ω2,

κ2 =


I, in Ω1,(

y2 + ε (1− ε)xy

(1− ε)xy x2 + ε

)
, in Ω2,

where ε = 5E-3, and take the initial and boundary conditions as

g1(x, y, t) =

{
0, in Γ1,

1, in Γ2,
g2(x, y, t) =

{
1, in Γ1,

0, in Γ2,

and

u0(x, y) =

{
0, in Ω1,

1, in Ω2,
v0(x, y) =

{
1, in Ω1,

0, in Ω2.

It is obvious that [0, 1] × [0, 1] is its invariant region, and the Lipschitz constant
λ = 5.

We observe the invariant region properties on random quadrilateral meshes with
Nc = 2916 and random triangular meshes with Nc = 5832, respectively. The
numerical solutions are displayed in Figs. 3(A) and 3(B) for random quadrilateral
meshes, and in Figs. 3(C) and 3(D) for random triangular meshes, respectively.
The minimum and maximum values for U on random quadrilateral meshes are 0
and 1, respectively. Similarly, the minimum and maximum values for V on random
triangular meshes are 0 and 1. These numerical results demonstrate the IRPs of
our scheme.

Table 6. The maxima and minima of the IRP-preserving scheme
and nine-point scheme for Example 4 on random quadrilateral
meshes.

method Umax No
c pct Umin Nu

c pct
IRP 0 0 0.00% 1 0 0.00%
NP 1.0290 562 15.61% -2.1341E-02 419 11.64%

Vmax No
c pct Vmin Nu

c pct
IRP 0 0 0.00% 2 0 0.00%
NP 2.0641 655 18.19% -4.2454E-02 418 11.61%

5.4. Example 4. In Example 4, we consider a simplified model of the Belousov-
Zhabotinski reaction on Ω = (0, 1) × (0, 1), which is a classical model in non-
equilibrium thermodynamics. This model takes the reaction functions

f1(u, v) = u(a− bu− cv),

f2(u, v) = −uv,
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(a) The numerical solution U of the
IRP-preserving scheme for Example 3
on the random quadrilateral meshes
(Umin = 0, Umax = 1).

(b) The numerical solution V of the
IRP-preserving scheme for Example 3
on the random quadrilateral meshes
(Vmin = 1, Vmax = 1).

(c) The numerical solution U of the
IRP-preserving scheme for Example 3 on
the random triangular meshes (Umin =
0, Umax = 1).

(d) The numerical solution V of the
IRP-preserving scheme for Example 3 on
the random triangular meshes (Vmin = 0,
Vmax = 1).

Figure 3. The numerical solutions for Example 3.

Table 7. The maxima and minima of the IRP-preserving scheme
and nine-point scheme for Example 4 on random triangular meshes.

method Umax No
c pct Umin Nu

c pct
IRP 0 0 0.00% 1 0 0.00%
NP 1.0186 699 9.71% -1.7108E-02 777 10.79%

Vmax No
c pct Vmin Nu

c pct
IRP 0 0 0.00% 2 0 0.00%
NP 2.0694 1535 21.32% -4.1207E-02 821 11.40%

where a, b, c are positive constants. When u ≥ 0 and v ≥ 0, the functions (f1, f2)
are quasimonotone nonincreasing, and f1 and f2 are Lipschitz continuous in any
finite region of (u, v). We set a = 1, b = 2, c = 10 and take the functions

u0(x, y) = g1(x, y, t) =


0, if 2x− y ≤ − 1

16 ,

8(2x− y) + 0.5, if − 1
16 < 2x− y ≤ 1

16 ,

1, if 2x− y > 1
16 ,
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(a) The numerical solution U of the
IRP-preserving scheme for Example 4
on the random quadrilateral meshes
(Umin = 0, Umax = 1).

(b) The numerical solution V of the
IRP-preserving scheme for Example 4
on the random quadrilateral meshes
(Vmin = 0, Vmax = 2).

(c) The numerical solution U of the
nine-point scheme for Example 4 on the
random quadrilateral meshes (Umin =
−2.1341E-2, Umax = 1.0290).

(d) The numerical solution V of the
nine-point scheme for Example 4 on the
random quadrilateral meshes (Vmin =
−4.2454E-2, Vmax = 2.0641).

Figure 4. The numerical solutions for Example 4 on quadrilateral
meshes.

and

v0(x, y) = g2(x, y, t) =


0, if x+ 2y ≤ 15

16 ,

16(x+ 2y)− 15, if 15
16 < x+ 2y ≤ 17

16 ,

2, if x+ 2y > 17
16 .

A simple calculation gives (u0, v0), (g1, g2) ∈ [0, 1] × [0, 2], the Lipschitz constant
λ = 35. According to Lemma 1, the invariant region of the exact solution is
[0, 1]× [0, 2].

We set T = 1 and ∆t = 1E-3. We solve the problem using our scheme and the
nine-point (N-P) scheme on the random quadrilateral meshes with Nc = 3600 and
random triangular meshes with Nc = 7200, respectively. The numerical solutions
are presented in Fig. 4 and Fig. 5. We denote the maximum and minimum of the
solution vector U as Umax and Umin, respectively. We define Vmax and Vmin similarly.
The numbers of overshoots and undershoots of numerical solution are denoted as
No

c and Nu
c , and their corresponding percentages are indicated by “pct”. Tables 6-7

summarize the maxima and minima, the numbers of overshoots and undershoots,
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(a) The numerical solution U of the
IRP-preserving scheme for Example 4 on
the random triangular meshes (Umin =
0, Umax = 1).

(b) The numerical solution V of the
IRP-preserving scheme for Example 4 on
the random triangular meshes (Vmin = 0,
Vmax = 2).

(c) The numerical solution U of the
nine-point scheme for Example 4 on
the random triangular meshes (Umin =
1.7108E-2, Umax = 1.0186).

(d) The numerical solution V of the
nine-point scheme for Example 4 on
the random triangular meshes (Vmin =
−4.1207E-2, Vmax = 2.0694).

Figure 5. The numerical solutions for Example 4 on triangular meshes.

and their percentages of the two schemes, respectively. As shown in Tables 6-7, the
solution of our scheme on both meshes remains within the range of [0, 1] × [0, 2],
whereas the nine-point scheme fails to preserve the IRP. In the latter case, we set
the numerical solutions that fall outside the invariant region to white for visual
clarity.

6. Conclusion

A finite volume method that preserves the invariant region property is developed
for coupled quasimonotone reaction-diffusion systems on general polygonal meshes.
The backward Euler method and the DMP-preserving finite volume scheme in [21]
are employed to approximate the time derivatives and the diffusion terms, respec-
tively, which yields a nonlinear and conservative scheme. An iterative scheme is
constructed to solve the resulting nonlinear system. We prove that both the non-
linear scheme and the iterative method preserve the invariant region property for
three types of quasimonotone systems. Finally, numerical examples are provided
to illustrate both the accuracy and the IRP-preserving property.
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