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AN EFFICIENT ROTATIONAL PRESSURE-CORRECTION

SCHEME FOR THE 2D/3D NAVIER-STOKES/DARCY

COUPLING PROBLEM
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Abstract. This article proposes and analyzes a rotational pressure-correction method for the

Navier-Stokes/Darcy(NSD) system with Beavers-Joseph-Saffman-Jones interface conditions. This
method mainly solves the Navier-Stokes/Darcy problem in two steps. The first step is the vis-

cous step. The intermediate velocity can be obtained after the pressure gradient is explicitly

processed by the algorithm. The second step is the projection step, which first projects the inter-
mediate velocity onto a divergence-free space, and then corrects the velocity and pressure. The

main advantage of these methods is that they have first/second order accuracy and do not have
the incompressibility constraint of NSD system. For solving the Navier-Stokes equations, each

time step requires only one vector-valued elliptic equation and one scalar-valued Poisson equa-

tion. Therefore, this method has high computational efficiency. Compared with other traditional
related methods, this method is no longer affected by any artificial boundary conditions, and can

achieve the optimal convergence order. Finally, unconditional stability and long time stability are

established. 2D/3D numerical experiments are presented to illustrate the features of the proposed
method and verify the results of the theoretical analysis.

Key words. First-order/second-order temporal scheme, rotational pressure-correction scheme,
Navier-Stokes/Darcy system, stability, 2D/3D numerical experiments.

1. Introduction

The NSD system is one of the classical equations of fluid mechanics, because
it describes the physical phenomena of fluid motion. It may be used to simulate
surface water flow, subsurface oil and groundwater flow, as well as flow in porous
media, such as [1, 2, 3, 4, 5]. Due to the coupling of free flow and flow in porous
media, the complex geometric shape of free flow, refined space-time scale, strong
heterogeneity of physical parameters and uncertainty of experimental data, the
mathematical research of this system has always been a very difficult challenge.

In most important applications, it is difficult to solve the exact solution of multi-
domain, multi-physics field coupled NSD system. Therefore, the efficient numerical
solution of the system is particularly important. Most methods are designed for
the development of an approximate solution to the NSD system, including coupled
finite element methods [2, 6, 7, 8, 9, 10, 11], domain decomposition methods [12,
13, 14, 15, 16, 17, 18, 19, 20, 21], Lagrange multiplier methods [22, 23], two-grid
methods [5, 24], implicit-explicit method [25, 26, 27, 28], discontinuous Galerkin
methods [29, 30, 31, 32, 33], mortar discretizations [34, 35, 36], boundary integral
methods [37, 38], and others [39, 40, 41, 42, 43, 44, 45]. These numerical methods
have been widely devoted to achieve their required accuracy in certain practice.
While they have proven to be very successful, a theory to ensure their long time
stability is still being developed. In recent years, some efficient second-order (in
time) accurate methods have been developed and investigated for a NSD system [42,
46]. These methods establish an unconditional and uniform stability and further
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lead to a uniform control of errors, which is highly desirable for modeling many
physical processes. In particular, two second-order time method for coupled NSD
systems and optimal theoretical results are studied in [46]. These results provide a
theoretical support for second-order large time step method for the NSD system.

It is well known that a lot of difficulties are arising from the coupled system:
the mixed nonlinear problem, their shared rigid interface, the energy dissipation
derived from a decoupling strategy, and their complex system existing in itself.
Thus, it is not easy to solve efficiently the coupled system with the Navier-Stokes
equations because of the saddle point structure induced by the incompressibility
constraint [47, 48, 49, 50, 51, 52]. For the past few years, a projection method has
attracted more and more attention from researchers because of its simplicity and
efficiency[53, 54, 55, 56]. The projection algorithm[57] has undergone some evolu-
tion and has been well further developed. Firstly, Chorin-Temam’s algorithm was
improved by making the pressure explicit in the viscous step and by correcting it in
the projection step. Hereafter, the same fundamental idea of decomposing vector
fields into a divergence-free part and a gradient has remained effective for solving
the Navier-Stokes equations [58, 59]. For incompressible flow, it is effective to de-
couple the system of pressure from that of velocity by using the projection method
[60]. These methods usually consist of two substeps. One substep explicitly satisfies
the Laplacian expression of the velocity or pressure gradient, and the other substep
implicitly corrected . In [61], the author gives a second order in time incremen-
tal pressure correction finite element method for the Navier-Stokes/Darcy prob-
lem. In this method, the Navier-Stokes/Darcy problem is solved in three steps: a
convection-diffusion step, a projection correction (incremental pressure correction)
step and a Darcy step. In [62], a first order linearized pressure correction pro-
jection method is proposed and analyzed for the time-dependent diffusive Peterlin
viscoelastic model, which can describe the unsteady behavior of some incompress-
ible polymeric fluids in two dimensions. Details on the various projection method
can be found at [63, 64, 65, 66].

Here, we restrict ourselves to the rotational pressure-correction method for the
NSD system. The most challenging issue is how to develop the proper rotational
pressure-correction method. One of the main difficulties in decoupling the coupled
system related to the incompressible flow is that this system has a complicated
boundary condition. Most of these schemes imply an artificial condition not satis-
fied by the exact pressure, which induces a numerical boundary layer, and, in turn,
results in a loss of accuracy. In addition to the complexity of the coupling problem,
the analysis of nonlinear terms for the incompressible Navier-Stokes equation is
another difficulty, and we need to pay attention to the analysis skills to overcome
it. The projection method has been widely used because of its efficiency and sim-
plicity. However, the rigorous error analysis of coupled systems with incompressible
Navier-Stokes equations still needs further study.

In this article, based on the key idea of the rotational pressure-correction method
for the Stokes problem with an open boundary condition in [66, 67], we propose
and rigorously analyze this scheme to solve the coupled NSD system. A first-order
backward Euler and second-order backward difference formulas are utilized to dis-
cretize the time derivative while the finite elements are used to treat the spatial
discretization. The central advantage of our approach is a time-dependent version
of domain decomposition, and has first-order/second-order accuracy without the
incompressibility constraint in the Navier-Stokes system. Moreover, the negative
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Figure 1. The global domain Ω consists of free fluid flow subdo-
main Ωf and porous media fluid flow subdomain Ωp, separated by
a common interface Γ.

effect of an artificial boundary condition has been eliminated and numerical pre-
cision is furthermore guaranteed. The main feature of these methods are that we
only solve one vector-valued elliptic problem and one scalar-valued Poisson problem
per time step. Thus, the cost of these algorithms is dominant to solve the (quasi-
)Poisson equation, especially for large size problems. Finally, the unconditional
stability and long time stability of the NSD system are proved. The accuracy of
the theory is verified by 2D/3D numerical experiments.

The rest of the paper is organized as follows. In section 2, we introduce the
fluid-fluid model using the NSD system. In section 3, a lemma used in the analysis
is given. In section 4, the first-order/second-order time discretizations of rotational
pressure-correction methods are introduced. The unconditional stability and long
time stability of NSD system are strictly proved. In section 5, the fully discrete
scheme of NSD system is given. Finally, three numerical experiments are given to
demonstrate the effectiveness of the proposed method.

2. Preliminary

In this section, we begin with a brief introduction to the model. To specify the
problem considered, let the two domains in Rd, d = 2, 3, be denoted by Ωp and Ωf
and lie across an interface Γ from each other (see Figure 1). We can simplify the
model to the following situation. The coupled NSD problem is stated as follows:

S
∂φ

∂t
−∇ · (K∇φ) = f, in Ωp,(1)

φ = 0, on ∂Ωp\Γ,(2)

∂u

∂t
−∇ · T (u, p) + (u · ∇)u = f , in Ωf ,(3)

∇ · u = 0, in Ωf ,(4)

u = 0, on ∂Ωf\Γ,(5)

where up = −K∇φ is the fluid velocity discharge rate, S is the the water storage
coefficient, K is the hydraulic conductivity tensor, and f is the sink/source term;
φ = z0 + pD

ρg denotes the hydraulic head, where pD denotes the dynamic pressure,

and z0, ρ, g are the height, density, and the gravity constant, respectively. In the
free-flow region Ωf , let u denote the fluid velocity, p the kinematic pressure, f the
external body force, and µ below the kinematic viscosity of the fluid. Additionally,
T(u, p) = 2µD(u)−pI is the stress tensor. D(u) = 1

2

(
∇u +∇Tu

)
is the deformation

tensor. I is the identity tensor.
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On the interface Γ, we have prescribed the following Beavers-Joseph-Saffman-
Jones interface conditions [68, 69, 70]

u · nf = up · nf = −(K∇φ) · nf ,(6)

−τj · (T(u, p) · nf ) = α0τj · u, j = 1, · · · , d− 1,(7)

−nf · (T(u, p) · nf ) = gφ,(8)

where α0 is the Beavers-Joseph-Saffman-Jones coefficient, nf denotes the outer
unit normal vector for the free flow and τj , j = 1, 2, · · · , d − 1 denotes a linearly
independent set of vectors tangent to the interface Γ.

The system (2.1)-(2.5) is considered in conjunction with the following initial

φ(0, x) = φ0(x), in Ωp,(9)

uS(0, x) = u0(x), in Ωf ,(10)

where x = (x1, x2, · · ·xd).
For the convenience of later analysis, we introduce some notation that will

be used later. Let X
′

f and X
′

p denote the dual spaces of Xf and Xp, respec-

tively. (·, ·)D denotes the L2 inner product in the domain D(D = Ωf or Ωp)
and 〈·, ·〉 denotes the L2 inner product on the interface Γ. Here, we define the

norms ‖φ‖Γ = 〈φ, φ〉1/2 ,∀φ ∈ Xp, ‖~v‖Γ =
(
‖v · n‖2Γ + ‖v · τ‖2Γ + ‖ψ‖2Γ

)1/2
and

‖~v‖S = 〈〈~v, ~v〉〉1/2 , ∀~v = [v, ψ]T . We have that ‖ · ‖S is equivalent to the L2 norm,
i.e., ‖ · ‖S ∼ ‖ · ‖0. In order to derive the variational formulation for the model
problem(1)-(5), we define the following Hilbert spaces [71]:

Xf =
{
v ∈ [H1(Ωf )]d : v = 0 on ∂Ωf \ Γ

}
,

Xp =
{
ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp \ Γ

}
,

X = Xf ×Xp, Mf = L2(Ωf ) ∩H1(Ωf ).

We recall the following vector formulas

〈〈~ut, ~v〉〉 =(ut,v)Ωf + gS(φt, ψ)Ωp ,

a(~u, ~v) =2µ(D(u),D(v))Ωf + g(K∇φ,∇ψ)Ωp + α0 〈u · τ,v · τ〉 ,
aΓ(~u, ~v) =g 〈φ,v · nf 〉Γ − g 〈u · nf , ψ〉Γ ,

(~f , ~v) =(f ,v)Ωf + g(f, ψ)Ωp ,

b(~v, q) =(divv, q)Ωf ,

where ~u = [u, φ]T , ~v = [v, ψ]T ,~f = [f , gf ]T .
The trilinear form is defined as: ∀(u,w,v) ∈ Xf ×Xf ×Xf ,

C(u,w,v) =(u · ∇w,v)Ωf .(11)

Especially, these bilinear forms satisfy the following coercive property [7]:

a(~u, ~u) ≥ (µ‖∇u‖20 + gKmin‖∇φ‖20 + α0‖u · τ‖2Γ) ≥ Ca‖∇~u‖20,(12)

aΓ(~u, ~u) = 0.(13)

where Ca = min(µ, gKmin, α0) > 0, Kmin is the minimum eigenvalue of K, and
L2(Ω) and L2(Γ) are equipped with the norms ‖ · ‖0 and ‖ · ‖Γ, respectively.

Finally, we introduce the continuous variational form of the problem (1)-(5).
Multiplying (1)-(5) by gψ ∈ Xp and (v, q) ∈ Xf ×Mf , integrating over the corre-

sponding domains and applying the divergence theorem, we find (~u, p) ∈ (X,Mf )
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with φt ≡ ∂φ
∂t ∈ X

′

p and ut ≡ ∂u
∂t ∈ X

′

f for given f ∈ Xp and f ∈ Xf such that, for

∀(~v, q) ∈ X×Mf ,

〈〈~ut, ~v〉〉+ a(~u, ~v)− b(v, p) + b(u, q) + aΓ(~u, ~v) + C(u,u,v) = (~f , ~v).(14)

More detailed results regarding to the problems of (1)-(10) can be found in
[2, 68, 69].

3. The nonlinear property

In this section, we will analyze the stability of the presented method related to the
nonlinear property. Under the classical technique of the coupled problems related
to the Navier-Stokes system, the existence and uniqueness of the corresponding
coupled NSD problems presented can be obtained. Our main aim is to show the
stability of the weak solution in continuous system, which also can be obtained for
the discrete finite element system.

Then, we can obtain the following result.

Lemma 3.1. [76] Assume that u satisfies the following smallness condition

‖∇u‖0 ≤
Ca
8C0

, ∀t ∈ [0, T ].(15)

Then, we have

|C(u,v,w)| ≤ Ca
8
‖∇v‖0‖∇w‖0,∀u,v,w ∈ Xf and t ∈ [0, T ],(16)

Proof. Using the assumption (15), we can estimate the trilinear term C(·, ·, ·)
as follows

C(u,v,w) ≤C0‖∇u‖0‖∇v‖0‖∇w‖0 ≤
Ca
8
‖∇v‖0‖∇w‖0. �(17)

4. Time discretization and stability

In this section, we show the rotational pressure-correction method in [60] for ap-
proximating the Navier-Stokes equations with complex boundary conditions. Here
we will consider two different numerical schemes to solve the system: One is the
so-called BE (backward Euler scheme), which is first-order accurate with respect to
∆t. Anther one is the so-called BDF2 (backward difference formulas scheme) with
second-order accurate with respect to ∆t.

There are generally many ways to discretize the time-dependent NSD equations
in time. Several finite element methods are available for the numerical solution of
the system. For convenience, let us introduce the following notation. We denote the
real positive parameter ∆t = tk+1 − tk, k = 0, 1, 2 · · · , represents the discretization
step, while the super-index k indicates that the quantity under consideration refers
to the time tk. First, we study the rotational pressure-correction method by using
BE.

4.1. The BE rotational pressure-correction method.

For any ~uk ≡ (uk, φk) ∈ X̄, ∆t > 0, find ~̃uk+1 ≡ (ũk+1, φk+1) ∈ X such that〈〈
D1~̃uk+1

∆t
, ~v

〉〉
+ a

(
~̃uk+1, ~v

)
− b

(
v, pk

)
+ aΓ

(
~uk, ~v

)
+ C

(
uk, ũk+1,v

)
=
(
~fk+1, ~v

)
, ∀~v ∈ X,(18)

where D1~̃uk+1 = ~̃uk+1 − ~uk denotes the difference operator.
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Subsequently, compute
(
uk+1, zk+1

)
∈ Xf ×Mf such that

uk+1 − ũk+1

∆t
+∇zk+1 = 0, in Ωf ,(19)

divuk+1 = 0, in Ωf ,(20)

uk+1 · n|∂Ωf\Γ = 0, and zk+1|Γ = 0.(21)

Furthermore, we update pk+1 and uk+1 by:

pk+1 = pk + zk+1 − χµdivũk+1,

uk+1 = ũk+1 −∆t∇zk+1,(22)

where the positive constant χ > 0 is a given parameter before the computation
phase begins.

Remark 4.1. In this algorithm, the Beavers-Joseph-Saffman-Jones interface condi-
tions are actually imposed in the interface term aΓ(·, ·), which is a bilinear term,
and can be treated via a simple quantity refer to the previous time tk. Moreover,
the trilinear term C(·, ·, ·) is linearized by the Picard scheme.

To prove the stability of the BE scheme, we first estimate the preliminary results
of the interface terms, as well as some other important terms, which are necessary
and important for the proof of the algorithm. For convenience, some mathematical
notations are defined:

δak+1 = ak+1 − ak.
Then, the following result follows from the basic analysis of BE scheme to dis-

cretize the time derivative [66].

Lemma 4.2. It holds that

‖δuk+1‖20 + ∆t2‖∇zk+1‖20
+ χµ∆t

(
‖divũk+1‖20 − ‖divũk‖20

)
+ 2∆tb

(
δũk+1, δpk

)
=‖δũk+1‖20 + ∆t2‖∇zk‖20 + χµ∆t‖divδũk+1‖20.(23)

For convenience, define the positive constant

α =
32C4

ctC
8
tr

C3
a

> 0

and set ‖~u‖2i = ‖u‖2i + ‖φ‖2i , i = 0, 1. To avoid irrelevant technicalities, we assume

that there is no external driving force, i.e., ~f = ~0.
Based on the previous lemmas, we can obtain the following unconditional sta-

bility and the long time stability for the transient NSD equations by using the BE
rotational pressure-correction scheme.

Theorem 4.3. (Unconditional stability) Under the assumption of Lemma 4.2,
let T > 0 be any fixed time. Then, the scheme (18)-(22) is unconditionally stable
on (0, T ].

Proof. Taking the operator δ on system (18) and substituting the test function

~v = 2∆tδ~̃uk+1 to obtain the following control of the time increments of the errors

2
(
δ~̃uk+1, δ~̃uk+1 − δ~uk

)
+ 2∆ta

(
δ~̃uk+1, δ~̃uk+1

)
− 2∆tb

(
δũk+1, δpk

)
+ 2∆taΓ

(
δ~uk, δ~̃uk+1

)
+ 2∆tC

(
uk−1, δũk+1, δũk+1

)
+ 2∆tC

(
δuk, ũk+1, δũk+1

)
= 0.(24)



856 M. ZHAO, J. GAO, M. MAHBUB, AND D. CHEN

Using the Cauchy-Schwarz inequality, yields

aΓ(~u, ~v) ≤ Cct‖~u‖Γ‖~v‖Γ, ∀~u, ~v ∈ X,(25)

where Cct is a positive constant depending on
√

2g [7]. Furthermore, applying the
trace inequality

‖~v‖Γ ≤ Ctr‖~v‖1/20 ‖∇~v‖
1/2
0 , ~v ∈ X,(26)

and the Young inequality

a1/2b1/2c ≤ ε

4
a2 +

1

4ε3
b2 +

ε

2
c2,∀ε > 0,(27)

we have

aΓ(δ~uk, δ~̃uk+1) ≤Cct‖δ~uk‖Γ‖δ~̃uk+1‖Γ
≤CctC2

tr‖δ~uk‖
1/2
0 ‖∇δ~uk‖

1/2
0 ‖∇δ~̃uk+1‖0

≤CctC2
tr

(
ε

2
‖∇δ~̃uk+1‖20 +

ε

4
‖∇δ~uk‖20 +

1

4ε3
‖δ~uk‖20

)
.

Then, setting ε = Ca
4C2

trCct
, we have

2∆taΓ(δ~uk, δ~̃uk+1) ≤ Ca∆t

4
‖∇δ~̃uk+1‖20 +

Ca∆t

8
‖∇δ~uk‖20 + α∆t‖δ~uk‖20.(28)

Applying the identity (a− b, a) = a2 − b2 + (a− b)2 and (16) to obtain

‖δ~̃uk+1‖20 − ‖δ~uk‖20+‖δ~̃uk+1 − δ~uk‖20 + Ca∆t‖∇δ~̃uk+1‖20 − 2∆tb
(
δ~̃uk+1, δpk

)
≤Ca∆t

4
‖∇δ~uk‖20 + α∆t‖δ~uk‖20,

since ∣∣C (δuk, ũk+1, δũk+1
)∣∣ ≤Ca

8
‖∇δũk+1‖0‖∇δuk‖0

≤Ca
8
‖∇δũk+1‖20 +

Ca
32
‖∇δuk‖20

≤Ca
8
‖∇δ~̃uk+1‖20 +

Ca
32
‖∇δ~uk‖20.(29)

Using (23), noting that the bilinear term 2∆tb(δũk+1, δpk) and ∆tχ‖divδũk+1‖20
are absorbed, we find that

‖δ~̃uk+1‖20 + ‖δ~̃uk+1 − δ~uk‖20 + ‖δuk+1‖20

+ ∆t2‖∇zk+1‖20 + χµ∆t‖divũk+1‖20 +
3Ca∆t

2
‖∇δ~̃uk+1‖20

≤‖δ~uk‖20 + ‖δũk+1‖20 + ∆t2‖∇zk‖20 + χµ∆t‖divũk‖20 + χµ∆t‖divδũk+1‖20

+
Ca∆t

4
‖∇δ~uk‖20 + 4α∆t‖δ~uk‖20.

Choosing χ < Ca/4dµ, and the estimate

‖divδũk+1‖0 ≤
√
d‖∇δũk+1‖0,(30)

we have

χµ‖divδũk+1‖20 ≤
Ca
4
‖∇δũk+1‖20 ≤

Ca
4
‖∇δ~̃uk+1‖20.(31)
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Then, we can obtain

‖δ~̃uk+1‖20 + ‖δ~̃uk+1 − δ~uk‖20 + ‖δuk+1‖20

+ ∆t2‖∇zk+1‖20 + χµ∆t‖divũk+1‖20 +
5Ca∆t

4
‖∇δ~̃uk+1‖20

≤(1 + 4α∆t)‖δ~uk‖20 + ‖δũk+1‖20 + ∆t2‖∇zk‖20

+ χµ∆t‖divũk‖20 +
Ca∆t

4
‖∇δ~uk‖20,(32)

which implies

‖δ~uk+1‖20 + ‖δ~̃uk+1 − δ~uk‖20 + ∆t2‖∇zk+1‖20

+ χµ∆t‖divũk+1‖20 +
Ca∆t

4
‖∇δ~̃uk+1‖20

≤(1 + 4α∆t)‖δ~uk‖20 + ∆t2‖∇zk‖20 + χµ∆t‖divũk‖20 +
Ca∆t

4
‖∇δ~uk‖20.

Thus, we complete the proof. �
Moreover, we will establish the long time stability for the presented algorithm.

Theorem 4.4. (Long time stability) Assume that Lemma 4.2 and the time-step
restriction 16α∆t < 1 are satisfied. Then, the solution to (18)-(22) is uniformly
bounded for all time

Ek+1 ≤ Ek,(33)

where Ek = ‖δ~uk‖20 + ∆t2‖∇zk‖20 + χµ∆t‖divũk‖20 + Ca∆t‖∇δ~uk‖20.

Proof. Using the same approach as for Theorem 4.3. Taking the operator δ on

system (18), substituting the test function ~v = 2∆tδ~̃uk+1 and applying the identity
(a− b, a) = a2− b2 + (a− b)2 to obtain the following control of the time increments
of the errors

‖δ~̃uk+1‖20 − ‖δ~uk‖20 + ‖δ~̃uk+1 − δ~uk‖20 + 2Ca∆t‖∇δ~̃uk+1‖20
−2∆tb

(
δũk+1, δpk

)
+ 2∆tC

(
uk−1, δũk+1, δũk+1

)
+2∆tC

(
δuk, ũk+1, δũk+1

)
= −2∆taΓ

(
δ~uk, δ~̃uk+1

)
.(34)

Choosing χ < Ca/8dµ, and the estimate

‖divδũk+1‖0 ≤
√
d‖∇δũk+1‖0,(35)

we have

χµ‖divδũk+1‖20 ≤
Ca
8
‖∇δũk+1‖20 ≤

Ca
8
‖∇δ~̃uk+1‖20.(36)

Also, using the same approach as for Lemma 4.1 in [72], yields

aΓ

(
δ~uk, δ~̃uk+1

)
= aΓ

(
δ~uk − δ~̃uk+1, δ~̃uk+1

)
≤CctC2

tr‖δ~uk − δ~̃uk+1‖1/20 ‖∇
(
δ~uk − δ~̃uk+1

)
‖1/20 ‖∇δ~̃uk+1‖0

≤CctC2
tr‖δ~uk − δ~̃uk+1‖1/20

(
‖∇δ~̃uk+1‖1/20 + ‖∇δ~uk‖1/20

)
‖∇δ~̃uk+1‖0

≤CctC2
tr

(
ε‖δ~̃uk+1‖20 +

ε

2
‖δ~̃uk+1‖20 +

ε

4
‖δ~uk+1‖20 +

1

4ε2
‖δ~uk − δ~̃uk+1‖1/20

)
.(37)
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Choosing ε = Ca
8C2

trCct
, we have

2∆taΓ

(
δ~uk, δ~̃uk+1

)
≤Ca∆t

4
‖∇δ~̃uk+1‖20 +

Ca∆t

16
‖∇δ~̃uk+1‖20 +

Ca∆t

16
‖∇δ~uk‖20

+
512C4

ctC
8
tr∆t

C3
a

‖δ~̃uk+1 − δ~uk‖20

=
5Ca∆t

16
‖∇δ~̃uk+1‖20 +

Ca∆t

16
‖∇δ~uk‖20 + 16α∆t‖δ~̃uk+1 − δ~uk‖20.(38)

Using the identity (23), the bounds (29) of the nonlinear term, and noting that the
bilinear term 2∆tb(δũk+1, δpk) and ∆tχ‖divδũk+1‖20 are absorbed, yields

‖δ~̃uk+1‖20 + ‖δ~̃uk+1 − δ~uk‖20 + ‖δuk+1‖20 + ∆t2‖∇zk+1‖20

+ χµ∆t‖divũk+1‖20 +
17Ca∆t

16
Ca∆t‖∇δ~̃uk+1‖20

≤‖δ~uk‖20 + ‖δũk+1‖20 + ∆t2‖∇zk‖20 + χµ∆t‖divũk‖20

+
Ca∆t

8
‖∇δ~uk‖20 + 16α∆t‖δ~̃uk+1 − δ~uk‖20

which implies

‖δ~uk+1‖20 + (1− 16α∆t)‖δ~̃uk+1 − δ~uk‖20 + ∆t2‖∇zk+1‖20
+ χµ∆t‖divũk+1‖20 + Ca∆t‖∇δ~̃uk+1‖20
≤‖δ~uk‖20 + ∆t2‖∇zk‖20 + χµ∆t‖divũk‖20 + Ca∆t‖∇δ~uk‖20.

Hence, the theorem is proved since 16α∆t < 1. �

4.2. The BDF2 rotational pressure-correction method.
Similarly, we will introduce BDF2 and give strict stability proof. For any ∆t > 0

and ~uk ≡ (uk, φk) ∈ X. Find ~̃uk+1 ≡ (ũk+1, φk+1) ∈ X such that〈〈
D2
t ~̃u

k+1

2∆t
, v

〉〉
+ a

(
~̃uk+1, ~v

)
− b

(
v, pk

)
+aΓ

(
σ~uk, ~v

)
+ C

(
σuk, ũk+1,v

)
=
(
~fk+1, ~v

)
, ∀~v ∈ X,(39)

where D2
t ~̃u

k+1 = 3~̃uk+1 − 4~uk + ~uk−1 and σ~uk = 2~uk − ~uk−1.
Subsequently, compute (uk+1, Zk+1) ∈ Xf ×Mf such that

3uk+1 − 3ũk+1

2∆t
+∇zk+1 = 0, in Ωf ,(40)

divuk+1 = 0, in Ωf ,(41)

uk+1 · n|∂Ωf\Γ = 0, and zk+1|Γ = 0.(42)

Furthermore, we update pk+1 ∈Mf and uk+1 ∈ Xf by:

pk+1 = pk + zk+1 − χµdivũk+1,

uk+1 = ũk+1 − 2∆t

3
∇zk+1,(43)

where the positive constant 0 < χ is a given parameter before the computation
phase begins.
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Meanwhile, the following result follows from the basic analysis of BDF2 to dis-
cretize the time derivative

Lemma 4.5. It also holds that

3‖δuk+1‖20 +
4

3
∆t2‖∇zk+1‖20

+ 2χµ∆t
(
‖divũk+1‖20 − ‖divũk‖20

)
+ 4∆tb

(
δũk+1, δpk

)
=3‖δũk+1‖20 +

4

3
∆t2‖∇zk‖20 + 2χµ∆t‖divδũk+1‖20.(44)

Similar to the stability of BE, we first obtain the following unconditional stability
for the transient NSD equations.

Theorem 4.6. (Unconditional stability)Let T > 0 be any fixed time. Then, the
scheme (39)-(43) is unconditionally stable on (0, T ].

Proof. Taking the operator δ on system (39) and substituting the test function

~v = 4∆tδ~̃uk+1 to obtain the following control of the time increments of the errors

2
〈〈
δ~̃uk+1, 3δ~̃uk+1 − 4δ~uk + δ~uk−1

〉〉
+ 4∆ta

(
δ~̃uk+1, δ~̃uk+1

)
− 4∆tb

(
δũk+1, δpk

)
+ 4∆taΓ

(
δσ~uk, δ~̃uk+1

)
+ 4∆tC

(
δσuk, ũk+1, δũk+1

)
− 4∆tC

(
σuk−1, δũk+1, δũk+1

)
= 0.(45)

Using the identity

2
(
ãk+1, 3ãk+1 − 4ak + ak−1

)
=3
(
|ãk+1|2 − |ak+1|2 + |ãk+1 − ak+1|2

)
+
(
|ak+1|2 − |ak|2

)
+
(
|σak+1|2 − |σak|2

)
+ |δ2ak+1|2 + 2

(
ãk+1 − ak+1, 3ak+1 − 4ak + ak−1

)
,

setting ak = δ~uk and recalling the following result in [66, 72](
δuk+1 − δũk+1, 3δuk+1 − 4δuk + δuk−1

)
= 0(46)

yields

3
(
‖δ~̃uk+1‖20 − ‖δ~uk+1‖20 + ‖δ~̃uk+1 − δ~uk+1‖20

)
+
(
‖δ~uk+1‖20 − ‖δ~uk‖20

)
+
(
‖σ~uk+1‖20 − ‖σ~uk‖20

)
+ ‖δ2~uk+1‖20

+4Ca∆t‖∇δ~̃uk+1‖20 − 4∆tb
(
δ~̃uk+1, δpk

)
= −4∆taΓ

(
δσ~uk, δ~̃uk+1

)
.(47)

Similarly, using the Young inequality

a1/2b1/2c ≤ ε

8
a2 +

1

2ε3
b2 +

ε

2
c2,∀ε > 0,(48)

we can obtain

aΓ

(
δσ~uk, δ~̃uk+1

)
= aΓ

(
σδ~uk, δ~̃uk+1

)
≤Cct‖σδ~uk‖Γ‖δ~̃uk+1‖Γ
≤CctC2

tr‖σδ~uk‖
1/2
0 ‖∇σδ~uk‖

1/2
0 ‖∇δ~̃uk+1‖0

≤CctC2
tr‖σδ~uk‖

1/2
0

(√
2‖∇δ~uk‖1/20 + ‖∇δ~uk−1‖1/20

)
‖∇δ~̃uk+1‖0

=CctC
2
tr (I1 + I2) .



860 M. ZHAO, J. GAO, M. MAHBUB, AND D. CHEN

Noting that

σδ~uk = δ~uk + δ2~uk,

and

I1 ≤
ε

2
‖∇δ~̃uk+1‖20 +

ε

2
‖∇δ~uk‖20 +

1

2ε3
(
‖δ~uk‖20 + ‖δ2~uk‖20

)
,

I2 ≤
ε

2
‖∇δ~̃uk+1‖20 +

ε

8
‖∇δ~uk−1‖20 +

1

2ε3
(
‖δ~uk‖20 + ‖δ2~uk‖20

)
,

yields

aΓ

(
δσ~uk, δ~̃uk+1

)
≤CctC2

tr

(
ε‖∇δ~̃uk+1‖20 +

ε

2
‖∇δ~uk‖20

+
ε

8
‖∇δ~uk−1‖20 +

1

ε3
(
‖δ~uk‖20 + ‖δ2~uk‖20

))
.(49)

Also, setting ε = Ca
8C2

trCct
gives

4∆taΓ

(
δσ~uk, δ~̃uk+1

)
≤Ca∆t

2
‖∇δ~̃uk+1‖20 +

Ca∆t

4
‖∇δ~uk‖20

+
Ca∆t

16
‖∇δ~uk−1‖20 + 16α∆t

(
‖δ~uk‖20 + ‖δ2~uk‖20

)
.(50)

Choosing χ < Ca/4dµ, and using

‖divδũk+1‖0 ≤
√
d‖∇δũk+1‖0,(51)

we have

2χµ‖divδũk+1‖20 ≤
Ca
2
‖∇δũk+1‖20 ≤

Ca
2
‖∇δ~̃uk+1‖20.(52)

Moreover,

C
(
δσuk, ũk+1, δũk+1

)
≤ C0‖∇δσuk‖0‖∇ũk+1‖0‖∇δũk+1‖0
≤ C0

(
2‖∇δuk‖0 + ‖∇δuk−1‖0

)
‖∇ũk+1‖0‖∇δũk+1‖0

≤ C0

8

(
2‖∇δuk‖0 + ‖∇δuk−1‖0

)
‖∇δũk+1‖0

≤ Ca
8
‖∇δũk+1‖20 +

Ca
4
‖∇δuk‖20 +

Ca
16
‖∇δuk−1‖20.(53)

Using (44), observing that the bilinear form 4∆tb
(
δũk+1, δpk

)
and 2∆tχ‖divδũk+1‖20

are absorbed, the bounds (53) of the trilinear term, and adding the term Ca∆t
8 ‖∇δ~u

k‖20
for both side of the inequality yields

3
(
‖δ~̃uk+1‖20 − ‖δ~uk+1‖20 + ‖δ~̃uk+1 − δ~uk+1‖20

)
+
(
‖δ~uk+1‖20 − ‖δ~uk‖20

)
+
(
‖σ~uk+1‖20 − ‖σ~uk‖20

)
+ ‖δ2~uk+1‖20 + 3‖δuk+1‖20 +

4

3
∆t2‖∇zk+1‖20 + 2χµ∆t‖divũk+1‖20

+
5Ca∆t

2
‖∇δ~̃uk+1‖20 +

Ca∆t

8
‖∇δ~uk‖20

≤3‖δũk+1‖20 +
4

3
∆t2‖∇zk‖20 + 2χµ∆t‖divũk‖20

+
5Ca∆t

8
‖∇δ~uk‖20 +

Ca∆t

8
‖∇δ~uk−1‖20

+ 16α∆t
(
‖δ~uk‖20 + ‖δ2~uk‖20

)
.(54)
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Then, using a simple derivation, discarding the form 3‖δ~̃uk+1 − δ~uk+1‖20, we have

‖δ~uk+1‖20 + ‖σ~uk+1‖20 +
4

3
∆t2‖∇zk+1‖20 + 2χµ∆t‖divũk+1‖20

+ Ca∆t‖∇δ~̃uk+1‖20 +
Ca∆t

8
‖∇δ~uk‖20 + ‖δ2~uk+1‖20

≤‖δ~uk‖20 + ‖σ~uk‖20 +
4

3
∆t2‖∇zk‖20 + 2χµ∆t‖divũk‖20 + Ca∆t‖∇δ~uk‖20

+
Ca∆t

8
‖∇δ~uk−1‖20 + 16α∆t

(
‖δ~uk‖20 + ‖δ2~uk‖20

)
which implies

‖δ~uk+1‖20 + ‖σ~uk+1‖20 +
4

3
∆t2‖∇zk+1‖20 + 2χµ∆t‖divũk+1‖20

+ Ca∆t‖∇δ~̃uk+1‖20 +
Ca∆t

8
‖∇δ~uk‖20 + ‖δ2~uk+1‖20

≤(1 + 16α∆t)‖δ~uk‖20 + ‖σ~uk‖20 +
4

3
∆t2‖∇zk‖20 + 2χµ∆t‖divũk‖20

+ Ca∆t‖∇δ~uk‖20 +
Ca∆t

8
‖∇δ~uk−1‖20 + ‖δ2~uk‖20.

Thus, the proof is proved. �
To prove the long time stability of the BDF2 rotational pressure-correction

method, we utilize the G-stability framework as in [46]. For the BDF2, the positive
definite G-matrixs (

1
2 −1
−1 5

2

)
and the associated norms can be obtained as

|~U|2G = (~U, G~U), ~U ∈ [L2(Ω)]d.

Also, we apply the G matrix to functions belonging to X: for any ~U ∈ X
2
, define

|~u|2G = (~u, G~u). Then, for any ~ui ∈ X, i = k + 1, k, k − 1 [73] of the BDF2,〈〈
D2
t ~̃u

k+1, ~̃uk+1
〉〉

=
1

2
(| ~̃Uk+1|2G − |~Uk|2G) +

1

4
‖δ2~̃uk+1‖2S(55)

where ~̃Uk+1 = [~̃uk+1, ~uk]T and ~Uk = [~uk, ~uk−1]T .
Moreover, the G-norm and L2-norm, and ‖ · ‖S and ‖ · ‖0 are equivalent in

the sense that |~U|G ∼ ‖~U‖0 and ‖δ2~̃uk+1‖S ∼ ‖δ2~̃uk+1‖0 without regards to the
positive constants.

Theorem 4.7. (Long time stability) Assume that the time-step restriction
8α∆t < 1 is satisfied. Then, the solution to (39)-(43) is uniformly bounded for
all time.

Proof. Taking the operator δ on system (39), substituting the test function

~v = 4∆tδ~̃uk+1 and applying the identity (a − b, a) = a2 − b2 + (a − b)2 to obtain
the following control of the time increments of the errors

2|δ ~̃Uk+1|2G − 2|δ ~Uk|2G + ‖δ3~̃uk+1‖2S + 4Ca∆t‖∇δ~̃uk+1‖20

− 4∆tb
(
δũk+1, δpk

)
+ 4∆taΓ

(
δ~uk, δ~̃uk+1

)
+ 4∆tC

(
δσuk, ũk+1, δũk+1

)
− 4∆tC

(
σuk−1, δũk+1, δũk+1

)
= 0.(56)
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Choosing χ < Ca/16dµ, and the estimate

‖divδũk+1‖0 ≤
√
d‖∇δũk+1‖0,(57)

we have

2χµ‖divδũk+1‖20 ≤
Ca
8
‖∇δũk+1‖20 ≤

Ca
8
‖∇δ~̃uk+1‖20.(58)

Recalling the equivalence between ‖ · ‖0 and ‖ · ‖S , using the Young inequality

a1/2b1/2c ≤ a2

8ε3 + εb2

2 + εa2

2 with ε = Ca
8CctC2

tr
, and noticing

aΓ

(
δ~uk+1, δ~uk+1

)
= 0,

yields

4∆taΓ

(
δσ~uk, δ~̃uk+1

)
=4∆taΓ

(
σδ~uk − δ~̃uk+1, δ~̃uk+1

)
=− 4∆taΓ

(
δ3~̃uk+1, δ~̃uk+1

)
≤4Cct∆t‖δ3~̃uk+1‖Γ‖δ~̃uk+1‖Γ
≤4CctC

2
tr∆t‖δ3~̃uk+1‖1/20 ‖∇δ3~uk+1‖1/20 ‖∇δ~̃uk+1‖0

≤4CctC
2
tr∆t‖δ3~̃uk+1‖1/2S

(
‖∇δ~̃uk+1‖1/20

+
√

2‖∇δ~uk‖1/20 + ‖∇δ~uk−1‖1/20

)
‖∇δ~̃uk+1‖0

≤Ca∆t‖∇δ~̃uk+1‖20 + Ca∆t‖∇δ~uk‖20 +
Ca∆t

4
‖∇δ~uk−1‖20 + 8α∆t‖δ3~̃uk+1‖2S .

Using (58), the bounds (53) of the trilinear term, and noting that the bilinear term
2∆tb

(
δũk+1, δpk

)
and ∆tχ‖divδũk+1‖20 are absorbed, yields

2|δ ~̃Uk+1|2G + (1− 8α∆t)‖δ3~̃uk+1‖2S +
13Ca∆t

8
‖∇δ~̃uk+1‖20

+ 3‖δuk+1‖20 +
4∆t2

3
‖∇zk+1‖20 + 2χµ∆t‖divũk+1‖20

≤2|δ ~Uk|2G +
5Ca

4
∆t‖∇δ~uk‖20 +

5Ca∆t

16
‖∇δ~uk−1‖20

+ 3‖δũk+1‖20 +
4∆t2

3
‖∇zk‖20 + 2χµ∆t‖divũk‖20.(59)

Setting 8α∆t < 1, discarding ‖δ3~̃uk+1‖2S , and adding 5Ca∆t
16 ‖∇δ~u

k‖20 to both side
of the above inequality, implies

2|δ ~̃Uk+1|2G +
13Ca∆t

8
‖∇δ~̃uk+1‖20 +

5Ca∆t

16
‖∇δ~uk‖20

+ 3‖δuk+1‖20 +
4∆t2

3
‖∇zk+1‖20 + 2χµ∆t‖divũk+1‖20

≤2|δ ~Uk|2G +
25Ca∆t

16
‖∇δ~uk‖20 +

5Ca∆t

16
‖∇δ~uk−1‖20

+ 3‖δũk+1‖20 +
4∆t2

3
‖∇zk‖20 + 2χµ∆t‖divũk‖20.(60)

Hence, the theorem is proved. �
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5. Fully discretized numerical schemes

In this section, we aim to provide the first order and second order fully discretized
rotational pressure-correction method for the coupled NSD system.

We assume that the subdivisions of Ωf and Ωp are Tf and Tp, respectively. The
elements of each of two subdivisions exactly match along Γ [74, 75]. Based on
two subdivisions Tf and Tp, the finite element spaces Xh

f ⊂ Xf , Xh
p ⊂ Xp and

Mh
f ⊂Mf with the mesh scale h can be defined.

5.1. The fully discrete BE.
The standard finite element approximation of (1)-(10) are defined by using the

following fully discrete BE rotational pressure-correction method: Given ∆t > 0,
~f ∈ [H−1(Ωi)]

d, find ~̃uk+1
h ≡ (ũk+1

h , φk+1
h ) ∈ X

h
such that〈〈

Dt
1~̃u

k+1
h

∆t
, ~vh

〉〉
+ a

(
~̃uk+1
h , ~vh

)
− b

(
vh, p

k
h

)
+aΓ

(
~ukh, ~vh

)
+ C

(
ukh, ũ

k+1
h ,vh

)
=
(
~fk+1
h , ~vh

)
, ∀~v ∈ X

h
.(61)

Find
(
uk+1
h , zk+1

h

)
∈ Xh

f ×Mh
f such that ∀ (vh, qh) ∈ Xh

f ×Mh
f(

uk+1
h − ũk+1

h

∆t
,∇qh

)
+
(
∇zk+1

h ,∇qh
)

= 0, in Ωf ,(62)

b
(
uk+1
h , qh

)
= 0, in Ωf ,(63)

uk+1
h · n|∂Ωf\Γ = 0, and zk+1

h |Γ = 0.(64)

Furthermore, update the pressure by

pk+1
h = pkh + zk+1

h − χµdivũk+1
h .(65)

Here, Dt
1~̃u

k+1
h = ~̃uk+1

h − ~ukh denotes the difference operator.

5.2. The fully discrete BDF2.
For the numerical treatment of time derivative term, we use the fully discrete

BDF2. The standard finite element approximation of (1)-(10) are defined using the

following rotational pressure-correction method: Given ∆t > 0, ~f ∈ [H−1(Ωi)]
d,

find ~̃uk+1
h ≡

(
ũk+1
h , φk+1

h

)
∈ X

h
such that〈〈

Dt
2~̃u

k+1
h

2∆t
, ~vh

〉〉
+ a

(
~̃uk+1
h , ~vh

)
− b

(
vh, p

k
h

)
+aΓ

(
σ~ukh, ~vh

)
+ C

(
σukh, ũ

k+1
h ,vh

)
=
(
~fk+1, ~vh

)
, ∀~vh ∈ X

h
.(66)

Find
(
uk+1
h , zk+1

h

)
∈ Xh

f ×Mh
f such that ∀ (vh, qh) ∈ Xh

f ×Mh
f(

3uk+1
h − 3ũk+1

h

2∆t
,∇qh

)
+
(
∇zk+1

h ,∇qh
)

= 0, in Ωf ,(67)

b
(
uk+1
h , qh

)
= 0, in Ωf ,(68)

uk+1
h · n|∂Ωf\Γ = 0, and zk+1

h |Γ = 0.(69)

Furthermore, update the pressure by

pk+1
h = pkh + zk+1

h − χµdivũk+1
h .(70)
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Here, Dt
2~̃u

k+1
h = 3~̃uk+1

h −4~ukh+~uk−1
h denotes the second order difference operator

for temporal discretization.

Remark 5.1. The quantity (u0
h, φ

0
h, p

0
h) ∈ Xh

f ×Xh
p ×Mh

f is set to be a suitable ap-
proximation of the initial data of the problem. Then we compute an approximation
of the exact solution at time t = ∆t, say (u1

h, φ
1
h, p

1
h) ∈ Xh

f × Xh
p ×Mh

f by using
the corresponding fully discrete BE.

Remark 5.2. Equations (62)-(64) and (67)-(69) can be computed by the following:

Find (uk+1
h , zk+1

h ) ∈ Xh
f ×Mh

f such that ∀(vh, qh) ∈ Xh
f ×Mh

f

(∇zk+1
h ,∇qh) = −2 + θ

2∆t
(uk+1
h − ũk+1

h , qh), in Ωf ,(71)

uk+1
h · n|∂Ωf\Γ = 0 and zk+1

h |Γ = 0.(72)

For θ = 0, we have the BE. We consider the case of the BDF2 where θ = 1.

Remark 5.3. These two schemes are, in fact, time-dependent version domain de-
composition, which has first-order or second-order accuracy without the incom-
pressibility constraint of the incompressible Naiver-Stokes system. In particular
especially, the incompressible flow is decoupled by two separate steps to obtain the
velocity and pressure, respectively. Therefore, computation load is greatly reduced
for the whole coupled large scale system.

6. Numerical examples

In this section, we perform several numerical tests to validate proposed rota-
tional pressure-correction projection schemes. In the first numerical example, we
present the errors between the analytical solution and approximate solution for
the backward-Euler scheme RPC-BE, and second-order rotational pressure-correction
projection backward difference formula RPC-BDF2, respectively by taking the exact
solution of the model problem. Moreover, several numerical experiments are per-
formed to show the flow speed, streamlines, and pressure contour by constructing a
geometrical set-up with the reservoir domain and pipe flow. On the other hand, we
also study the long-time stability over the long time interval to show the long-time
behavior of the proposed algorithms. To discretize the NSD system, we utilize the
well-known MINI elements pair P1b − P1 for the Navier-Stokes equations to guar-
antee the stability of the system. Besides, linear Lagrangian element P1 is used to
discretize the Darcy equations. Furthermore, Hood-Taylor element pair P2 − P1 is
considered for the Navier-Stokes equation and quadratic elements P2 is considered
for the matrix pressure to show the performance with the higher order element of
the proposed numerical methods. The code is implemented by using the software
package FreeFEM++ [77]

For comparison purposes, the following error indicators will be applied to com-
pute the absolute error between the exact solution and approximate solutions re-
spective part of the domain Ωf and Ωp:

ekh,ũ = u(tk)− ũk, ekh,u = u(tk)− uk, ekh,p = p(tk)− pk, ekh,φ = φ(tk)− φk.

In all the numerical tests, we set physical parameters ν, g, α = 1.0 and z = 0.

6.1. Approximate Accuracy.
To conduct the analytical solution test, the global domain Ω is divided into two

subdomains with free fluid flow region Ωf = [0, 1] × [1, 2] and the porous media
region Ωp = [0, 1]× [0, 1] which is separated by a common interface Γ = (0, 1)×{1}.
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Table 1. Approximate accuracy of varying mesh scales with fixed
time step size ∆t = 0.001 for RPC-BE at T = 0.5.

1/h ||∇ek+1
h,ũ
||0 Rate ||∇ek+1

h,u
||0 Rate ||ek+1

h,p
||0 Rate ||∇ek+1

h,φ
||0 Rate

4 1.29424 - 1.29274 - 0.65610 - 1.49941 -
8 0.64570 1.003 0.64454 1.003 0.21944 1.580 0.78162 0.939
16 0.32177 1.004 0.32154 1.003 0.07884 1.476 0.39529 0.983
32 0.16059 1.002 0.16075 1.000 0.03071 1.360 0.19823 0.995
64 0.08034 0.999 0.08089 0.990 0.01435 1.097 0.09920 0.998

Table 2. Approximate accuracy of varying mesh scales with fixed
time step size ∆t = 0.001 for RPC-BDF2 at T = 0.5.

1/h ||∇ek+1
h,ũ
||0 Rate ||∇ek+1

h,u
||0 Rate ||ek+1

h,p
||0 Rate ||∇ek+1

h,φ
||0 Rate

4 1.29372 - 1.29269 - 0.65151 - 1.49947 -
8 0.64624 0.805 0.64511 1.011 0.23013 1.509 0.78165 0.940
16 0.32202 1.004 0.32172 1.004 0.08372 1.458 0.39531 0.983
32 0.16064 1.003 0.16074 1.001 0.03111 1.427 0.19824 0.996
64 0.08034 0.999 0.08075 0.993 0.01340 1.215 0.09919 0.999

The following exact solution of the model problem satisfies the interface conditions
(6)-(8):

~u =

[ (
x2(y − 1)2 + y

)
cos(t)(

−2/3x(y − 1)3 + 2− πsin(πx)
)
cos(t)

]
,

p = (2− πsin(πx)) sin(0.5πy)cos(t),

φ = (2− πsin(πx)) (1− y − cos(πy)) cos(t).

The initial conditions, boundary conditions, and the forcing terms f and f follow
the solution with S = 1.

Tables 1-2, illustrates the errors between the approximate solution and exact
solutions of the RPC-BE and RPC-BDF2 respectively, with a fixed time step ∆t =
0.001 and varying mesh size h = 1/4, 1/8, 1/16, /32, 1/64. The tables shows that,
we achieve the optimal convergence order with O(h) for ũh, uh and φh in H1-norm
and ph in L2-norm in space for both schemes. On the other hand, to confirm
the theoretical prediction with time step size ∆t, for RPC-BE, we set h = O(∆t)
for ũh, uh and φh in H1-norm and ph in L2-norm. Besides, we consider h =
O(∆t2) for ũh, uh and φh in H1-norm and ph in L2-norm to check the convergence
order of the algorithm RPC-BDF2. Tables 3-4 presents that first order in time for
the rotational pressure-correction projection backward-Euler scheme RPC-BE and
second order for rotational pressure-correction projection backward finite difference
scheme RPC-BDF2, which completely agrees with the optimal predicated rates.

Furthermore, we listed the errors in Table 5 of the RPC-BES for the P2−P1−P2

finite element triple with the fixed time step size ∆t = 0.001, varying mesh size
h = 1/4, 1/8, 1/16, /32, 1/64 and final time T = 0.5. One can clearly observe that
we achieve almost second-order accuracy for ũh, uh and φh in H1-norm. However,
we lose approximate accuracy in the last step of the computations. In Table 5, due
to the mismatch between the time step and the space step, the accuracy of the
calculation results began to lose with the decrease of the space step when the time
step was fixed. To improve the convergence order, we set ∆t = h2 in Table 6 and
obtain the second order accuracy O(h2) for ũh, uh and φh in H1-norm and ph in
L2-norm.

Finally, the analytical solution test is carried out, and the whole region Ω is
divided into two sub-regions. Free fluid flowing area Ωf = [0, 1] × [0, 1] × [1, 2]
and porous media region Ωf = [0, 1]× [0, 1]× [0, 1] by public interface Γ = (0, 1)×
(0, 1)×{1}. The following exact solutions of the model problem satisfy the interface
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Table 3. Approximate accuracy of time step size for RPC-BE with
h = O(∆t) at T = 0.5.

1/∆t 1/h = 2/∆t ||∇ek+1
h,ũ
||0 Rate ||∇ek+1

h,u
||0 Rate ||ek+1

h,p
||0 Rate ||∇ek+1

h,φ
||0 Rate

4 8 0.80019 - 1.07930 - 0.45027 - 0.78341 -
8 16 0.41687 0.940 0.65730 0.715 0.25187 0.838 0.39746 0.978
16 32 0.17821 1.226 0.22255 1.562 0.07747 1.700 0.19861 1.000
32 64 0.08436 1.078 0.09428 1.238 0.03383 1.195 0.09934 0.999
64 128 0.04115 1.035 0.04439 1.086 0.01429 1.242 0.04966 1.000

Table 4. Approximate accuracy of time step size for RPC-BDF2

with h = O(∆t2) at T = 0.5.

1/∆t 1/h = 16/∆t2 ||∇ek+1
h,ũ
||0 Rate ||∇ek+1

h,u
||0 Rate ||ek+1

h,p
||0 Rate ||∇ek+1

h,φ
||0 Rate

8 4 1.34178 - 0.65730 - 0.51856 2.389 1.50209 -
16 16 0.34690 1.994 0.22255 1.951 0.09895 2.389 0.39534 1.925
32 64 0.09097 1.989 0.09428 1.931 0.02684 1.882 0.09920 1.994
64 256 0.02558 1.984 0.04439 1.830 0.00627 2.096 0.02483 1.998

Table 5. Approximate accuracy of varying mesh scales with fixed
time step size ∆t = 0.001 for RPC-BE at T = 0.5 by using P2 −
P1 − P2 finite elements.

1/h ||∇ek+1
h,ũ
||0 Rate ||∇ek+1

h,u
||0 Rate ||ek+1

h,p
||0 Rate ||∇ek+1

h,φ
||0 Rate

4 0.14123 - 0.14121 - 0.04647 - 0.27693 -
8 0.03550 1.991 0.03550 2.008 0.01110 2.065 0.07201 1.943
16 0.00895 1.988 0.00895 1.988 0.00302 1.875 0.01823 1.981
32 0.00233 1.936 0.00234 1.931 0.00122 1.302 0.00458 1.992
64 0.00080 1.535 0.00081 1.517 0.00091 0.421 0.00115 1.982

Table 6. Approximate accuracy of time step size for RPC-BE with
h = O(∆t2) at T = 0.5 by using P2 − P1 − P2 finite elements.

1/h 1/∆t = 1/h2 ||∇ek+1
h,ũ
||0 Rate ||∇ek+1

h,u
||0 Rate ||ek+1

h,p
||0 Rate ||∇ek+1

h,φ
||0 Rate

4 16 0.192146 - 0.198534 - 0.162541 - 0.277336 -
8 64 0.044445 2.112 0.043909 2.176 0.038446 2.079 0.072064 1.944
16 256 0.009297 2.257 0.009344 2.232 0.004698 3.023 0.018247 1.981
32 1024 0.002332 1.994 0.002335 2.000 0.001207 1.959 0.004581 1.993
64 4096 0.000573 2.023 0.000573 2.025 0.000273 2.142 0.001147 1.997

conditions (6)-(8):

~u =

 (
2x sin (xy) + y

(
x2 + y2 − 8

)
cos (xy)

)
e−t(

2y sin (xy) + x
(
x2 + y2 − 8

)
cos (xy)

)
e−t

1 +
((
x2 + y2

) (
x2 + y2 − 8

)
sin (xy)− 4 sin (xy)− 8xy cos (xy)

)
ze−t

 ,
p = (−16xy cos (xy)

+
(
x2 + y2 + z2 − 8

) (
2x2 + 2y2 + 2z2 − 1

)
sin (xy)− 8 sin (xy)

)
e−t,

φ = −z −
(
x2 + y2 − 8

)
e−t sin (xy) cos (z) .

The initial conditions, boundary conditions, and the forcing terms f and f follow
the solution with S = 1.

For convenience, we are defined as follows

ρk,v =

∥∥vh,k − vh,k/2∥∥
0∥∥vh,k/2 − vh,k/4∥∥
0

,

where v = ~u, p, φ. In particular, when ρk,v ≈ 4, the corresponding convergence
order is 2. Thus, let h = 1/10,∆t = 1/40, 1/80, 1/160, 1/320 to calculate the time
convergence order of model (2.1)-(2.5). It can be seen from Table 7 that for BE
schemes, the optimal convergence order of ~u, p, φ are O(∆t) in L2-norm. Meanwhile,
it can be seen from Table 8 that for BDF2 schemes, the optimal convergence order
of ~u, p, φ are O(∆t2) in L2-norm.
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Table 7. Approximate accuracy of time step size for RPC-BE with
h = 1/10 by using P2 − P1 − P2 finite elements.

1/∆t ‖~uh,k − ~uh,k/2‖0 Rate ‖ph,k − ph,k/2‖0 Rate ‖φh,k − φh,k/2‖0 Rate
40 9.01254e-04 - 0.0747446 - 2.38021e-03 -
80 4.44203e-04 1.02071 0.0364006 1.03801 1.16908e-03 1.02571
160 2.20507e-04 1.01039 0.0179628 1.01895 5.79351e-04 1.01287
320 1.09856e-04 1.00521 0.0089227 1.00946 2.88386e-04 1.00643

Table 8. Approximate accuracy of time step size for RPC-BDF2

with h = 1/10,∆t = 1/40, 1/80, 1/160, 1/320 at T = 0.5 by using
P2 − P1 − P2 finite elements.

1/∆t ‖~uh,k − ~uh,k/2‖0 Rate ‖ph,k − ph,k/2‖0 Rate ‖φh,k − φh,k/2‖0 Rate
40 9.80649e-06 - 0.000555998 - 2.32204e-05 -
80 2.41939e-06 2.01909 0.000137021 2.02069 5.72404e-06 2.02029
160 6.00865e-07 2.00953 3.40102e-05 2.01036 1.42099e-06 2.01014
320 1.49721e-07 2.00476 8.47198e-06 2.00519 3.54003e-07 2.00507

6.2. Vertical Production Wellbore Attached with a Reservoir.
In this numerical experiments, we construct a simplified computational domain

with the reservoir flow, which represents the porous media region Ωp governed by
the Darcy’s law and the vertical production wellbore Ωf describes the conduit region
modeled by the Navier-Stokes equations. Several numerical tests are conducted to
show the streamlines, magnitudes, and pressure contour by applying the proposed
RPC-BE and RPC-BDF2, respectively. On the other hand, we compare the computa-
tional results of the proposed methods with the traditional backward-Euler scheme
(T-BE).

Figure 2 presents the computational domain consists of a porous medium Ωp
and pipe region Ωf . On the interface Γ = Γ1 ∪Γ2 ∪Γ3 between the porous medium
region and pipe region, we utilize the corresponding interface conditions (6)-(8).
No-slip boundary condition u = 0 is considered on the boundaries ∂Ωf\Γ of the
vertical production wellbore. Homogeneous Neumann boundary condition (−pI +
2µD(u)) ·nf = 0 is imposed on the top of the vertical well for the free outflow. The
porous media flow velocity is computed by setting ~up = −K∇φ. On the boundaries
of the porous medium ∂Ωp\Γ, we use constant inflow boundary condition by setting
φ = 102.

We set the parameters value in the following way K = kI, (k = 0.1), and S =
10−5. The body fores f and f are taken as 0. The Navier-Stokes pressure p = 0 on
all the boundaries of ∂Ωf . The mesh size, time step size and final time are assumed
as hmax = 0.025,∆t = 0.001 and T = 5.0, respectively.

Figure 3, illustrate the flow speed and streamlines around a vertical production
wellbore attached with a reservoir for the T-BE, RPC-BE and RPC-BDF2, schemes with
final time T = 5.0 by using P1b−P1−P1 finite element triple. The basic properties
of fluid and mass transfer in natural fractured reservoirs indicate that the high
pressure in the porous media region pushes the fluid to the production wellbore. As
expected, flowlines show flow from the reservoir to the vertical production wellbore.
In addition, red indicates the highest flow rate in the wellbore and blue indicates
the lowest flow rate in the reservoir. On the other hand, Figure 4 shows a higher
pressure in the porous media area, which gradually decreases towards the wellbore.

Figure 5, presents the magnitudes and streamlines for the proposed numerical
methods T-BE, RPC-BE and RPC-BDF2, respectively by using P2 − P1 − P2 finite
element triples. Obviously, we can see that the left and right figures are similar to
Figure 3.
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Figure 2. Left: the computational domain with free flow region
Ωf and porous media flow region Ωp; Right: the illustration of the
computational mesh.
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Figure 3. The flow speed and streamlines around a vertical pro-
duction wellbore attatched with a reservoir for φ = 102 on ∂Ωp \Γ,
∆t = 0.001 and T = 5.0. Left: T-BE; Middle: RPC-BE; Right:
RPC-BDF2.
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Figure 4. Representation of the pressure in the reservoir for φ =
102 on ∂Ωp \ Γ, ∆t = 0.001, and T = 5.0. Left: T-BE; Middle:
RPC-BE; Right: RPC-BDF2.

Figure 6, shows that less pressure on the boundary of the reservoir φ = 10.0
supplies smaller amount of fluid, which decreases the magnitudes of the fluid flow
in the vertical production wellbore.

In Figure 7-8, we show the unconditional stability of the proposed finite elemen-
t methods by fixing the temporal step sizes ∆t = 0.001 with varying mesh sizes
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Figure 5. The flow speed and streamlines around a vertical pro-
duction wellbore attatched with a reservoir for φ = 102 on ∂Ωp \Γ,
∆t = 0.001 and T = 5.0 using P2 − P1 − P2 finite elements. Left:
T-BE; Middle: RPC-BE; Right: RPC-BDF2.
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Figure 6. The flow speed and streamlines around a vertical pro-
duction wellbore attatched with a reservoir for φ = 10.0 on ∂Ωp\Γ,
∆t = 0.001 and T = 5.0. Left: T-BE; Middle: RPC-BE; Right:
RPC-BDF2.
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Figure 7. The flow speed and streamlines around a vertical pro-
duction wellbore attatched with a reservoir of the proposed al-
gorithm RPC− BE for φ = 102 on ∂Ωp \ Γ, ∆t = 0.001 and
T = 5.0 with different mesh scales. Left: hmax = 0.01; Middle:
hmax = 0.075; Right: hmax = 0.05.
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Figure 8. The flow speed and streamlines around a vertical pro-
duction wellbore attatched with a reservoir of the proposed al-
gorithm RPC-BDF2 for φ = 102 on ∂Ωp \ Γ, ∆t = 0.001 and
T = 5.0 with different mesh scales. Left: hmax = 0.01; Middle:
hmax = 0.075; Right: hmax = 0.05.

0 2 4 6 8 10
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

t

||u
h||2 L2 (Ω

f)+g
S

||φ
h||2 L2 (Ω

p)

 

 
h

max
=0.1

h
max

=0.075

h
max

=0.05

h
max

=0.025

0 2 4 6 8 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

t

||u
h||2 L2 (Ω

f)+g
S

||φ
h||2 L2 (Ω

p)

 

 
h

max
=0.1

h
max

=0.075

h
max

=0.05

h
max

=0.025

Figure 9. ‘Energy versus Time’ on the time step levels with dif-
ferent mesh sclaes. Left: RPC-BE; Right: RPC-BDF2.

hmax = 0.1, 0.075 and 0.05. Figure 9 presents the long-time stability of the pro-
posed T-BE, RPC-BE and RPC-BDF2. Herein we illustrate the energy ‖uh‖L2(Ωf ) +

gS‖ψh‖2L(Ωp)
at a time step level ∆t = 0.001 with the final time T = 10.0 by

gradually decreasing mesh sizes hmax = 0.1, 0.075, 0.05, and 0.025, respectively.
The numerical results demonstrate that the stability of the proposed methods is
independent of the varying mesh sizes and presents the long-time behavior as well.

Theorem 4.7 has a time-step restriction, where we set up the experiment shown
in Figure 10. We simulated the effects of different permeability and time steps on
the experimental results. In Figure 11, we show the velocity within the calculated
region at different permeability. With the increase of permeability, the fluid velocity
in the calculated region increases gradually. In Figure 12, we show the long-time
behavior of the proposed finite element methods by varying temporal step sizes
∆t = 0.001, 0.05 and 0.1. As the time step increases, the results begin to become
unstable. A time-step restriction is necessary for the long-time stability of the
system (2.1)-(2.10).

6.3. 3D horizontal wellbore with open hole.
In order to simulate the horizontal wellbore with open hole. Assume that Ωf =

[0.1, 0.4] × [0.2, 0.3] × [0, 0.5] is the free flow region and Ωp = [0, 0.5]3 \ Ωf is the
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Figure 10. Left: the computational domain with free flow region
Ωf and porous media flow region Ωp; Right: the illustration of the
computational mesh.

Figure 11. The flow speed and streamlines around a produc-
tion wellbore attatched with a reservoir of the proposed algorithm
RPC-BDF2 for φ = 104 on ∂Ωp \Γ, ∆t = 0.001 and T = 5.0 with d-
ifferent permeability k. Left: k = 10−12; Middle: k = 10−8; Right:
k = 10−4.

Figure 12. The flow speed and streamlines around a produc-
tion wellbore attatched with a reservoir of the proposed algorithm
RPC-BDF2 for φ = 104 on ∂Ωp \Γ and T = 20.0 with different time
steps ∆t. Left: ∆t = 0.001; Middle: ∆t = 0.05; Right: ∆t = 0.1.
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Figure 13. Model region and finite element mesh parting

Figure 14. The flow speed and streamlines of the proposed algo-
rithm T-BE(CPU times=101916s). Left: 3D velocity view; Right:
2D cross section velocity streamline.

Figure 15. The flow speed and streamlines around wellbore of
the proposed algorithm T-BE. Left: 3D velocity view; Right: 2D
cross section velocity streamline.

porous media region. The interface Γ = Ωf ∩ Ωp = [0.1, 0.4] × {0.2} × [0, 0.5] ∪
{0.4} × [0.2, 0.3] × [0, 0.5] ∪ [0.1, 0.4] × {0.3} × [0, 0.5] ∪ {0.1} × [0.2, 0.3] × [0, 0.5]
(see Figure 13). In order to obtain the expected results, the interface conditions of
this numerical experiment are still used by equations (2.5)-(2.7). In particular, the
following conditions are used on interface {0.4}×[0.2, 0.3]×[0, 0.5]: (−pI+2µD(u))·
nf = 0. No-slip boundary condition u = 0 is considered on the boundaries ∂Ωf\Γ of
the open hole. The porous media flow velocity is computed by setting up = −K∇φ.
On the boundaries of the porous medium ∂Ωp\Γ, we use constant inflow boundary
condition by setting φ = 102.
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Figure 16. The flow speed and streamlines in wellbore of the
proposed algorithm T-BE. Left: 3D velocity view; Right: 2D cross
section velocity streamline.

Figure 17. The flow speed and streamlines of the proposed algo-
rithm RPC-BE(CPU times=80323s). Left: 3D velocity view; Right:
2D cross section velocity streamline.

Figure 18. The flow speed and streamlines around wellbore of
the proposed algorithm RPC-BE. Left: 3D velocity view; Right: 2D
cross section velocity streamline.

The other parameters value of the model are considered as K = kI, (k = 0.01), S =
10−5,∆t = 0.001, T = 3, h = 50.

From the velocity diagram in Figure 14-19, it can be seen that the fluid in the
porous medium can directly enter the wellbore region (free flow region). The fluid
velocity increases as it enters the pipe. From the numerical results, the solution
results of RPC-BE method and T-BE method are consistent. In terms of computa-
tional efficiency, RPC-BE method is more efficient than T-BE method. These valid
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Figure 19. The flow speed and streamlines in wellbore of the
proposed algorithm RPC-BE. Left: 3D velocity view; Right: 2D
cross section velocity streamline.

numerical results illustrate the complex dynamic characteristics of the NSD model
and further confirm the feasibility of the proposed rotational pressure-correction
method.

7. Conclusion

In this article, the rotational pressure-correction scheme for the NSD system is
developed and analyzed. The main advantage of this projection method is that
it replaces incompressible conditions. The rotational pressure-correction scheme is
a special projection algorithm, which distributes the velocity and pressure in dif-
ferent equations. The main algorithm can be completed in two steps. The first
step is the viscous step. After the algorithm explicitly processes the pressure gra-
dient, the intermediate velocity can be obtained. The second step is the projection
step, which first projects the intermediate velocity onto a divergence-free space, and
then corrects the velocity and pressure. In this way, large-scale problems can be
transformed into small-scale problems, thus reducing the effort of equation solving.
The results of numerical experiments confirm the accuracy of the theoretical anal-
ysis, and we can see that the rotational pressure-correction schemes can improve
the computational efficiency. Finally, three numerical experiments also verify the
applicability of numerical method.
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