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A HIGH ORDER UNFITTED FINITE ELEMENT METHOD FOR

TIME-HARMONIC MAXWELL INTERFACE PROBLEMS

ZHIMING CHEN, KE LI, MAOHUI LYU, AND XUESHAUNG XIANG

Abstract. We propose a high order unfitted finite element method for solving time-harmonic

Maxwell interface problems. The unfitted finite element method is based on a mixed formulation
in the discontinuous Galerkin framework on a Cartesian mesh with possible hanging nodes. The

H2 regularity of the solution to Maxwell interface problems with C2 interfaces in each subdomain

is proved. Practical interface-resolving mesh conditions are introduced under which the hp inverse
estimates on three-dimensional curved domains are proved. Stability and hp a priori error estimate

of the unfitted finite element method are proved. Numerical results are included to illustrate the

performance of the method.

Key words. Maxwell interface problem, high order unfitted finite element method, hp a priori
error estimate.

1. Introduction

Let Ω ⊂ R3 be a bounded domain with a Lipschitz boundary Σ. We consider in
this paper the following time-harmonic Maxwell interface problem

∇× (µ−1∇×E)− k2εE = J , div (εE) = 0 in Ω,(1)

[[E × n]]Γ = 0, [[(µ−1∇×E)× n]]Γ = 0, [[εE · n]]Γ = 0 on Γ,(2)

E × n = g × n on Σ,(3)

where J ∈ L2(Ω) with divJ = 0 in Ω and g×n ∈H3/2(Σ). Here and throughout
the paper, for any Banach space X, we denote X = X3 and ‖ · ‖X both the norms
of X and X.

We assume the domain Ω is divided by a C2 interface Γ into two subdomains so
that Ω = Ω1 ∪ Γ ∪ Ω2 and Ω1 is strictly included in Ω. For simplicity, we assume
the relative permeability µ and the relative permittivity ε are piecewise constants
µ = µ1χΩ1

+µ2χΩ2
, ε = ε1χΩ1

+ ε2χΩ2
, where for i = 1, 2, χΩi is the characteristic

function of Ωi, and µi, εi are positive constants. k = ω
√
ε0µ0 is the wave number

of the vacuum with ω > 0 the angular frequency and µ0, ε0 the permeability and
permittivity of the vacuum. With this notation, J = ikµ0Ja with Ja being the
applied current density. We denote by n both the unit outer normal to Ω1 on Γ
and the unit outer normal to Ω on Σ. [[v]]Γ := v|Ω1

− v|Ω2
stands for the jump of a

function v across the interface Γ.
The existence and uniqueness of the weak solution to the problem (1)-(3) are

well studied in the literature (see, e.g., [32]). The singularity and regularity of
the solution with smooth µ, ε in polyhedral and smooth domains are considered
in [21, 23]. The singularity of the solution of the Maxwell interface problems with
polyhedral interfaces is studied in [22]. To the best of the authors’ knowledge, the
H2 interface regularity of the solution to the Maxwell interface problem with smooth
interfaces is missing in the literature. In this paper, we first prove the H2 regularity
of the solution to (1)-(3) in each subdomain Ω1,Ω2. Our proof is based on the
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H(curl)-coercive Maxwell equations which is different from the H(curl)∩H(div )-
coercive Maxwell equations used in [21, 22, 23]. This new regularity result will be
used in our finite element convergence analysis based on the Schatz argument in
dealing with the indefiniteness of the time-harmonic Maxwell equations.

There exists a large literature on finite element methods for solving the time-
harmonic Maxwell equations after the seminar work [45]. We refer to [32, 44] for the
study of the H(curl)-conforming h-methods, [25, 42] for the hp-methods, and [46,
36, 37] for the discontinuous Galerkin (DG) methods. The common assumptions in
these studies are that the domains are polyhedral and the material interfaces are
piecewise flat so that conforming tetrahedral or hexahedral meshes can be used.
Much less studies have been devoted to finite element methods solving Maxwell
equations on domains with curved boundary. We refer to [27, 33, 43] for body-
fitted finite element methods, [11] for the isogeometric analysis, and [15] for the
low order unfitted finite element method. We remark that the design of body-fitted
high-order finite element methods depends on nonlinear element transforms from
the reference element to the elements with curved boundary [6, 43]. It may be
challenging to satisfy the conditions on the nonlinear element transforms which
depend on the geometry of the interface or boundary in practical applications.

The original motivation of unfitted finite element methods in the DG framework
is to release the time-consuming work of constructing shape regular meshes for
domains with complex geometry. It turns out that the unfitted finite element
methods also provide a natural way to design high-order methods without resorting
to the nonlinear element transforms. Since the seminal work [31] for elliptic interface
problems, considerable progress of the unfitted finite element methods has been
made in the literature [13, 51, 39, 30, 4, 52, 38, 16]. The small cut cell problem,
that is, the intersection of the domain and the elements can be arbitrarily small or
anisotropic, can be solved by appropriate techniques of stabilization [13, 51, 39] or
merging small cut cells with surrounding large elements [30, 4, 12, 16]. We refer
to [16, 17] for further references and other approaches of unfitted finite element
methods.

In [16] an adaptive high-order unfitted finite element method in two dimension
is proposed for elliptic interface problems in which the hp a priori and a posteriori
error estimates are derived based on novel hp domain inverse estimates and the
concept of interface deviation. The interface deviation is a measure that quantifies
the resolution of the geometry by the mesh. In [17], for any C2 interface, a reliable
algorithm is constructed to merge small interface elements with their surrounding
elements to generate an induced mesh whose elements are large with respect to
both domains, which solves the small cut cell problem. It is also shown in [17] that
the exponential growth of the condition number of the stiffness matrix on the finite
element approximation order, which is observed in the literature (e.g., [48, 17]), can
be controlled by reducing the interface deviation. Therefore, arbitrarily high order
unfitted finite element methods on automatically generated Cartesian meshes for
solving elliptic interface problems can be achieved for arbitrarily shaped C2 smooth
interfaces.

The main purpose of this paper is to extend the high order unfitted finite el-
ement method for two-dimensional elliptic interface problems in [16] to solve the
time-harmonic Maxwell equations (1)-(3). We characterize and quantify the mesh
resolution of the geometry in two steps. We first introduce the concept of proper
intersection of the interface and boundary to the elements and the concept of large
element in three dimension, which allow us to show that each large element is a
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union of strongly shape regular polyhedrons in the sense that the polyhedron is a
union of shape regular tetrahedrons in the classical sense. Then we introduce the
concept of the interface deviation in three dimension and prove the hp inverse trace
estimate on curved domains which plays an important role in studying the unfitted
finite element method in this paper.

One of the key difficulties in the finite element convergence analysis for the
indefinite time-harmonic Maxwell equations is the discretization of the divergence
free condition div (εE) = 0. In the H(curl)-conforming finite element method, this
condition is implemented implicitly and the finite element convergence analysis
depends on the fact that any discrete divergence free finite element function can
be approximated by a continuous divergence free function (see, e.g., [32, 44]). This
property, which depends crucially on the construction of conforming edges elements,
unfortunately, is not available for unfitted finite element functions which can not be
conforming across the curved interface. To overcome the difficulty, we propose to
use the mixed formulation to explicitly enforce the discrete divergence free condition
and penalize the jump of the normal component of the discrete electric field in the
H1/2 norm, which implies to penalize div (εE) = 0 in the L2 norm, see Lemma 4.5
below. The stability and hp-error estimates are proved in the asymptotic range,
that is, sufficiently small mesh sizes.

The layout of the paper is as follows. In section 2 we introduce some notation and
prove the H2 regularity of the problem (1)-(3) in each subdomain Ω1, Ω2. In section
3 we introduce the unfitted finite element method for the time-harmonic Maxwell
equations. In section 4 we prove the stability and hp-a priori error estimate for our
unfitted finite element method. In section 5 we report some numerical results.

2. The Maxwell interface problem

We first recall some notation. For any Lipschitz domain D in R3 with boundary
∂D whose unit normal is denoted by n, the space H(curl;D) = {v ∈ L2(D) :
∇×v ∈ L2(D)} is a Hilbert space under the graph norm. For any v ∈H(curl;D),
its tangential trace is defined as γτ (v) = v ×n on ∂D. It is known that (see Buffa
et al. [10]) γτ : H(curl;D)→H−1/2(div ∂D; ∂D) is bounded and surjective, where

H−1/2(div ∂D; ∂D) = {λ ∈ Vπ(∂D)′ : div ∂D(λ) ∈H−1/2(∂D)}.

Here Vπ(∂D)′ is the dual space of Vπ(∂D) = {vT = n × v × n : v ∈ H1/2(∂D)}
and div ∂D : Vγ(∂D) → H−1/2(∂D) is the dual operator of the surface gradient

∇T : H1/2(∂D) → Vγ(∂D)′, where Vγ(∂D) = {v × n : v ∈ H1/2(∂D)}. It is

known that div ∂D(v×n) = (∇×v) ·n ∈H−1/2(∂D) for any v ∈H(curl;D). We
denote H0(curl;D) := {v ∈H(curl;D) : v × n = 0 on ∂D}.

The following two lemmas will be used in the proof of the H2 regularity up to
the interface of the solution to time-harmonic Maxwell equations.

Lemma 2.1. Let D be a bounded Lipschitz domain, F ∈ H1(D)′∩H0(curl;D)′,
and divF ∈ H−1(D). Then there exists a constant C depending only on the domain
D such that ‖F ‖H0(curl;D)′ ≤ C(‖F ‖H1(D)′ + ‖divF ‖H−1(D)).

Proof. By the Birman-Solomyak regular decomposition theorem [7], Hiptmair [32,
Lemma 2.4], any v ∈ H0(curl;D) can be splitted as v = vs + ∇ψ for some vs ∈
H1(D), ψ ∈ H1

0 (D) such that ‖vs‖H1(D) + ‖ψ‖H1(D) ≤ C‖v‖H(curl;D). Since

ψ ∈ H1
0 (D), for any δ > 0, there exists ψδ ∈ C∞0 (D) such that ψδ → ψ in

H1
0 (D) as δ → 0, which also implies ∇ψδ → ∇ψ in H0(curl;D) as δ → 0. By

the definition of the derivatives of the distribution, (divF )(ψδ) = −F (∇ψδ). Now
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since F ∈H0(curl;D)′ and divF ∈ H−1(D), we obtain F (∇ψ) = −(divF )(ψ) by
letting δ → 0. Thus

‖F ‖H0(curl;D)′ = sup
v∈H0(curl;D)

|F (v)|
‖v‖H(curl;D)

≤ C sup
vs∈H1(D),ψ∈H1

0 (D)

|F (vs +∇ψ)|
‖vs‖H1(D) + ‖ψ‖H1(D)

≤ C(‖F ‖H1(D)′ + ‖divF ‖H−1(D)).

This completes the proof. �

Lemma 2.2. Let D be a bounded Lipschitz domain which is divided by a C1,1

surface ΓD into two parts D1, D2. Let B ∈ R3×3 be a symmetric matrix with
elements in C0,1(D̄1 ∪ D̄2) such that a−|x|2 ≤ Bx ·x ≤ a+|x|2 ∀x ∈ R3 a.e. in D
for some constants a−, a+ > 0. Let f ∈ L2(D), g ∈ H1/2(ΓD), and v ∈H(curl;D)
satisfy

(4) div (Bv) = f in D1 ∪D2, [[Bv · n]]ΓD = g on ΓD.

Then for any subdomain O strictly included in D, O1 = O ∩ D1, O2 = O ∩ D2,
we have v ∈ H1(O1 ∪ O2), and ‖v‖H1(O1∪O2) ≤ C(‖v‖H(curl;D) + ‖f‖L2(D) +
‖g‖H1/2(ΓD)), where the constant C depends on the domains O, D, and the coeffi-
cient matrix B.

Proof. The argument is standard (see, e.g., Hiptmair et al. [34, Lemma 3.2]). We
sketch a proof for the sake of completeness. By the regular decomposition theorem,
v = vs+∇ψ for some vs ∈H1(D), ψ ∈ H1(D) such that ‖vs‖H1(D) +‖ψ‖H1(D) ≤
C‖v‖H(curl;D). It is clear from (4) that ψ ∈ H1(D) satisfies

div (B∇ψ) = f − div (Bvs) in D1 ∪D2,

[[ψ]]ΓD = 0,
[[
B
∂ψ

∂n

]]
ΓD

= g − [[Bvs · n]]ΓD on ΓD.

By the regularity theorem of elliptic interface problems (see, e.g., McLean [40,
Theorem 4.20]), ψ ∈ H2(O1 ∪ O2) and

‖ψ‖H2(O1∪O2) ≤C(‖ψ‖H1(D) + ‖f − div (Bvs)‖L2(D) + ‖g − [[Bvs · n]]ΓD‖H1/2(ΓD))

≤C(‖v‖H(curl;D) + ‖f‖L2(D) + ‖g‖H1/2(ΓD)).

This completes the proof. �

The weak formulation of the problem (1)-(3) is to find E ∈H(curl; Ω) such that
E × n = g × n on Σ, and

(5) (µ−1∇×E,∇× v)− k2(εE,v) = (J ,v) ∀v ∈H0(curl; Ω),

where (·, ·) denotes the inner product on L2(Ω). Notice that (5) implies div (εE) =
0 in Ω by taking v = ∇ψ for any ψ ∈ H1

0 (Ω). It is known that except a denumerable
wave numbers 0 < k1 < k2 < · · · of nonzero Maxwell eigenvalues tending to ∞,
the problem (5) exists a unique solution (see, e.g., [32, §4.1-§4.2]). In this paper,
we will assume k is not equal to one of these eigenvalues and thus the problem (5)
has a unique solution E ∈H(curl; Ω) which satisfies [32, (96)]

(6) ‖E‖H(curl;Ω) ≤ C(‖J‖L2(Ω) + ‖g × n‖H−1/2(div Σ;Σ)).

The following H1 regularity of the solution of (5) can be proved by the same
argument used in the proof of Lemma 2.2. Here we omit the details.
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Lemma 2.3. Let the interface Γ and the boundary Σ be C1,1, J ∈ L2(Ω), g ∈
H1/2(Σ) satisfy divJ = 0 in Ω. Then the solution of the problem (5) satisfies E ∈
H1(Ω1 ∪ Ω2) and ‖E‖H1(Ω1∪Ω2) ≤ C(‖J‖L2(Ω) + ‖g‖H1/2(Σ)), where the constant
C depends on the domain Ω and the coefficients k, µ, ε.

The following theorem is the main result of this section. It will be used in our
finite element convergence analysis in section 4.

Theorem 2.1. Let the interface Γ and the boundary Σ be C2, J ∈ L2(Ω) with
divJ = 0 in Ω, and g ∈ H3/2(Σ). Then the solution of (5) has the regularity
E ∈H2(Ω1∪Ω2) and satisfies ‖E‖H2(Ω1∪Ω2) ≤ Creg(‖J‖L2(Ω)+‖g‖H3/2(Σ)), where
the constant Creg > 0 depends on the domain Ω, the interface Γ, the boundary Σ,
and the coefficients k, ε, µ.

Proof. The proof follows the idea to prove the H2 regularity for elliptic equations
(see, e.g., Evans [28, Chapter 6], [40, Chapter 4]) based on selecting smooth cut-off
functions to localize the equation and flatting the interface and the boundary by
means of a suitable change of variables. Let {B(xi, ri)}ni=1, where xi ∈ Γ, i =
1, · · · , n, be a union of balls inside Ω such that OΓ = ∪ni=1B(xi, ri/2) covers Γ, and
{B(yi, di)}mi=1, where yi ∈ Σ, i = 1, · · · ,m, be a union of balls not intersecting with
the interface Γ such that OΣ = ∪mi=1B(yi, di/2) covers Σ. Let Oi = Ωi\(ŌΓ ∪ ŌΣ),
i = 1, 2. Clearly, the union of OΓ,OΣ, and O1 ∪O2 covers Ω. The proof is divided
into three parts.

1◦ Interior regularity. Since div (εE) = 0 in Ω1 ∪ Ω2, by Lemma 2.3, E ∈
H1(Ω1 ∪ Ω2) and it satisfies

−∆E = µJ + k2µεE in Ω1 ∪ Ω2.

By the interior regularity of elliptic equations (see, e.g., [40, Theorem 4.16]) and
Lemma 2.3, we know that E ∈H2(Oi), i = 1, 2, and

‖E‖H2(Oi) ≤ C(‖E‖H1(Ωi) + ‖J + k2µεE‖L2(Ωi))(7)

≤ C(‖J‖L2(Ω) + ‖g‖H1/2(Σ)).

2◦ Interface regularity. For i = 1, · · · , n, let B = B(xi, ri) and B̂ be the unit ball

in R3. Let Φ : B̂ → B be the C2, one-to-one mapping such that B1 = Ω1 ∩ B =
Φ(B̂1), B2 = Ω2 ∩ B = Φ(B̂2), and Γ ∩ B = Φ(Γ̂), where B̂1 = {x̂ ∈ B̂ : x̂3 < 0},
B̂2 = {x̂ ∈ B̂ : x̂3 > 0}, and Γ̂ = {x̂ ∈ B̂ : x̂3 = 0}. By the Piola transform (see,
e.g., Monk [44, §3.9]), we have

(8) ∇ = DΦ−T ∇̂, ∇· = J−1∇̂ · (JDΦ−1), ∇× = J−1DΦ∇̂ ×DΦT ,

where DΦ is the gradient matrix and J = det(DΦ). Moreover, the unit normal n
to Γ and the surface area ds of Γ satisfy (see, e.g., Hofmann et al. [35])

(9) n ◦Φ = DΦ−T n̂/|DΦ−T n̂|, ds = |J | |DΦ−T n̂| dŝ,

where n̂ = (0, 0, 1)T and dŝ is the surface area of Γ̂.
Let χ ∈ C∞0 (B) be the cut-off function such that 0 ≤ χ ≤ 1 in B and χ = 1 in

B(xi, ri/2). Denote u = χE. Then we have

∇× (µ−1∇× u) = F , div (εu) = ∇χ · (εE) in Ω1 ∪ Ω2,(10)

[[u× n]]Γ = 0, [[(µ−1∇× u)× n]]Γ = g1 × n, [[εu · n]]Γ = 0 on Γ,(11)

where g1 × n = [[(µ−1∇χ×E)× n]]Γ on Γ, and

(12) F = F1 +∇× (µ−1∇χ×E), F1 = χJ + k2εχE +∇χ× (µ−1∇×E) in Ω.
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Now for any function v : B → C3, we denote v̂ = DΦT (v ◦Φ). By (8)-(9) and the
following vector identity [35]

(13) Da× Db = det(D)D−Ta× b ∀D ∈ C3×3, ∀a, b ∈ C3,

we deduce from (10)-(11) that

∇̂ × (µ̂−1A∇̂ × û) = A−1F̂ , ∇̂ · (ε̂A−1û) = A−1∇̂χ̂ · (ε̂Ê) in B̂1 ∪ B̂2,(14)

[[û× n̂]]Γ̂ = 0, [[(µ̂−1A∇̂ × û)× n̂]]Γ̂ = ĝ1 × n̂, [[ε̂A−1û · n̂]]Γ̂ = 0 on Γ̂,(15)

where µ̂ = µ ◦Φ, ε̂ = ε ◦Φ, χ̂ = χ ◦ Φ, A = J−1DΦTDΦ, and

(16) A−1F̂ = A−1F̂1 + ∇̂× (µ̂−1A(∇̂χ̂× Ê)), ĝ1× n̂ = [[(µ̂−1A(∇̂χ̂× Ê))× n̂]]Γ̂.

Since n̂ = (0, 0, 1)T , [[û× n̂]]Γ̂ = 0 implies that [[û1]]Γ̂ = [[û2]]Γ̂ = 0 on Γ̂. For any

δ > 0 sufficiently small, we consider the difference quotients ∆δ
l , l = 1, 2, defined as

∆δ
l û(x̂) = (û(x̂+ δel)− û(x̂))/δ.

By (14)-(15) we have

∇̂ · (ε̂A−1
δ ∆δ

l û) = −∇̂ · (ε̂(∆δ
lA−1)û) + ∆δ

l (A−1∇̂χ̂ · (ε̂Ê)) in B̂1 ∪ B̂2,

[[ε̂A−1
δ ∆δ

l û · n̂]]Γ̂ = −[[ε̂(∆δ
lA−1)û · n̂]]Γ̂ on Γ̂,

where Aδ = A(x̂ + δel). Since Φ−1(B(xi, ri/2) ∩ Ωk) ⊂ B̂k, k = 1, 2, by Lemma
2.2,

‖∆δ
l û‖H1(Φ−1(B(xi,ri/2)∩(Ω1∪Ω2)))(17)

≤ C(‖∆δ
l û‖H(curl;B̂) + ‖û‖H1(B̂1∪B̂2) + ‖Ê‖H1(B̂1∪B̂2))

≤ C(‖∇̂ ×∆δ
l û‖L2(B̂) + ‖E‖H1(B1∪B2)).

Next by (14)-(15) we have

∇̂ × (µ̂−1Aδ∇̂ × (∆δ
l û)) = F̂ ′ in B̂1 ∪ B̂2,(18)

[[(∆δ
l û)× n̂]]Γ̂ = 0, [[(µ̂−1Aδ∇̂ × (∆δ

l û))× n̂]]Γ̂ = ĝ′1 × n̂ on Γ̂,(19)

where ĝ′1 × n̂ = (∆δ
l ĝ1)× n̂− [[(µ̂−1(∆δ

lA)∇̂ × û)× n̂]]Γ̂, and

(20) F̂ ′ = ∆δ
l (A−1F̂ )− ∇̂ × (µ̂−1(∆δ

lA)∇̂ × û).

Since (∆δ
l û)× n̂ = 0 on ∂B̂, by testing (18) with ∆δ

l û we obatin

(21) ‖∇̂ ×∆δ
l û‖L2(B̂) ≤ C sup

v̂∈H0(curl;B̂)

|(F̂ ′, v̂)B̂ + 〈ĝ′1 × n̂, v̂T 〉Γ̂|
‖v̂‖H0(curl;B̂)

.

From the definition of F̂ ′ and ĝ′1× n̂, we obtain by doing integration by parts that

(F̂ ′, v̂)B̂ + 〈ĝ′1 × n̂, v̂T 〉Γ̂ = (∆δ
l (A−1F̂ ), v̂)B̂ + 〈∆δ

l ĝ1 × n̂, v̂T 〉Γ̂
− (µ̂−1(∆δ

lA)(∇̂ × û), ∇̂ × v̂)B̂ .

Since F̂ is compactly supported in B̂ and ĝ1× n̂ is compactly supported on B̂ ∩ Γ̂,
by the definition of A−1F̂ and ĝ1 × n̂ in (16) and integration by parts, we have
then, for sufficiently small δ,

(∆δ
l (A−1F̂ ), v̂)B̂ + 〈∆δ

l ĝ1 × n̂, v̂T 〉Γ̂
= −(A−1F̂ ,∆−δl v̂)B̂ − 〈ĝ1 × n̂,∆−δl v̂T 〉Γ̂
= −(A−1F̂1,∆

−δ
l v̂)B̂ − (µ̂−1A(∇̂χ̂× Ê), ∇̂ ×∆−δl v̂)B̂

= −(∆δ
l (A−1F̂1), v̂)B̂ − (µ̂−1∆δ

l (A(∇̂χ̂× Ê)), ∇̂ × v̂)B̂ .
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By Lemma 2.1

‖∆δ
l (A−1F̂1)‖H0(curl;B̂)′(22)

≤ C(‖∆δ
l (A−1F̂1)‖(H1(B̂))′ + ‖∇̂ · (∆δ

l (A−1F̂1))‖H−1(B̂))

≤ C‖A−1F̂1‖H(div ;B̂).

Thus, by (12) and divF1 = 0 in Ω, (21) can be bounded as

‖∇̂ ×∆δ
l û‖L2(B̂) ≤ C(‖A−1F̂1‖H(div ;B̂) + ‖Ê‖H1(B̂1∪B̂2))(23)

≤ C(‖F1‖H(div ;B) + ‖E‖H1(B1∪B2))

≤ C(‖J‖L2(B) + ‖E‖H1(B1∪B2)).

Combining (17) with (23), we obtain

‖∆δ
l û‖H1(Φ−1(B(xi,ri/2)∩(Ω1∪Ω2))) ≤ C(‖J‖L2(B) + ‖E‖H1(B1∪B2)).

This implies, by letting δ → 0, for l = 1, 2,

(24) ‖∂x̂lû‖H1(Φ−1(B(xi,ri/2)∩(Ω1∪Ω2))) ≤ C(‖J‖L2(B) + ‖E‖H1(B1∪B2)).

Finally, it follows from (14) that

−∇̂ · (ε̂A−1û) = −A−1∇̂χ̂ · (ε̂Ê) in B̂1 ∪ B̂2.

Notice that A−1 = JDΦ−1DΦ−T whose elements (A−1)kl = JaTk al, k, l = 1, 2, 3,
where a1,a2,a3 ∈ R3 are column vectors of DΦ−T . Obviously, (A−1)33 = J |a3|2 ≥
a0 for some constant a0 > 0. Thus by differentiating the equation in x̂3 we obtain∥∥∥∥∂2û3

∂x̂2
3

∥∥∥∥
L2(Φ−1(B(xi,ri/2)∩(Ω1∪Ω2)))

≤ C

2∑
l=1

‖∂x̂lû‖H1(Φ−1(B(xi,ri/2)∩(Ω1∪Ω2)))

+C(‖Ê‖H1(B̂1∪B̂2) + ‖û‖H1(B̂1∪B̂2)).

Therefore, it follows from (24) that

‖û‖H2(Φ−1(B(xi,ri/2)∩(Ω1∪Ω2)) ≤ C(‖J‖L2(B) + ‖E‖H1(B1∪B2)),

and thus ‖u‖H2(B(xi,ri/2)∩(Ω1∪Ω2))) ≤ C(‖J‖L2(B) + ‖E‖H1(B1∪B2)) for any i =
1, · · · , n. This yields by Lemma 2.3 that

(25) ‖E‖H2(OΓ∩(Ω1∪Ω2)) ≤ C(‖J‖L2(Ω) + ‖g‖H1/2(Σ)).

3◦ Boundary regularity. Let ug ∈ H2(Ω) be the lifting of g ∈ H3/2(Σ) such
that ‖ug‖H2(Ω) ≤ C‖g‖H3/2(Σ). Then u = E − ug satisfies u× n = 0 on Σ, and

∇× (µ−1∇× u)− k2εu = J ′ in Ω,

where J ′ = J−∇× (µ−1∇×ug)+k2εug in Ω. Similar to the argument in the step
2◦, for i = 1, · · · ,m, we consider ui = χiu, where χi ∈ C∞0 (B(yi, di)) is the cut-off
function such that 0 ≤ χi ≤ 1, χi = 1 in B(yi, di/2), and use the H2 regularity of
the solution to time harmonic Maxwell equations in C2 domains in Costabel et al.
[23, Theorems 4.5.3 and 3.4.5] to obtain

(26) ‖E‖H2(OΣ∩Ω) ≤ C(‖J‖L2(Ω) + ‖g‖H3/2(Σ)).

The theorem follows now from (7), (25), and (26). �
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We remark that it is crucial to use Lemma 2.1 in (22) to bound ∆δ
l (A−1F̂1) in

the H0(curl; B̂)′ norm. If one simply bounds ∆δ
l (A−1F̂1) in the L2 norm, one will

have to require J ∈ H1(B) in (23). The regularity bound in Theorem 2.1 will
become ‖E‖H2(Ω1∪Ω2) ≤ Creg(‖J‖H1(Ω) +‖g‖H3/2(Ω)), which is not sufficient for us
to use the Schatz argument in the proof of Theorem 4.2.

To conclude this section, we introduce the mixed formulation for (1)-(3) to be
used in this paper. Let ϕ ∈ H1

0 (Ω) be the Lagrangian multiplier for the constraint
div (εE) = 0 in Ω in (1). The mixed formulation is to find (E, ϕ) ∈ H(curl; Ω) ×
H1

0 (Ω) such that E × n = g × n on Σ, and

(µ−1∇×E,∇× v)− k2(εE,v)− (ε∇ϕ,v) = (J ,v) ∀v ∈H0(curl; Ω),(27)

(εE,∇ψ) = 0 ∀ψ ∈ H1
0 (Ω).(28)

It is easy to see that if the wave number k is not equal to the Maxwell eigenvalues
and E is the unique solution of (5), then the mixed problem (27)-(28) has a unique
solution (E, ϕ) with ϕ = 0 in Ω.

3. The unfitted finite element method

In this section we first introduce some notation on the finite element mesh and
prove the crucial inverse trace estimate on curved domains by extending the idea
in Chen et al. [16] for the two-dimensional unfitted finite element method. Then
we introduce the unfitted finite element method for the mixed formulation of the
time-harmonic Maxwell interface problem (27)-(28).

3.1. Notation and the inverse trace estimate. Let T be a mesh consisting of
right hexahedrons with possible hanging nodes that covers Ω. For each K ∈ T Γ =
{K ∈ T : K∩Γ 6= ∅} and K ∈ T Σ = {K ∈ T : K∩Σ 6= ∅}, we assume the interface
Γ or the boundary Σ intersects K properly in the following sense.

Definiton 3.1. (Proper intersection) The intersection of the interface Γ or the
boundary Σ with an element K is called the proper intersection if Γ or Σ intersects
each (open) edge of K at most once, and if Γ or Σ intersects a face F of K, then
Γ or Σ intersects the edges of F at most twice at different (open) edges.

If Γ or Σ intersects an element at some vertex, we regard Γ or Σ as intersecting
one of the three edges originated from A at some point very close to A. If Γ or Σ
is tangent to an edge or a face of an element, we regard Γ or Σ as being very close
to the edge or the face but not intersecting with the edge or the face.

It is clear that when Γ and Σ have proper intersections with all elements in
T Γ ∪ T Σ, if two vertices A,B of an element are inside Ωi, then the edge AB is
included in Ωi, i = 1, 2. Fig.1 shows some of the situations that are allowed by
Definition 3.1. In the situations shown in Fig.2, local refinements are needed to
resolve the interface or the boundary.

Definiton 3.2. (Large element) For i = 1, 2, an element K ∈ T is called a large
element with respect to Ωi if K ⊂ Ωi; or K ∈ T Γ ∪ T Σ for which there exists a
fixed δ0 ∈ (0, 1/2) such that |e ∩ Ωi| ≥ δ0|e| for each edge e of K having nonempty
intersection with Ωi. An element K ∈ T Γ ∪T Σ is called a large element if K ∈ T Γ

is large with respect to both Ω1,Ω2 or K ∈ T Σ is large with respect to Ω2. An
element K ∈ T Γ ∪ T Σ is called a small element if it is not a large element.

Following [16] we make the following assumption on the finite element mesh when
K ∈ T Γ ∪ T Σ is a small element.
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A

K

(a) (c) (d)(b)

K

A

B

K

A

B

C

K

A

B

C

D

Figure 1. Illustration of proper intersections of the interface Γ
and an element K. From (a) to (d), K has 1, 2, 3, 4 vertices in one
of the domains Ωi, i = 1, 2.

(b) (d)(a) (c)

Figure 2. Examples of improper intersections of the interface Γ
and an element K, for which local refinements are required to
resolve the interface.

Assumption (H1) For each K ∈ T Γ or K ∈ T Σ, there exists a cuboid macro-
element N(K) which is a union of K and its surrounding element (or elements)
such that (i) Γ or Σ has proper intersection with N(K); and (ii) N(K) is large with
respect to both Ω1,Ω2 or is large with respect to Ω2. We assume hN(K) ≤ C0hK
for some fixed constant C0. Here hK is the diameter of K.

Inspired by Johansson and Larson [30] in the setting of a fictitious boundary
DG method for elliptic equations, one possible way to satisfy the assumption (H1)
is to locally refine the surrounding elements K ′ of a small element K ∈ T Γ so
that the elements K ′ are of the same size as K and K ′ are completely included in
Ω1 or Ω2. Then we can define N(K) as the union of K and those elements K ′.
A similar construction can be made for small boundary elements K ∈ T Σ. Fig.3
illustrates a small element merged with 2 or 8 of its neighboring elements to form
a macro-element. When a small element K is of the form shown in Fig.1(a), the
macro-element may include all 26 elements having non-empty intersection with the
element K. We refer to Chen and Liu [17] for a reliable algorithm to merge small
interface elements with their surrounding elements to automatically generate a finite
element mesh whose elements are large with respect to both domains Ω1,Ω2 for any
two-dimensional smooth interfaces. It is expected such a merging algorithm can
also be constructed for the three dimensional smooth interfaces and will be pursued
in a future work.

In the following, we will always set N(K) = K if K ∈ T Γ ∪ T Σ is a large
element. Thus M = {N(K) : K ∈ T Γ ∪ T Σ} ∪ {K ∈ T : K ⊂ Ωi, i = 1, 2,K 6⊂
N(K ′) for some K ′ ∈ T Γ ∪ T Σ} is also a mesh that covers Ω consisting of right
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(a) (b)

Figure 3. Examples of merging a small element K with 2 or 8 of
its neighboring elements to form a large element.

hexahedrons. We will call M the induced mesh of T and write M = Induced (T ).
We set MΓ = {K ∈M : K ∩ Γ 6= ∅}, MΣ = {K ∈M : K ∩ Σ 6= ∅}.

For any K ∈ MΓ, let ΓK = K ∩ Γ and denote by VK the set of intersection
points of Γ and the edges of K. Similarly, for any K ∈ MΣ, let ΣK = K ∩ Σ and
denote by V ′K the set of intersection points of Σ and the edges of K.

We call a polyhedron is strongly shape regular if it is the union of shape regualr
tetrahedrons in the classical sense of Ciarlet [18, P.132]. The following lemma
shows that if K ∈ T Γ is a large element, it is the union of two strongly shape
regular polyhedrons. In this paper, all polyhedrons are considered to be open. We
call a polyhedron D is the union of tetrahedrons Ti, i = 1, · · · , I, if D̄ = ∪Ii=1T̄i.

Z5

D

Z4

A

B

C

E

H

G

F

Z1

Z2

Z3

Figure 4. Left: The figure used in the proof of Lemma 3.1. Right:
The figure used in the proof of Lemma 3.6. The tetrahedron with
at most two intersection points of Γ and the edges of K.

Lemma 3.1. If K ∈ MΓ, then K̄ = K̄h
1 ∪ K̄h

2 , where for i = 1, 2, Kh
i is the

union of tetrahedrons Tij, j = 1, · · · ,mi, mi ≥ 1, whose vertices are the vertices
of K inside Ωi and the points in VK . The tetrahedrons Tij, j = 1, · · · ,mi, have a
common vertex AiK which is a vertex of K inside Ωi. Moreover, Tij, j = 1, · · · ,mi,
are shape regular in the sense that the radius of the inscribed ball of Tij is bounded
below by c0hK for some constant c0 > 0 depending only on δ0 in Definition 3.2.

Proof. First notice that K ∈MΓ is a large element. We only prove the case when
K has three vertices A,B,C inside Ω1. The other cases can be proved analo-
gously. Without loss of generality, we assume A = (0, 0, 0)T , B = (0, 0, h3)T , C =
(0, h2, h3)T , where hi = hi(K) is the length of the side of K in the xi direction,
i = 1, 2, 3, see Fig.4 (left). Since if two vertices inside Ω1, the edges connect-
ing the vertices is also in Ω1, there are five intersecting points Zj , j = 1, · · · , 5,
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of ΓK and the edges of K. The coordinates of the points are Z1 = (a1, 0, 0)T ,
Z2 = (a2, 0, h3)T , Z3 = (a3, h2, h3)T , Z4 = (0, h2, c4)T , Z5 = (0, b5, 0)T . By
Definition 3.2, δ0 ≤ ajh

−1
1 ≤ 1 − δ0, j = 1, 2, 3, δ0 ≤ c4h

−1
3 ≤ 1 − δ0, and

δ0 ≤ b5h−1
2 ≤ 1− δ0.

We recall that for any tetrahedron T , the radius ρT of the inscribed ball of T is
ρT = 3|T |/|∂T |. It is easy to see that the tetrahedron T11 with vertices B,A,Z1, Z5

and T12 with vertices B,Z4, Z3, C satisfy |T11|, |T12| ≥ 1
6δ

2
0 |K|. The volume of the

tetrahedron T13 with vertices B,Z4, Z1, Z5 is

|T13| =
1

6

∣∣∣∣∣∣
0 h2 c4 − h3

a1 0 −h3

0 b5 −h3

∣∣∣∣∣∣ =
1

6
a1 [h2h3 + b5(c4 − h3)]

=
1

6
a1[(h2 − b5)h3 + b5c4],

which yields |T13| ≥ 1
6 (δ0 + δ2

0)δ0|K|. Similarly, the volume of the tetrahedron T14

with vertices B,Z1, Z2, Z4 is |T14| = 1
6a2h2h3 ≥ 1

6δ0|K|, and the volume of the

tetrahedron T15 with vertices B,Z4, Z2, Z3 is |T15| = 1
6a2h2(h3 − c4) ≥ 1

6δ
2
0 |K|.

On the other hand, it is easy to see that for j = 1, · · · , 5, |∂T1j | ≤ Ch2
K for some

constant C depending only on δ0. Thus K̄h
1 = ∪5

j=1T̄1j with T1j , j = 1, · · · , 5,
being shape regular tetrahedrons.

Let Kh
2 = K\K̄h

1 . One can show that Kh
2 is a union of shape regular tetrahedrons

with the common vertex F in Fig.4 (left). Here we omit the details. This completes
the proof. �

We remark that in the proof it is important to have B as the common vertex
of the tetrahedrons T1j , j = 1, · · · , 5. If one chooses A as the common vertex, the
volume of the tetrahedron T0 with vertices A,Z2, Z3, Z4 is |T0| = 1

6h2[a2(c4−h3) +
a3h3], which may not have a uniform lower bound with respect to the positions of
Z2, Z3, Z4.

The following lemma can be proved by the same argument as that in Lemma
3.1.

Lemma 3.2. If K ∈ MΣ is a large element, then there is a polyhedron Kh ⊂ K,
Kh is the union of tetrahedrons Tj, j = 1, · · · ,m, m ≥ 1, whose vertices are the
vertices of K inside Ω and the points in V ′K . The tetrahedrons Tj, j = 1, · · · ,m,
have a common vertex A′K which is a vertex of K inside Ω. Moreover, Tj, j =
1, · · · ,m, are shape regular in the sense that the radius of the inscribed ball of Tj is
bounded below by c0hK for some constant c0 > 0 depending only on δ0 in Definition
3.2.

We remark that the construction of the strongly shape regular polyhedrons Kh
i

in Lemma 3.1 and Kh in Lemma 3.2 may not be unique. For example, in the
case when K has two or four vertices in Ωi, each one of the vertices K in Ωi can
be chosen as the common vertex AiK of the shape regular tetrahedrons. In the
following, we always fix one construction of the strongly shape regular polydrons
Kh

1 ,K
h
2 for K ∈MΓ, and Kh for K ∈MΣ.

Now for any K ∈ MΓ, we want to approximate ΓK with a flat face ΓhK not far
from ΓK . Since K is a large element, by Lemma 3.1 we know that K is the union
of two strongly regular polyhedrons Kh

1 ,K
h
2 . It is clear that ∂Kh

1 ∩ ∂Kh
2 = ∪JKj=1fj ,

where {fj}JKj=1 are triangles with vertices in VK which may not be coplanar. Let

Fj be the plane that fj lies in, j = 1, · · · , JK . We define ΓhK as one of the
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planes among {Fj}JKj=1 such that distH(ΓK ,Γ
h
K) = min1≤j≤JK distH(ΓK , Fj), where

distH(Γ1,Γ2) = maxx∈Γ1
(miny∈Γ2

|x − y|). Roughly speaking, distH(Γ1,Γ2) mea-
sures how far Γ1 deviates from Γ2. Let AiK be the common vertex in Ωi of the
tetrahedron defined in Lemma 3.1.

Similarly, for K ∈ MΣ, let Kh be the strongly shape regular polyhedron de-

fined in Lemma 3.2. Then ∂Kh\∂K = ∪J
′
K
j=1f

′
j , where f ′j are the triangles with

vertices in V ′K , 1 ≤ j ≤ J ′K . We define ΣhK as one of the planes {F ′j}
J′K
j=1 such that

distH(ΣK ,Σ
h
K) = min1≤j≤J′K distH(ΣK , F

′
j), where F ′j is the plane that f ′j lies in,

j = 1, · · · , J ′K . Let A′K be the vertex of K in Ω defined in Lemma 3.2.
The following definition extends that in [16] for two-dimensional interfaces.

Definiton 3.3. (Interface and boundary deviation) The interface deviation ηK for
K ∈MΓ and the boundary deviation ηK for K ∈MΣ are defined as

ηK = max
i=1,2

distH(ΓK ,Γ
h
K)

dist(AiK ,Γ
h
K)

∀K ∈MΓ, ηK =
distH(ΣK ,Σ

h
K)

dist(A′K ,Σ
h
K)

∀K ∈MΣ,

where dist(A,Γ1) = miny∈Γ1
|A−y| is the distance of the point A to the set Γ1 ⊂ R3.

Lemma 3.3. If the interface Γ and the boundary Σ are C2 smooth, then there
exists a constant h0 > 0 such that for any K ∈ MΓ ∪MΣ satisfying hK < h0, we
have ηK ≤ ChK for some constant C independent of hK .

Proof. We only prove the lemma for the case of interface. The other case can
be proved similarly. The argument extends that in Feistauer [29, (3.27)] for the
two-dimensional case. Since Γ is C2 smooth, for any point x ∈ Γ, there exist
rx > 0 and a C2 function Ψx : R2 → R such that, upon rotating and relabeling
the coordinate axes if necessary, Ω1 ∩B(x, rx) = {y ∈ B(x, rx) : y3 < Ψx(y1, y2)},
Ω2 ∩ B(x, rx) = {y ∈ B(x, rx) : y3 > Ψx(y1, y2)}, and Γ ∩ B(x, rx) = {y ∈
B(x, rx) : y3 = Ψx(y1, y2)}.

By compactness, there exist finite number of points xj ∈ Γ, 1 ≤ j ≤ M , such
that the union of balls B(xj , rxj/2), j = 1, · · · ,M , covers the interface. Let h0 =

(min1≤j≤M rxj )/2. Then any element K ∈ MΓ satisfying hK < h0 is included in
some ball B(xi, rxi). Let A,B,C be the three intersection points on the edges of
K that determines ΓhK . If ΠhΨxi : R2 → R is the linear Lagrangian interpolation
of Ψxi at the points A,B,C, then distH(ΓK ,Γ

h
K) = ‖Ψxi − ΠhΨxi‖L∞(R2). The

lemma now follows from the standard finite element interpolation estimates as
dist(AiK ,Γ

h
K) ≥ ChK . �

Lemma 3.3 implies that the following assumption is not very restrictive in prac-
tical applications.

Assumption (H2) The interface and the boundary deviation ηK ≤ 1/2 for all
K ∈MΓ ∪MΣ.

We recall the following one-dimensional inverse domain estimate proved in [16,
Lemma 2.3].

Lemma 3.4. Let I = (−1, 1) and Iλ = (−λ, λ), λ > 1. We have

‖g‖2L2(Iλ\Ī) ≤
1

2

[
(λ+

√
λ2 − 1)2p+1 − 1

]
‖g‖2L2(I) ∀g ∈ Qp(Iλ),

where Qp(Iλ) is the set of polynomials of order p ≥ 1 in Iλ.
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We remark that the growing factor (λ+
√
λ2 − 1)2p+1 in the bound is sharp, which

is attained by the Chebyshev polynomials. It is well known that the Chebyshev
polynomials Cn(t) = 1

2 [(t +
√
t2 − 1)n + (t −

√
t2 − 1)n], n ≥ 0, see DeVore and

Lorentz [26, P.76].
For any integer p ≥ 1 and any Lipschitz domain D ⊂ R3, we denote Qp(D) the

set of polynomials of order p in each variable in D. The following lemma can be
proved as in [16, Lemma 2.4] by using Lemma 3.4. We omit the details.

Lemma 3.5. Let T be a tetrahedron with vertices O = (0, 0, 0)T , A = (a1, a2, a3)T ,
B = (b1, b2, 0)T , and C = (c1, c2, 0)T , where a3 > 0. For any δ ∈ (0, a3), let the
tetrahedron Tδ = {x ∈ T : dist(x,∆OBC) > δ}. Then, we have

‖v‖L2(T ) ≤ T

(
1 + δa−1

3

1− δa−1
3

)3p+3/2

‖v‖L2(Tδ) ∀v ∈ Qp(T ),

where T(t) = t+
√
t2 − 1 ∀t ≥ 1.

The following inverse trace estimate on curved domains is the main result in this
subsection.

Lemma 3.6. Let Assumptions (H1) and (H2) be satisfied. Then for any K ∈
MΓ ∪MΣ, Ki = K ∩ Ωi, i = 1, 2,

‖v‖L2(∂Ki) ≤ Cph
−1/2
K T

(
1 + 3ηK
1− ηK

)3p

‖v‖L2(Ki) ∀v ∈ Qp(K),

where the constant C is independent of hK , p, and ηK .

Proof. We only prove the theorem when K ∈ MΓ. The other case K ∈ MΣ can
be proved similarly. For i = 1, 2, let Kh

i be the polyhedron defined in Lemma 3.1.
Kh
i is divided into tetrahedrons, each of them with one vertex at AiK as follows

K̄h
i = (∪nj=1T̄ij) ∪ (∪mij=n+1T̄ij),

where Tij , j = 1, · · · , n, has at most two vertices in VK and Tij , j = n+ 1, · · · ,mi,
has three vertices in VK . By Lemma 3.1, each tetrahedron Tij , j = 1, · · · ,mi, is
shape regular. Let δ = distH(ΓK ,Γ

h
K) and di = dist(AiK ,Γ

h
K) so that δ/di ≤ ηK .

Let Γh±δK be two planes parallel to ΓhK whose distance to AiK is di ± δ.
For j = n + 1, · · · ,mi, denote T ∗ij the infinite cone with vertex AiK that agrees

with Tij in a neighborhood of AiK . Denote Th±δij the finite part of the cone T ∗ij
terminated by Γh±δK . Then Th−δij ⊂ Tij ∩Ki ⊂ Th+δ

ij . By Lemma 3.5, we have for
j = n+ 1, · · · ,mi,

‖v‖L2(Th+δ
ij ) ≤ T

(
1 + 2δ(di + δ)−1

1− 2δ(di + δ)−1

)3p+3/2

‖v‖L2(Th−δij )(29)

≤ T

(
1 + 3ηK
1− ηK

)3p+3/2

‖v‖L2(Ki∩Tij) ∀v ∈ Qp(K).

By the hp-inverse trace inequality in Warburton and Hesthaven [50], we have then
for j = n+ 1, · · · ,mi,

‖v‖L2(∂Th+δ
ij ∩∂Ki) ≤ ‖v‖L2(∂Th+δ

ij )

≤ Cph
−1/2
K ‖v‖L2(Th+δ

ij )(30)

≤ Cph
−1/2
K T

(
1 + 3ηK
1− ηK

)3p+3/2

‖v‖L2(Ki∩Tij) ∀v ∈ Qp(K).
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For each tetrahedron Tij . j = 1, · · · , n, denote by B,C,D the other three vertices
other than AiK , see Fig.4 (right). If B ∈ VK , the set of intersection points of

Γ and the edges of K, Γh−δK intersects the edge AiKB at B′. Let the half line

originated from AiK that is perpendicular to ΓhK intersect Γh−δK at A′ and intersect
the plane parallel to ΓhK on which B is located at A, then |AiKA′| = di−δ, |AiKA| ≤
di + δ. Thus |AiKA′|/|AiKA| ≥ (di − δ)/(di + δ) and consequently, |BB′|/|AiKB| =
|AA′|/|AiKA| ≤ 2δ/(di + δ). Similarly, |CC ′|/|AiKC| ≤ 2δ/(di + δ) if C ∈ VK and

Γh−δK intersects the edge AiKC at C ′. Notice that by definition, Tij has at most two
vertices in VK .

Now let B′′C ′′D′′ be the intersection of the plane parallel to BCD whose distance
to BCD is δ1 = 2δ

di+δ
h1, where h1 = dist(AiK ,∆BCD). Then the tetrahedron T̂ij

with vertices AiK , B
′′, C ′′, D′′ is inside Tij ∩Ki. Again by Lemma 3.5, we have for

j = 1, · · · , n,

‖v‖L2(Tij) ≤ T

(
1 + δ1h

−1
1

1− δ1h−1
1

)3p+3/2

‖v‖L2(T̂ij)
(31)

≤ T

(
1 + 3ηK
1− ηK

)3p+3/2

‖v‖L2(Ki∩Tij) ∀v ∈ Qp(K).

Next let Γh+δ
K intersect the extended half lines of AiKB,A

i
KC at B′′′, C ′′′, re-

spectively, see Fig.4 (right). Denote by ˜∆AiKBC the curved triangle on the plane

spanned by AiK , B, C bounded by two edges AiKB,A
i
KC, and one curved edge B̃C

that is the intersection Γ and the plane spanned by AiK , B,C. Then by Lemma 3.5,
(31), and the inverse trace inequality, we have for j = 1, · · · , n,

‖v‖
L2( ˜∆AiKBC)

≤ ‖v‖L2(∆AiKB
′′′C′′′)(32)

≤ T

(
1 + 2δ(di + δ)−1

1− 2δ(di + δ)−1

)3p+3/2

‖v‖L2(∆AiKB
′C′)

≤ T

(
1 + 3ηK
1− ηK

)3p+3/2

‖v‖L2(∂Tij)

≤ Cph
−1/2
K T

(
1 + 3ηK
1− ηK

)3p+3/2

‖v‖L2(Ki∩Tij).

Let F lij , l = 1, · · · , Lij , Lij ≤ 3, be the faces of Tij included in ∂K, j = 1, · · · , n,

with the convention that F 1
ij has two vertices on the edges of K. Here we recall

that Tij has at most two vertices in VK if j = 1, · · · , n. Denote by F̃ 1
ij the curved

triangle on ∂K that agrees with F 1
ij in the neighborhood of AiK . Set F̃ lij = F lij ,

l = 2, · · · , Lij . Then by (32) for F̃ 1
ij and the inverse trace inequality for F̃ lij , l =

2, · · · , Lij , and (31), we obtain for j = 1, · · · , n,

Lij∑
l=1

‖v‖L2(F̃ lij)
≤ Cph−1/2

K T

(
1 + 3ηK
1− ηK

)3p+3/2

‖v‖L2(Ki∩Tij).(33)

We recall the following trace inequality in Xiao et al. [52, Lemma 3.1]

(34) ‖v‖L2(ΓK) ≤ C‖v‖
1/2
L2(Ki)

‖v‖1/2H1(Ki)
+‖v‖L2(∂Ki\Γ̄K) ∀v ∈ H1(Ki), i = 1, 2,

where the constant C is independent of hK . Since on each face F ofK, ∂Ki∩F is the
union of one curved triangle that either is F̃ 1

ij for j = 1, · · · , n, or is included in Th+δ
ij
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for j = n+1, · · · ,mi, and at most two triangles that are faces of Tij , j = 1, · · · ,mi,
we have

∂Ki\Γ̄K ⊂
(
∪nj=1(∪Lijl=1F̃

l
ij)
)
∪
(
∪mij=n+1(∂Th+δ

ij ∩ ∂Ki)
)
.

Thus by (30) and (33), we have

‖v‖L2(∂Ki)(35)

≤ C‖v‖1/2L2(Ki)
‖v‖1/2H1(Ki)

+

n∑
j=1

Lij∑
l=1

‖v‖L2(F̃ lij)
+

mi∑
j=n+1

‖v‖L2(∂Th+δ
ij ∩∂Ki)

≤ C‖v‖1/2L2(Ki)
‖v‖1/2H1(Ki)

+ Cph
−1/2
K T

(
1 + 3ηK
1− ηK

)3p+3/2

‖v‖L2(Ki).

Finally, since Ki ⊂ (∪nj=1Tij)∪(∪mij=n+1T
h+δ
ij ), we obtain by the hp-inverse estimate

(see, e.g., Schwab [49, Theorem 4.76]), (29), and (31) that

‖∇v‖L2(Ki) ≤ Cp2h−1
K

 n∑
j=1

‖v‖L2(Tij) +

mi∑
j=n+1

‖v‖L2(Th+δ
ij )

(36)

≤ Cp2h−1
K T

(
1 + 3ηK
1− ηK

)3p+3/2

‖v‖L2(Ki).

This completes the proof by using (35). �

3.2. The unfitted finite element method. We introduce the finite element
space using the idea of “doubling of unknowns” in Hansbo and Hansbo [31]. For
any integer p ≥ 1, we define the unfitted finite element spaces

Xp(M) = {v = v1χΩ1 + v2χΩ2 : vi|K ∈ Qp(K), i = 1, 2},
Mp(M) = {q = q1χΩ1 + q2χΩ2 : qi ∈ Qp(K), i = 1, 2}.

Clearly, Xp(M) = Mp(M)3. We remark that one may use Pp(K) instead of Qp(K)
in the definition of the unfitted finite element spaces. We use Qp(K) because this
choice offers the possibility to construct conforming finite elements away from the
interface or the boundary.

Let F int denote the set of interior faces of the mesh M, FΓ = ∪K∈MΓK , and
FΣ = ∪K∈MΣK . Since hanging nodes are allowed, F ∈ F int can be part of a face
of an adjacent element. We set F = F int ∪ FΓ and F = F int ∪ FΓ ∪ FΣ. For any

subset M̂ ⊂M and F̂ ⊂ F , we use the notation

(u, v)M̂ :=
∑
K∈M̂

(u, v)K , 〈u, v〉F̂ :=
∑
F⊂F̂

〈u, v〉F ,

where (u, v)K is the inner product of L2(K) and 〈u, v〉F is the inner product of
L2(F ).

For any F ∈ F , we fix a unit normal vector nF of F with the convention that
nF is the unit outer normal to Σ if F ∈ FΣ and nF is the unit outer normal to ∂Ω1

if F ∈ FΓ. We define the piecewise constant normal vector function n ∈ L∞(F)3

by n|F = nF ∀F ∈ F .
For any v ∈ H1(M) := {v = v1χΩ1

+ v2χΩ2
: vi|K ∈ H1(K), i = 1, 2}, we define

the jump of v across F as

[[v]]F := v− − v+ ∀F ∈ F , [[v]]F := v− ∀F ∈ FΣ,

where v± is the trace of v on F in the ±nF direction.
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Denote W = µ−1∇×E. Then (27)-(28) can be rewritten as

µW −∇×E = 0, ∇×W − k2εE − ε∇ϕ = J , div (εE) = 0 in Ω,

E × n = g × n, ϕ = 0 on Σ.

Following Cockburn and Shu [19], Alvarado and Castillo [2], the LDG method is to
find (Wh,Eh, ϕh) ∈Xp(M)×Xp(M)×Mp(M) such that for any K ∈M,

(µWh, t)K − (Eh,∇× t)K − 〈nK × Êh, t〉∂K − 〈nK × Êh, [[t]]〉ΓK = 0,(37)

(Wh,∇× v)K + 〈nK × ̂̂W h,vT 〉∂K + 〈nK × ̂̂W h, [[vT ]]〉ΓK − k2(εEh,v)K(38)

+(ϕh,div (εv))K − 〈ϕ̂h, εv · nK〉∂K − 〈ϕ̂h, [[εv · n]]〉ΓK = (J ,v)K ,

(εEh,∇q)K − 〈 ̂̂εEh · nK , q〉∂K − 〈 ̂̂εEh · n, [[q]]〉ΓK = 0,(39)

for all (t,v, q) ∈Xp(M)×Xp(M)×Mp(M). Here we define the numerical fluxes

Êh|F = E+
h , ϕ̂h|F = ϕ+

h ,
̂̂W h|F = W−

h ,
̂̂εEh|F = (εEh)− on F ∈ F ,

and due to the boundary conditions n×E = n× g, ϕ = 0 on Σ,

(40) n× Êh|F = n× g, ϕ̂h|F = 0 on F ∈ FΣ.

Now integrating by parts in (37), summing the equations over K ∈ M, and using
the following elementary DG magic formula that for any a, b ∈ H1(M),

[[ab]]F = a−[[b]]F + [[a]]F b
+ = a+[[b]]F + [[a]]F b

− ∀F ∈ F ,

one can obtain

(41) (µWh, t)M − (∇h ×Eh, t)M + 〈[[n×Eh]], t− 〉F − 〈n× g, t
− 〉FΣ = 0,

where ∇h ×Eh|K = (∇×Eh|K1)χΩ1 + (∇×Eh|K2)χΩ2 on each element K ∈M.
Similarly, from (38) we deduce

(Wh,∇h × v)M + 〈n×W−
h , [[vT ]]〉F − k

2(εEh,v)M(42)

−(∇hϕh, εv)M + 〈[[ϕh]], (εv)− · n〉F = (J ,v)M.

From (39) we obtain

(43) (εEh,∇hq)M − 〈(εEh)− · n, [[q]]〉F = 0.

Define the lifting operators L : H1(M)→Xp(M), L1 : L2(Σ)→Xp(M) by

(44) (L(v), t)M = 〈[[n× v]], t− 〉F , (L1(g), t)M = 〈n× g, t− 〉FΣ ∀t ∈Xp(M).

Then (41) yields µWh = ∇h × Eh − L(Eh) + L1(g) and thus from (42), for any
v ∈Xp(M),

(µ−1(∇h ×Eh − L(Eh)),∇h × v − L(v))M − k2(εEh,v)M − (∇hϕh, εv)M(45)

+〈[[ϕh]], (εv)− · n〉F = (J ,v)M − (µ−1L1(g),∇h × v − L(v))M.

In practical computations, (43) and (45) must be implemented by adding stabliza-
tion or penalty terms.

Introduce the sesquilinear forms a : H1(M) × H1(M) → C, b : H1(M) ×
H1(M)→ C, and c : H1(M)×H1(M)→ C as follows:

a(u,v) = (µ−1(∇h × u− L(u)),∇h × v − L(v))M

+ 〈ατ−1[[n× u]], [[n× v]]〉F + 〈ατ−1[[εu · n]], [[εv · n]]〉F
b(v, q) = (εv,∇hq)M − 〈(εv)− · n, [[q]]〉F ,
c(ϕ, q) = (ττ1∇hϕ,∇hq)M + 〈τ [[ϕ]], [[q]]〉F .
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Here for any F ∈ F , α|F = α0ΘF , τ |F = hF p
−2, and τ1|F = hF p

−1, where α0 > 0
is some fixed constant,

ΘF = max
F∩K̄ 6=∅,K∈M

ΘK , ΘK =


T
(

1+3ηK
1−ηK

)6p

if K ∈MΓ ∪MΣ,

1 otherwise,

and hF = (hK + hK′)/2 if F = ∂K ∩ ∂K ′ ∈ F int for some elements K,K ′ ∈ M
and hF = hK if F = ΓK ∈ FΓ or F = ΣK ∈ FΣ for some K ∈M.

The penalty is to penalize [[n×u]] and [[εu·n]] in the H1/2 norm. The Lagrangian
multiplier ϕ is penalized in the L2 norm so that ∇hϕ in the H−1 and [[ϕ]] in the
H−1/2 norm. Lemma 4.5 below shows that the penalty of [[εu · n]] in the H1/2

norm implies the penalty of div (εu) in the L2 norm, which we have not included
explicitly in our sesquilinear form a(·, ·) to reduce the computational costs.

We remark that the penalty of [[n × u]] in the H1/2 norm is widely used in
the literature (see, e.g., Houston et al. [36], [37], and Bonito et al. [8]) in which
conforming subspaces of the broken space are used to derive optimal convergence
rates. However, since the trace space of H(curl; Ω1 ∪ Ω2) on the interface Γ is
H−1/2(div Γ; Γ), the natural penalty for [[n×u]] would be the H−1/2 norm, which
leads to optimal convergence even for solutions with lower regularity, see Brenner
et al. [9] for a nonconforming penalty method, Beurão da Veiga et al. [5] and Cao
et al. [14] for virtual element methods. The penalties for [[εu · n]], [[ϕ]], ∇hϕ used
in this paper are a special case of that in [8], in which an interior penalty method
with C0 finite elements using the penalty of div (εu) in the H−γ , ϕ in the Hγ ,
and [[εu · n]] in the H−γ+1/2 norm, where 0 ≤ γ ≤ 1, is studied. Another different
penalty of the divergence free condition for Maxwell equations is considered in
Costabel and Dauge [20]. We also remark that unfitted finite element methods for
Maxwell interface problems with piecewise smooth interfaces, whose solutions have
lower regularities, require further investigations.

It is clear that by integrating by parts and using the DG magic formula, we
obtain

(46) b(v, q) = −(∇h · (εv), q)M + 〈[[εv · n]], q+〉F ∀(v, q) ∈H1(M)×H1(M).

The unfitted finite element method for solving (27)-(28) is to find (Eh, ϕh) ∈
Xp(M)×Mp(M) such that

a(Eh,v)− b(v, ϕh)− k2(εEh,v)M = Fh(v) ∀v ∈Xp(M),(47)

b(Eh, q) + c(ϕh, q) = 0 ∀q ∈Mp(M),(48)

where Fh(v) = (J ,v)M−(µ−1L1(g),∇h×v−L(v))M+〈ατ−1n×g, [[n×v]]〉FΣ ∀v ∈
Xp(M). The well-posedness of the problem and the convergence of (Eh, ϕh) to the
solution (E, ϕ) of (27)-(28) will be considered in §4.2.

4. The finite element convergence analysis

In this section, we study the well-posedness and the convergence of the unfitted
finite element method for the time-harmonic Maxwell equations in (47)-(48). We
first prove optimal error estimates for a projection operator for the coercive Maxwell
equations in §4.1, which is used to prove the optimal error estimates for our unfitted
finite element method using the Schatz argument in §4.2.

In this section, unless otherwise stated, we will denote C > 0 the generic constant
which may depend on the wave number k and the coefficients εi, µi, i = 1, 2, but is
independent of p, hK for all K ∈M, and ηK for all K ∈MΓ ∪MΣ.
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4.1. The projection operator for coercive Maxwell equations. In this sub-
section we study a projection operator for the H(curl)-coercive Maxwell equations,
which will be used in our analysis of the problem (47)-(48) in the next subsection.
We first introduce the following DG norms: for any v ∈H1(M), q ∈ H1(M),

|v|2Xp(M) := ‖∇h × v‖2M + ‖α1/2τ−1/2[[n× v]]‖2F + ‖α1/2τ−1/2[[εv · n]]‖2F ,

‖v‖2Xp(M) := |v|2Xp(M) + ‖kv‖2M,

‖q‖2Mp(M) := ‖τ1/2τ
1/2
1 ∇hq‖2M + ‖τ1/2[[q]]‖2F .

We define the projection operator Πh : H1(M) ×H1
0 (Ω) → Xp(M) ×Mp(M) as

follows: for any (u, φ) ∈H1(M)×H1
0 (Ω), Πh(u, φ) = (uh, φh) ∈Xp(M)×Mp(M)

satisfies

a(uh − u,v) + k2(ε(uh − u),v)M − b(v, φh − φ) = 0 ∀v ∈Xp(M),(49)

b(uh − u, q) + c(φh − φ, q) = 0 ∀q ∈Mp(M).(50)

It is easy to see that the operator Πh is well defined. In fact, we only need to show
the uniqueness, for that purpose, we let (u, φ) = (0, 0). By taking v = uh in (49),
q = φh in (50), and then adding the first equation with the complex conjugate of the
second equation, we obtain easily uh = 0, φh = 0. This shows the uniqueness of the
solution to (49)-(50). We remark that thanks to the stabilization term c(·, ·), the
stability of (49)-(50) can be easily proved without considering the inf-sup condition
of b(·, ·).

The main purpose of this subsection is to show an hp-error estimate for (u, φ)−
Πh(u, φ). We first recall the following hp-approximation result in Babuška and Suri
[3, Lemma 4.5], Melenk [41, Lemma B.3].

Lemma 4.1. Let s ≥ 0 and p ≥ 1. For any K ∈ M, there exists an interpolation
operator πKhp : Hs(K)→ Qp(K) such that for any u ∈ Hs(K),

‖u− πhpK (u)‖Hj(K) ≤ C
hν−jK

ps−j
‖u‖Hs(K), 0 ≤ j ≤ s,

where ν = min(p+1, s) and the constant C is independent of hK , p, but may depend
on s.

By the multiplicative trace inequality

(51) ‖v‖L2(∂K) ≤ Ch
−1/2
K ‖v‖L2(K) + C‖v‖1/2L2(K)‖v‖

1/2
H1(K) ∀v ∈ H1(K),

and the inequality (34), we obtain from Lemma 4.1 that for i = 1, 2,

‖u− πhpK (u)‖L2(∂Ki)(52)

≤ C(‖u− πhpK (u)‖1/2L2(K)‖∇(u− πhpK (u))‖1/2L2(K) + ‖u− πhpK (u)‖L2(∂K))

≤ C
h
ν−1/2
K

ps−1/2
‖u‖Hs(K), s ≥ 1.

Lemma 4.2. There exists a constant ccoer > 0 such that |a(v,v)| ≥ ccoer|v|2Xp(M)

for all v ∈ Xp(M). The constant ccoer is independent of p, hK for all K ∈ M,
and ηK for all K ∈MΓ ∪MΣ.

Proof. By the inverse trace estimate in Lemma 3.6, there exists a constant cL > 0
independent of p, hK for all K ∈M, and ηK for all K ∈MΓ ∪MΣ such that

(53) ‖L(u)‖M ≤ cL‖α1/2τ−1/2[[n× u]]‖F ∀u ∈H1(M).
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The rest of the proof follows easily from the standard argument (see, e.g., [16,
Theorem 2.1]) with ccoer = (4 + c2L)−1. �

Lemma 4.3. Let s ≥ 1. There exists an interpolation operator Ih,p : Hs(Ω1 ∪
Ω2)→Mp(M) such that for any u ∈ Hs(Ω1 ∪ Ω2), i = 1, 2,

‖u− Ih,p(u)‖Hj(Ki) ≤ C
hν−jK

ps−j
‖ũi‖Hs(K), 0 ≤ j ≤ s,

‖u− Ih,p(u)‖L2(∂Ki) ≤ C
h
ν−1/2
K

ps−1/2
‖ũi‖Hs(K),

where ũi ∈ Hs(R3) is the extension of u|Ωi such that ‖ũi‖Hs(R3) ≤ C‖u‖Hs(Ωi).

Proof. For u = u1χΩ1
+ u2χΩ2

, ui ∈ Hs(Ωi), i = 1, 2, let ũi ∈ Hs(R3) be the
Stein extension (see, e.g., Adams and Fournier [1, Theorem 5.24]) of ui such that
‖ũi‖Hs(R3) ≤ C‖ui‖Hs(Ωi). We define Ih,p(u)|K = πKhp(ũ1)χΩ1 + πKhp(ũ2)χΩ2 ∀K ∈
M, where πKhp(ũi) is defined in Lemma 4.1. The lemma follows easily by using

Lemma 4.1 and (52). �

The following theorem is the main result of this subsection.

Theorem 4.1. Let (u, φ) ∈Hs(Ω1 ∪ Ω2)×Hs(Ω1 ∪ Ω2), s ≥ 1, we have

‖u− uh‖Xp(M) + ‖φ− φh‖Mp(M)

≤ C max
K∈M

(
Θ

1/2
K hν−1

K

ps−3/2

)(
‖u‖Hs(Ω1∪Ω2) + ‖φ‖Hs(Ω1∪Ω2)

)
.

Proof. Let (uI , φI) = (Ih,p(u), Ih,p(φ)) ∈ Xp(M) ×Mp(M). By Lemma 4.3 we
obtain easily that

‖u− uI‖Xp(M) ≤ C max
K∈M

(
Θ

1/2
K hν−1

K

ps−3/2

)
‖u‖Hs(Ω1∪Ω2),(54)

‖φ− φI‖Mp(M) ≤ C
hν

ps+1/2
‖φ‖Hs(Ω1∪Ω2),(55)

where h = maxK∈M hK . From (49)-(50) we know that

a(uh − uI ,v) + k2(ε(uh − uI),v)− b(v, φh − φI)(56)

= a(u− uI ,v) + k2(ε(u− uI),v)− b(v, φ− φI) ∀v ∈Xp(M),

b(uh − uI , q) + c(φh − φI , q) = b(u− uI , q) + c(φ− φI , q) ∀q ∈Mp(M),(57)

By (53) and the definition of the DG norms, we have

|a(u− uI ,v) + k2(ε(u− uI),v)M| ≤ C‖u− uI‖Xp(M)‖v‖Xp(M),

|c(φ− φI , q)| ≤ ‖φ− φI‖Mp(M)‖q‖Mp(M).

Next, by Lemma 3.6 and the fact that φ = 0 on Σ, it is easy to see that

|b(v, φ− φI)| ≤C‖v‖M(‖∇h(φ− φI)‖M + ‖α1/2τ−1/2[[φ− φI ]]‖F ),

|b(u− uI , q)| ≤C(‖τ−1/2τ
−1/2
1 (u− uI)‖M

+ ‖τ−1/2(εu− εuI)− · n‖F )‖q‖Mp(M).
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Now by taking v = uh − uI in (56), q = φh − φI in (57), and using the standard
argument, we have

‖uh − uI‖Xp(M) + ‖φh − φI‖Mp(M)

≤ C(‖u− uI‖Xp(M) + ‖τ−1/2τ
−1/2
1 (u− uI)‖M + ‖τ−1/2(u− uI)‖F )

+C(‖φ− φI‖Mp(M) + ‖∇h(φ− φI)‖M + ‖α1/2τ−1/2[[φ− φI ]]‖F )

≤ C max
K∈M

(
Θ

1/2
K hν−1

K

ps−3/2

)(
‖u‖Hs(Ω1∪Ω2) + ‖φ‖Hs(Ω1∪Ω2)

)
,

where we have used Lemma 4.3 and (54)-(55). This completes the proof by using
(54)-(55). �

We remark that the error estimate is optimal in h and slightly suboptimal in p
under the regularity assumption u ∈ Hs(Ω1 ∪ Ω2). For the H(curl) conforming
finite element methods on conforming meshes for solving Maxwell equations with
smooth coefficients, the optimal error estimate of the order hmin(p,s)/ps can be
obtained by using the projection-based interpolation operators in Demkowicz [25],
Melenk and Rojik [42] under the regularity assumption u ∈ Hs(curl; Ω) = {u ∈
Hs(Ω) : ∇× u ∈Hs(Ω)}.

4.2. The time-harmonic Maxwell equations. We start by studying the con-
sistency errors of the unfitted finite element method.

Lemma 4.4. Let E ∈Hs(Ω1∪Ω2), s ≥ 2, be the solution of the problem (27)-(28)
and (Eh, ϕh) ∈Xp(M)×Mp(M) be the solution of (47)-(48). Then

a(E −Eh,v) + b(v, ϕh)− k2(ε(E −Eh),v)M = R(E,v) ∀v ∈Xp(M),(58)

b(E −Eh, q)− c(ϕh, q) = 0 ∀q ∈Mp(M),(59)

where for any v ∈Xp(M), the residual R(E,v) satisfies

(60) |R(E,v)| ≤ C max
K∈M

(
Θ

1/2
K hν−1

K

ps−1

)
‖E‖Hs(Ω1∪Ω2)‖τ−1/2[[n× v]]‖F .

Proof. The proof is similar to that in §3.2 to derive the DG method. We multiply
the first equation in (1) by v ∈Xp(M) and integrate on each element K ∈M,

(µ−1∇×E,∇h × v)K + 〈nK × (µ−1∇×E),v〉∂K
+ 〈n× (µ−1∇×E), [[v]]〉ΓK − k2(εE,v)K = (J , v)K .

Summing the equations over all elements we obtain

(µ−1∇×E,∇h × v − L(v))M − k2(εE,v) = (J ,v) +R(E,v),

where R(E,v) is defined as

R(E,v) = 〈µ−1∇×E, [[n× v]]〉F − (µ−1∇×E, L(v))M ∀v ∈Xp(M).

From the definition (44), we know that L(E) = L1(g). This shows (58) by (47).
Next we multiply the second equation in (1) by q ∈ Mp(M) and integrate on

each element K ∈M,

(εE,∇q)K − 〈εE · nK , q〉∂K − 〈εE · n, [[q]]〉ΓK = 0.

Summing the equations over all elements yields b(E, q) = 0 for any q ∈ Mp(M).
This shows (59) by using (48).
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It remains to show the estimate (60) for the residual. Denote W = µ−1∇×E ∈
Hs−1(Ω1 ∪Ω2) and WI = Ih,p(W ) ∈Xp(M) the interpolation function defined in
Lemma 4.3. By the definition of the lifting operator L in (44) we know that

|R(E,v)| = |〈W −W−
I , [[n× v]]〉F − (W −WI , L(v))M|.

Let σ ∈ L∞(Ω) be a piecewise constant function σ|K = ΘK ∀K ∈ M. By taking
t = σ−1L(v) ∈Xp(M) in the definition of the lifting operator L in (44), one obtains

easily by Lemma 3.6 that ‖σ−1/2L(v)‖M ≤ C‖τ−1/2[[n× v]]‖F . Thus

|R(E,v)| ≤ C(‖τ1/2(W −W−
I )‖F + ‖σ1/2(W −WI)‖M)‖τ−1/2[[n× v]]‖F .

This shows (60) by Lemma 4.3 and thus completes the proof. �

Lemma 4.5. We have

‖∇h · (εEh)‖M ≤ CΘ1/2(‖α1/2τ−1/2[[εEh · n]]‖F + p1/2‖ϕh‖Mp(M)),

where Θ = maxK∈MΘK .

Proof. By (46) and (48) we have

(61) −(∇h · (εEh), q)M + 〈[[εEh · n]], q+〉F + c(ϕh, q) = 0.

By taking q = ∇h · (εEh) and using Lemma 3.6 and (36), we obtain

‖∇h · (εEh)‖2M
≤ C‖α1/2τ−1/2[[εEh · n]]‖F‖∇h · (εEh)‖M + ‖ϕh‖Mp(M)‖∇h · (εEh)‖Mp(M)

≤ CΘ1/2(‖α1/2τ−1/2[[εEh · n]]‖F + p1/2‖ϕh‖Mp(M))‖∇h · (εEh)‖M.
This completes the proof. �

The following lemma shows the consistency error for div (εE − εEh).

Lemma 4.6. For any ψ ∈ H1
0 (Ω), we have

|(ε(E −Eh),∇ψ)| ≤ CΘ1/2 h

p1/2
‖ψ‖H1(Ω)(‖E −Eh‖Xp(M) + ‖ϕh‖Mp(M)).

Proof. For any ψ ∈ H1
0 (Ω), let πh(ψ)|K = πKhp(ψ) ∀K ∈M, where πKhp : H1(K)→

Qp(K) is defined in Lemma 4.1. By (59), we have

(ε(E −Eh),∇ψ) = b(E −Eh, ψ)

= b(E −Eh, ψ − πh(ψ)) + c(ϕh, πh(ψ)).

Since div (εE) = 0 in Ω, [[εE ·n]]|F = 0 ∀F ∈ F , by (46), Lemma 4.5, and Lemma
4.1 we have

|(ε(E −Eh),∇ψ)| ≤ C
h

p
‖ψ‖H1(Ω)(‖∇h · (εEh)‖M + ‖α1/2τ−1/2[[εEh · n]]‖F )

+ ‖ϕh‖Mp(M)‖πh(ψ)‖Mp(M).

For any K ∈ M, by Lemma 4.1, ‖τ1/2τ
1/2
1 ∇πhψ‖L2(K) ≤ ChKp

−3/2‖ψ‖H1(K).

For any F ∈ F , since [[ψ]]F = 0 on F , by (52), ‖τ1/2[[πhψ]]‖L2(F ) = ‖τ1/2[[πhψ −
ψ]]‖L2(F ) ≤ ChF p−3/2‖ψ‖H1(ω(F )), where ω(F ) is the union of the elements having

F as one of its faces. This implies ‖πhψ‖Mp(M) ≤ Chp−3/2‖ψ‖H1(Ω) and thus

|(ε(E −Eh),∇ψ)| ≤ CΘ1/2 h

p1/2
‖ψ‖H1(Ω)(‖E −Eh‖Xp(M) + ‖ϕh‖Mp(M)).

This completes the proof. �
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Theorem 4.2. Let E ∈Hs(Ω1 ∪Ω2), s ≥ 2. If kh/p1/2 is sufficiently small, then
the problem (47)-(48) has a unique solution (Eh, ϕh) ∈ Xp(M) ×Mp(M) which
satisfies the following error estimate

(62) ‖E −Eh‖Xp(M) + ‖ϕh‖Mp(M) ≤ C max
K∈M

(
Θ

1/2
K hν−1

K

ps−3/2

)
‖E‖Hs(Ω1∪Ω2).

Proof. We only need to prove the estimate (62) under the condition of the theorem.
The uniqueness follows directly from the estimate (62) since from J = 0 in Ω and
g = 0 on Σ, we have E = 0 in Ω and thus (Eh, ϕh) = (0, 0) by (62). The existence
is a consequence of the uniqueness.

Now we show the estimate (62). Denote by (Ẽh, ϕ̃h) = Πh(E, 0), where Πh

is the projection operator for the coercive Maxwell equations defined in (49)-(50).
Then from (49)-(50) and (58)-(59) we have

a(Ẽh −Eh,v)− b(v, ϕ̃h − ϕh) + k2(ε(Ẽh −Eh),v)M(63)

= R(E,v) + 2k2(ε(E −Eh),v)M ∀v ∈Xp(M),

b(Ẽh −Eh, q) + c(ϕ̃h − ϕh, q) = 0 ∀q ∈Mp(M).(64)

By taking v = Ẽh −Eh in (63), q = ϕ̃h − ϕh in (64), we have by Lemma 4.4 that

‖Ẽh −Eh‖Xp(M) + ‖ϕ̃h − ϕh‖Mp(M)(65)

≤ C sup
06=v∈Xp(M)

|R(E,v)|+ |2k2(ε(E −Eh),v)M|
‖v‖Xp(M)

≤ C max
K∈M

(
Θ

1/2
K hν−1

K

ps−1

)
‖E‖Hs(Ω1∪Ω2) + C sup

06=v∈Xp(M)

|k2(ε(E −Eh),v)M|
‖v‖Xp(M)

.

For any v ∈Xp(M), we define ψ ∈ H1
0 (Ω) as the solution of the problem

(66) (ε∇ψ,∇q) = k(εv,∇q) ∀q ∈ H1
0 (Ω),

Denote w = kv −∇ψ, then

(67) kv = w +∇ψ, div (εw) = 0 in Ω.

Obviously, ‖ε1/2∇ψ‖L2(Ω) ≤ k‖ε1/2v‖M and ‖w‖L2(Ω) ≤ C‖kv‖M ≤ C‖v‖Xp(M).

Combining (65), Lemma 4.6, and Theorem 4.1 for estimating ‖E− Ẽh‖Xp(M) +
‖ϕ̃h‖Mp(M), we have by the triangle inequality that

‖E −Eh‖Xp(M) + ‖ϕh‖Mp(M)(68)

≤ C max
K∈M

(
Θ

1/2
K hν−1

K

ps−3/2

)
‖E‖Hs(Ω1∪Ω2)

+CΘ1/2 kh

p1/2
(‖E −Eh‖Xp(M) + ‖ϕh‖Mp(M))

+C sup
06=v∈Xp(M)

|k(ε(E −Eh),w)M|
‖v‖Xp(M)

.

Now we use the duality argument to estimate the last term in (68). Let z be the
solution of the problem

∇× (µ−1∇× z)− k2εz = εw, div (εz) = 0 in Ω,(69)

[[n× z]]Γ = 0, [[(µ−1∇× z)× n]]Γ = 0, [[εz · n]]Γ = 0 on Γ,(70)

z × n = 0 on Σ.(71)
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Since div (εw) = 0 in Ω by (67), we know by the regularity Theorem 2.1 that

(72) ‖z‖H2(Ω1∪Ω2) = ‖z̄‖H2(Ω1∪Ω2) ≤ Creg‖εw‖L2(Ω) ≤ CCreg‖v‖Xp(M).

Multiplying (69) by E −Eh and integrating by parts,

(ε(E −Eh),w)M = (µ−1∇h × (E −Eh),∇× z)M

−〈[[n× (E −Eh)]], µ−1∇× z〉F
− k2(ε(E −Eh), z)M.

Let zI = Ih,p(z) ∈Xp(M) be defined in Lemma 4.3. By (58)

a(E −Eh, zI) + b(zI , ϕh)− k2(ε(E −Eh), zI) = R(E, zI).

Thus

(ε(E −Eh),w)M(73)

= (µ−1∇h × (E −Eh),∇h × (z − zI))M
−〈[[n× (E −Eh)]], µ−1∇× z − (µ−1∇h × zI)−〉F
− k2(ε(E −Eh), z − zI)M + (µ−1∇h × (E −Eh)− L(E −Eh), L(zI))M

−〈ατ−1[[n× (E −Eh)]], [[n× zI ]]〉F − 〈ατ
−1[[ε(E −Eh) · n]], [[εzI · n]]〉F

+R(E, zI)− b(zI , ϕh) := I1 + · · ·+ I8.

By Lemma 4.3, we have

|I1 + I2 + I3| ≤ C
h

p

(
1 +

kh

p

)
‖z‖H2(Ω1∪Ω2)‖E −Eh‖Xp(M).

By (53) and Lemma 4.3,

|I4 + I5 + I6| ≤ C‖α1/2τ−1/2[[n× (z − zI)]]‖F‖E −Eh‖Xp(M)

+ ‖α1/2τ−1/2[[ε(z − zI) · n]]‖F‖E −Eh‖Xp(M)

≤ CΘ1/2 h

p1/2
‖z‖H2(Ω1∪Ω2)‖E −Eh‖Xp(M).

By Lemma 4.4 and Lemma 4.3,

|I7| ≤ C max
K∈M

(
Θ

1/2
K hν−1

K

ps−1

)
‖E‖Hs(Ω1∪Ω2)‖τ−1/2[[n× zI ]]‖F

≤ C max
K∈M

(
Θ

1/2
K hν−1

K

ps−1

)
h

p1/2
‖z‖H2(Ω1∪Ω2)‖E‖Hs(Ω1∪Ω2).

Finally, since div (εz) = 0 in Ω and [[εz · n]]Γ = 0 on Γ, we obtain by Lemma 4.3
that

|I8| ≤ (‖τ−1/2τ
−1/2
1 (zI − z)‖M + ‖τ−1/2(zI − z)‖F )‖ϕh‖Mp(M)

≤ C
h

p1/2
‖z‖H2(Ω1∪Ω2)‖ϕh‖Mp(M).

Inserting the estimates for I1, · · · , I8 into (73), we obtain by (68) and (72) that

‖E −Eh‖Xp(M) + ‖ϕh‖Mp(M)

≤ C max
K∈M

(
Θ

1/2
K hν−1

K

ps−3/2

)
‖E‖Hs(Ω1∪Ω2)

+CCregΘ1/2 kh

p1/2
(‖E −Eh‖Xp(M) + ‖ϕh‖Mp(M)).
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Therefore, if kh/p1/2 is sufficiently small, the desired estimate (62) in the theorem
is proved. This completes the proof. �

5. Numerical results

In this section, we show a numerical example to illustrate the performance of the
proposed unfitted finite element method. Let Ω = (−1, 1)3 and Ω1 = {(x1, x2, x3) ∈
R3 :

∑3
i=1 x

2
i /d

2
i < 1}, where d1 = d2 = 0.4 and d3 = 0.8, and Ω2 = Ω\Ω̄1. Set

µ1 = ε1 = 2, µ2 = ε2 = 1, and k = 1. Functions J and g are chosen such that the
exact solution E to the problem (1)-(3) is given by

E(x) = ∇×

µi(x2
1

d2
1

+
x2

2

d2
2

+
x2

3

d2
3

− 1
)2

cos(10x1)

 1
1
1

 , x ∈ Ωi, i = 1, 2.

We start with a uniform Cartesian mesh T of Ω with the mesh size h0 = 2/n
with n = 8, 16, 32, · · · . The induced mesh M satisfying Assumption (H1) and the
upper bound of the interface deviation η is constructed by using a merging algorith-
m developed by Linbo Zhang in the software platform Parallel Hierarchical Grid
(PHG) [47], which iteratively refines the interface elements and their neighboring
elements in T such that ηK ≤ η ∀K ∈ MΓ. The finite element bases for the
elements K ∈ M\MΓ are the Lagrangian interpolation polynomials through the
Gauss-Lobatto integration points. The bases for the interface elements K ∈MΓ are
L2 orthogonal functions on the maximal polyhedron inside Ki = K ∩ Ωi, i = 1, 2,
which extend a similar two-dimensional construction in [17]. High-order numerical
integration in Ki, i = 1, 2, and ΓK for K ∈ MΓ is performed by using numerical
quadrature functions in Cui et al. [24]. The resultant linear systems of equations
are solved by the preconditioned GMRES method with the overlapping additive
Schwarz method as the preconditioner implemented in PHG. We set δ0 = 1/4 in
the definition of the large element in Definition 3.2.

To choose the upper bound of the interface deviation η, we note that by Theorem

4.2, the error is of the order maxK∈M(Θ
1/2
K hpK) for smooth solutions. We know that

for the elements K away from the interface, ΘK = 1 and hK = h0, and by Lemma
3.3, ηK ≤ ChK for any K ∈MΓ. This motivates us to choose η by the equation

hp0 = βΘ1/2ηp ⇐⇒ hp0 = βT

(
1 + 3η

1− η

)3p

ηp,

where β > 0 is some fixed constant. Recall that T(t) = t +
√
t2 − 1 for t ≥ 1. In

our computations we choose β = 0.1.
Fig.5 shows the induced mesh across Γ in Ω1 in which only macro-elements

merged by more than 2 elements in T are shown, the cross-sections of the induced
mesh at x3 = 0 and x1 = 0 when h0 = 1/8. Table 1 shows the upper bound of the
interface deviation η, the number of elements of the induced mesh N , the number
of the interface elements NΓ, the number of degrees of freedom #DoFs(Xp) and
#DoFs(Mp) for Xp(M) and Mp(M), the relative error E = (‖E − Eh‖Xp(M) +
‖ϕh‖Mp(M))/‖E‖Xp(M), and the convergence order of the p-th order methods when
p = 1, 2, 3. We observe the optimal convergence of the relative error E which is in
conform with Theorem 4.2. We also observe that to achieve the same relative error,
high order method is much more efficient by requiring less number of degrees of
freedom. This shows clearly the advantage of using high order methods. We remark
that #DoFs(Xp) and #DoFs(Mp) can be further reduced if one uses conforming
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finite elements away from the interface, which will be implemented in our code in
future.

Figure 5. The induced mesh across Γ in Ω1 when h0 = 1/8, p = 1
(left), the cross-sections of the induced mesh at x3 = 0 (middle)
and x1 = 0 (right) when h0 = 1/8, p = 3.

Table 1. The optimal convergence of the unfitted finite element
method when p = 1, 2, 3.

h η N NΓ #DoFs(Xp) #DoFs(Mp) E order

p = 1

1/4 1.21e-01 5,412 1,162 157,776 52,592 5.81e-01 –

1/8 9.17e-02 14,631 2,773 417,696 139,232 2.27e-01 1.36

1/16 6.73e-02 46,978 4,981 1,247,016 415,672 1.14e-01 0.99

1/32 4.80e-02 291,789 12,524 12,722,712 4,240,904 5.66e-02 1.01

1/64 3.31e-02 2,151,108 34,363 52,451,304 17,483,768 2.84e-02 0.99

p = 2

1/4 7.50e-02 20,238 4,331 19,90,089 6,63,363 1.47e-01 –

1/8 5.40e-02 49,715 10,625 4,887,540 1,629,180 3.83e-02 1.94

1/16 3.77e-02 111,973 19,842 10,677,015 3,559,005 9.65e-03 1.99

1/32 2.54e-02 440,378 47,022 39,479,400 13,159,800 2.51e-03 1.94

1/64 1.65e-02 2,508,941 116,157 212,632,938 70,877,646 6.48e-04 1.95

p = 3

1/4 6.28e-02 30,073 6,357 6,994,560 2,331,520 3.84e-02 –

1/8 4.44e-02 68,167 15,132 15,993,408 5,331,136 5.02e-03 2.94

1/16 3.04e-02 172,040 32,484 39,268,608 13,089,536 7.25e-04 2.79

1/32 2.01e-02 546,078 71,425 118,560,576 39,520,192 9.12e-05 2.99
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