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SIXTH-ORDER COMPACT DIFFERENCING WITH STAGGERED

BOUNDARY SCHEMES AND 3(2) BOGACKI-SHAMPINE PAIRS

FOR PRICING FREE-BOUNDARY OPTIONS

CHINONSO NWANKWO∗ AND WEIZHONG DAI

Abstract. We propose a stable sixth-order compact finite difference scheme coupled with a
fifth-order staggered boundary scheme and the Runge-Kutta adaptive time stepping based on

3(2) Bogacki-Shampine pairs for pricing American options. To compute the free-boundary si-

multaneously and precisely with the option value and Greeks, we introduce a logarithmic Landau
transformation and then remove the convective term in the pricing model by introducing the delta

sensitivity, so that an efficient sixth-order compact scheme can be easily implemented. The main
challenge in coupling the sixth order compact scheme in discrete form is to efficiently account

for the near-boundary scheme. In this study, we introduce novel fifth and sixth-order Dirichlet

near-boundary schemes that are suitable for solving our model. The optimal exercise boundary
and other boundary values are approximated using a high-order analytical approximation that is

obtained from a novel fifth-order staggered boundary scheme. Furthermore, we investigate the

smoothness of the first and second-order derivatives of the optimal exercise boundary which is
obtained from the high-order analytical approximation. Coupled with the adaptive time integra-

tion method, the interior values are then approximated using the sixth order compact schemes.

As such, the expected convergence rate is reasonably achieved, and the present numerical scheme
is very fast in computation and gives highly accurate solutions with very coarse grids.

Key words. Sixth-order compact finite difference, 3(2) Bogacki and Shampine pairs, Dirichlet
and Neumann boundary conditions, options price, Delta sensitivity, optimal exercise boundary.

1. Introduction

Under risk neutral probability, the model governing the American style put op-
tions value P (S, t) and the optimal exercise boundary sf (t) can be expressed as

∂P (S, t)

∂t
− σ

2

∂2P (S, t)

∂S2
− r ∂P (S, t)

∂S
+ rP (S, t) = 0, S > sf (t), t > 0;(1)

(2) P (S, t) = E − S, S < sf (t);

(3) P (sf (t), t) = E − sf (t),
∂P (sf (t), t)

∂S
= −1;

(4) P (∞, t) = 0,
∂P (∞, t)

∂S
= 0;

(5) sf (0) = E, P (S, 0) = max(E − S, 0).

Here, S is the asset price, T is the time to maturity E is the strike price, σ is the
volatility, and r is the interest rate. It can be seen that the above model is a free
boundary problem since sf (t) varies with time. There is no closed-form solution
for this model and therefore, it must be solved using numerical or semi-analytical
methods. The solution framework for the above model can be formulated as a linear
complementary problem, with a penalty method or front-fixing approach. However,
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in a linear complementary framework also known as variational inequality and the
penalty method, constraints are imposed and it has been shown that the obtained
optimal exercise boundary is not very accurate. In the front-fixing approach [38],
one may apply the Landau transformation

(6) x = ln
S

sf (t)
, P (exsf (t), t) = U(x, t),

to (6) and obtain a fixed free-boundary equation as follows:

(7)
∂U(x, t)

∂t
− σ2

2

∂2U(x, t)

∂x2
− ξt

∂U(x, t)

∂x
+ rU(x, t) = 0, x > 0;

where

(8) ξt = r −
s′f (t)

sf (t)
− σ2

2
.

Although the free-boundary is now fixed at x = 0, it is worth observing that (7)
becomes a nonlinear partial differential equation with a singular coefficient. This is
because the derivative of the optimal exercise boundary involved in the coefficient of
the convective term is not continuous at payoff. This irregularity presents a source
of non-smoothness in the model and the convective term could further introduce
substantial errors when using numerical approximation. To remove ∂U(x,t)

∂x , we in
this study introduce the delta sensitivity W (x, t) as

(9) W (x, t) =
∂U(x, t)

∂x
.

Thus, we obtain a system of two fixed-free boundary partial differential equations
(PDEs) for the option value and delta sensitivity that is suitable for implementing
an efficient sixth-order compact scheme as follows:

(10)
∂U(x, t)

∂t
− σ2

2

∂2U(x, t)

∂x2
− ξtW (x, t) + rU(x, t) = 0, x > 0;

(11)
∂W (x, t)

∂t
− σ2

2

∂2W (x, t)

∂x2
− ξt

∂2U(x, t)

∂x2
+ rW (x, t) = 0, x > 0;

(12) U(x, t) = E − exsf (t), W (x, t) = −exsf (t), x ≤ 0;

with initial and boundary conditions:

(13) U(0, t) = E − sf (t), W (0, t) = −sf (t);

(14) U(∞, t) ∼= 0, W (∞, t) ∼= 0;

(15) U(x, 0) = 0, W (x, 0) = 0, x > 0;

(16) U(0, 0) = 0, lim
x→0+

W (x, 0) = 0.

Under an assumption of sufficient smoothness, a high-order numerical scheme can
be used to obtain a more accurate numerical solution with very coarse grids. This
feature could be beneficial in saving computational time and improving complexity
in high dimensional context. However, the non-smoothness in the transformed mod-
el hampers this possibility [1, 6, 22, 33]. Several authors have tried to implement
high-order numerical scheme for solving American options using the front-fixing ap-
proach. Hajipour and Malek [15] implemented an efficient fifth-order WENO-BDF3
scheme for solving the American options but only recovered a second-order accu-
rate solution. Tangman et al. [33] implemented a fourth-order numerical scheme
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with coordinate transformation. However, they could not recover the convergence
rate that is in good agreement with the theoretical convergence rate. Ballestra [1],
who used a second-order numerical scheme, recovered a high order convergence rate
by implementing a time-variable transformation and Richardson extrapolation. N-
wankwo and Dai [25, 26, 27] improved the non-smoothness in the transformed model
using a high-order analytical approximation. They further implemented a fourth-
order compact finite difference scheme and recovered a convergence rate that is in
good agreement with the theoretical convergence rate.

Recently, Sari and Gulen [29] implemented a sixth-order finite difference scheme
for pricing the American options model using the front-fixing approach. However,
they did not address the non-smoothness in the model, and approximated the opti-
mal exercise boundary and near-boundary points using the approach of Company
et al. [9] which is, at most, second-order accurate in space. This approach could
reduce the performance of the sixth-order finite difference scheme. Thus, Yam-
bangwai and Moshkin [39] described approaches for improving low-order accurate
Dirichlet and Neumann boundary schemes to be consistent with high-order inte-
rior schemes using deferred correction techniques. Here, we further acknowledge
the recent work of Wang et al. [35] where they implemented a deferred correc-
tion method for improving and increasing accuracy in American options using the
penalty method.

In this research work, we are particularly interested in the precise computation
of the optimal exercise boundary and its derivatives. This is because the left bound-
ary values are not exact. They are rather obtained from the numerical solution of
the optimal exercise boundary at x = 0. Hence, a precise approximation of the
optimal exercise boundary could enable us to obtain a more accurate numerical
solution of the asset option and delta sensitivity. Furthermore, the coefficient of
the convective term in the transformed model involves the derivative of the optimal
exercise boundary. It entails a strong need to further obtain a more precise solution
of the first-order derivative of the optimal exercise boundary. The question that
remains is at what cost can we achieve these possibilities. For the above purpose,
we propose a stable, fast, and very accurate sixth-order compact finite difference
scheme coupled withs third-order adaptive time stepping based on 3(2) Bogacki
and Shampine pairs [2] for pricing American options using a front-fixing approach.
Here, we pay more attention to the boundary and near-boundary schemes for ap-
proximating the optimal exercise boundary and the boundary values of both the
asset option and the delta sensitivity. We first derive novel fifth and sixth-order
Dirichlet near-boundary schemes that are suitable for approximating our model.
We then construct a dynamic fifth-order staggered boundary scheme for approxi-
mating the optimal exercise boundary and the boundary values. As such, a highly
accurate numerical solution can be obtained using a very coarse grid. The rest of
the paper is organized as follows. In section 2, we present the proposed sixth-order
compact finite difference for solving our model. In section 3, we demonstrate the
performance of our proposed method through numerical examples and comparison.
We then conclude in section 4.

2. Compact Finite Difference Scheme

Our computational domain is defined on [0, xmax] × [0, T ]. The asset price do-
main [0, xmax] is a truncated domain that replaces the semi-positive infinite domain
[0,∞). It has been shown that only negligible error is introduced [9] because the
options value vanishes rapidly as x increases. Here, we implement an adaptive time
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stepping on the time domain. For the space domain, if we denote xj as a grid point,
h as the step size, and nx as the number of the grid points, then we obtain

(17) xi = ih, h =
xmax

nx
, i = 0, 1, · · · , nx.

We denote the numerical solution of the optimal exercise boundary, asset options,
and delta sensitivity as snf , uni , and wni , respectively.

2.1. Sixth order compact finite difference scheme. We first present a sixth-
order compact finite difference scheme for approximating the option value, delta
sensitivity, and optimal exercise boundary simultaneously. From (13), one may
see that there exists a relationship between the optimal exercise boundary and the
boundary values of the asset option and delta sensitivity. Hence, we can compute
the boundary values from the optimal exercise boundary. To this end, we introduce
new fifth- and sixth-order near-boundary schemes as follows:

f(x2, ·) =f(x1, ·) + h
∂f(x1, ·)
∂x

+
h2

2!

∂2f(x1, ·)
∂x2

+
h3

3!

∂3f(x1, ·)
∂x3

+
h4

4!

∂4f(x1, ·)
∂x4

+
h5

5!

∂5f(x1, ·)
∂x5

+
h6

6!

∂6f(x1, ·)
∂x6

+
h7

7!

∂7f(x1, ·)
∂x7

+O(h8),(18)

f(x0, ·) =f(x1, ·)− h
∂f(x1, ·)
∂x

+
h2

2!

∂2f(x1, ·)
∂x2

− h3

3!

∂3f(x1, ·)
∂x3

+
h4

4!

∂4f(x1, ·)
∂x4

− h5

5!

∂5f(x1, ·)
∂x5

+
h6

6!

∂6f(x1, ·)
∂x6

− h7

7!

∂7f(x1, ·)
∂x7

+O(h8).(19)

Adding them together and then dividing it by h2 gives

f(x0, ·)− 2f(x1, ·) + f(x2, ·)
h2

=
∂2f(x1, ·)
∂x2

+
2h2

4!

∂4f(x1, ·)
∂x4

+
2h4

6!

∂6f(x1, ·)
∂x6

+O(h6).(20)

Here, if we substitute the following forward finite difference scheme into (20)

(21) h2 ∂
4f(x1, ·)
∂x4

= 2
∂2f(x1, ·)
∂x2

− 5
∂2f(x2, ·)
∂x2

+ 4
∂2f(x3, ·)
∂x2

− ∂2f(x4, ·)
∂x2

+O(h4),

we obtain

14
∂2f(x1, ·)
∂x2

− 5
∂2f(x2, ·)
∂x2

+ 4
∂2f(x3, ·)
∂x2

− ∂2f(x4, ·)
∂x2

=
12

h2

f(x0, ·)− 2f(x1, ·) + f(x2, ·)
h2

+O(h4).(22)

The above fourth-order scheme is the same as the one presented in the work of
Zhao [41] and Zhao et al. [40, 42] from which we draw some inspiration to ex-
tend beyond fourth-order accuracy. Zhao et al. [40, 42] also presented several
fourth-order Dirichlet and Neumann near-boundary schemes that are more suit-
able for approximating partial differential equations and partial integro differential
equations arising in the options pricing models. However, when we approximated
our model using the sixth-order combined compact scheme presented in [41], we
observed that the numerical accuracy deteriorates as the step size gets smaller.
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Notwithstanding, we borrowed insight from their other works [40, 42] to obtain
novel fifth and sixth-order Dirichlet near-boundary schemes. To achieve at least
fifth order accuracy near the boundary for i = 1, we consider the following two
forward finite difference approximations

h2 ∂
4f(x1, ·)
∂x4

=
35

12

∂2f(x1, ·)
∂x2

−26

3

∂2f(x2, ·)
∂x2

+
19

2

∂2f(x3, ·)
∂x2

− 14

3

∂2f(x4, ·)
∂x2

+
11

3

∂2f(x5, ·)
∂x2

+O(h5),(23)

h2 ∂
6f(x1, ·)
∂x6

=
∂2f(x1, ·)
∂x2

− 4
∂2f(x2, ·)
∂x2

+ 6
∂2f(x3, ·)
∂x2

− 4
∂2f(x4, ·)
∂x2

+
∂2f(x5, ·)
∂x2

+O(h5).(24)

Substituting (23) and (24) into (20), we obtain

897

60

∂2f(x1, ·)
∂x2

− 528

60

∂2f(x2, ·)
∂x2

+
582

60

∂2f(x3, ·)
∂x2

− 288

60

∂2f(x4, ·)
∂x2

+
57

60

∂2f(x5, ·)
∂x2

=
12

h2

f(x0, ·)− 2f(x1, ·) + f(x2, ·)
h2

+O(h5).(25)

Furthermore, to achieve sixth-order accuracy near the boundary for i = 1, we
consider the following forward finite difference approximation

h2 ∂
4f(x1, ·)
∂x4

=
15

4

∂2f(x1, ·)
∂x2

− 77

6

∂2f(x2, ·)
∂x2

+
107

6

∂2f(x3, ·)
∂x2

− 13
∂2f(x4, ·)
∂x2

+
61

12

∂2f(x5, ·)
∂x2

− 5

6

∂2f(x6, ·)
∂x2

+O(h6),(26)

h2 ∂
6f(x1, ·)
∂x6

= 3
∂2f(x1, ·)
∂x2

− 14
∂2f(x2, ·)
∂x2

+ 26
∂2f(x3, ·)
∂x2

− 24
∂2f(x4, ·)
∂x2

+ 11
∂2f(x5, ·)
∂x2

− 2
∂2f(x6, ·)
∂x2

+O(h6).(27)

Substituting (26) and (27) into (20), we obtain

1902

120

∂2f(x1, ·)
∂x2

− 1596

120

∂2f(x2, ·)
∂x2

+
2244

120

∂2f(x3, ·)
∂x2

− 1656

120

∂2f(x4, ·)
∂x2

+
654

120

∂2f(x5, ·)
∂x2

− 108

120

∂2f(x6, ·)
∂x2

=
12

h2

f(x0, ·)− 2f(x1, ·) + f(x2, ·)
h2

+O(h6).

(28)
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Subsequently, for i = nx − 1, we have

897

60

∂2f(xnx−1, ·)
∂x2

− 528

60

∂2f(xnx−2, ·)
∂x2

+
582

60

∂2f(xnx−3, ·)
∂x2

− 288

60

∂2f(xnx−4, ·)
∂x2

+
57

60

∂2f(xnx−5, ·)
∂x2

=
12

h2

f(xnx−2, ·)− 2f(xnx−1, ·) + f(xnx−1, ·)
h2

+O(h5),(29)

1902

120

∂2f(xnx−1, ·)
∂x2

− 1596

120

∂2f(xnx−2, ·)
∂x2

+
2244

120

∂2f(xnx−3, ·)
∂x2

− 1656

120

∂2f(xnx−4, ·)
∂x2

+
654

120

∂2f(xnx−5, ·)
∂x2

− 108

120

∂2f(x6, ·)
∂x2

=
12

h2

f(xnx−2, ·)− 2f(xnx−1, ·) + f(xnx
, ·)

h2
+O(h6).(30)

with f(xnx , ·) = 0 due to the far-right boundary. On the other hand, for i =
2, · · · , nx − 2, we employ the well-known sixth-order compact scheme

2

11

∂2f(xi−1, ·)
∂x2

+
∂2f(xi, ·)
∂x2

+
2

11

∂2f(xi+1, ·)
∂x2

=
3

44h2
f(xi−2, ·) +

12

11h2
f(xi−1, ·)−

51

22h2
f(xi, ·) +

12

11h2
f(xi+1, ·)

+
3

44h2
f(xi+2, ·) +O(h6).(31)

In matrix-vector form, the discrete system of two equations is presented as follows:

(32) B5,6u
′′ = Ahu + fu,h, B5,6w

′′ = Ahw + fw,h.

Here, B5,6 ∈ {B5, B6} and

Ah =
1

h2



−24 12 0 0 0 0 · · · 0 0
12
11 − 51

22
12
11

3
44 0 0 · · · 0 0

3
44

12
11 − 51

22
12
11

3
44 0 · · · 0 0

0 3
44

12
11 − 51

22
12
11

3
44 · · · 0 0

...
...

...
. . .

. . .
. . .

...
...

...
0 0 · · · 3

44
12
11 − 51

22
12
11

3
44 0

0 0 · · · 0 3
44

12
11 − 51

22
12
11

3
44

0 0 · · · 0 0 3
44

12
11 − 51

22
12
11

0 0 · · · 0 0 0 0 12 −24


,
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B5 =



897
60 − 528

60
582
60 − 288

60
57
60 0 · · · 0 0

2
11 1 2

11 0 0 0 · · · 0 0
0 2

11 1 2
11 0 0 · · · 0 0

0 0 2
11 1 2

11 0 · · · 0 0
...

...
...

. . .
. . .

. . .
...

...
...

0 0 · · · 0 2
11 1 2

11 0 0
0 0 · · · 0 0 2

11 1 2
11 0

0 0 · · · 0 0 0 2
11 1 2

11
0 0 · · · 0 57

60 − 288
60

582
60 − 528

60
897
60


,

B6 =



1902
120 − 1596

120
2244
120 − 1656

120
654
120 − 108

120 · · · 0 0
2
11 1 2

11 0 0 0 · · · 0 0
0 2

11 1 2
11 0 0 · · · 0 0

0 0 2
11 1 2

11 0 · · · 0 0
...

...
...

. . .
. . .

. . .
...

...
...

0 0 · · · 0 2
11 1 2

11 0 0
0 0 · · · 0 0 2

11 1 2
11 0

0 0 · · · 0 0 0 2
11 1 2

11
0 0 · · · − 108

120
654
120 − 1656

120
2244
120 − 1596

120
1902
120


,

fu,h =
1

h2



12un0
3
44u

n
0

0
0
...
0
0

3
44u

n
nx

12unnx


, fw,h =

1

h2



12wn0
3
44w

n
0

0
0
...
0
0

3
44w

n
nx

12wnnx


.

We would love to emphasize that the fourth, fifth and sixth-order Dirichlet near-
boundary schemes we derived above are more suitable for our numerical approxima-
tion when we compared them with the one in the work of Mehra [24]. Furthermore,

it could easily be seen that we have avoided ∂2f(0,·)
∂x2 in the presented schemes. This

is a very important feature to observe because of the behavior of the first and
second-order derivatives of the option value at the payoff. When we used the sixth
order Dirichlet near-boundary scheme in the work of Mehra [24] for approximating
our model, we obtained numerical divergence. It is on this notion that our interest
was spurred to derive new fifth and sixth-order Dirichlet near-boundary schemes
suitable for our discrete system. Further observation reveals that Ah is dependent
on h while the entries of the matrix B5 is constant. However, Ah is diagonally
dominant.

2.2. Dynamic and fifth-order staggered exercise boundary scheme. Here,
we dynamically construct a fifth-order staggered boundary scheme which will allow
us to manipulate how we use grid points arbitrarily near the left boundary when
approximating the optimal exercise boundary, and the boundary values of the asset
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option and delta sensitivity. To this end, we first introduce the following Taylor
series expansion at the left boundary as follows:

f(h1, ·) =f(0, ·) + a1
∂f(0, ·)
∂x

+ a2
∂2f(0, ·)
∂x2

+ a3
∂3f(0, ·)
∂x3

+ a4
∂4f(0, ·)
∂x4

+ a5
∂5f(0, ·)
∂x5

+ a6
∂6f(0, ·)
∂x6

+ a7
∂7f(0, ·)
∂x7

+O(h8),(33)

f(h2, ·) =f(0, ·) + b1
∂f(0, ·)
∂x

+ b2
∂2f(0, ·)
∂x2

+ b3
∂3f(0, ·)
∂x3

+ b4
∂4f(0, ·)
∂x4

+ b5
∂5f(0, ·)
∂x5

+ b6
∂6f(0, ·)
∂x6

+ b7
∂7f(0, ·)
∂x7

+O(h8),(34)

f(h3, ·) =f(0, ·) + c1
∂f(0, ·)
∂x

+ c2
∂2f(0, ·)
∂x2

+ c3
∂3f(0, ·)
∂x3

+ c4
∂4f(0, ·)
∂x4

+ c5
∂5f(0, ·)
∂x5

+ c6
∂6f(0, ·)
∂x6

+ c7
∂7f(0, ·)
∂x7

+O(h8),(35)

f(h4, ·) =f(0, ·) + d1
∂f(0, ·)
∂x

+ d2
∂2f(0, ·)
∂x2

+ d3
∂3f(0, ·)
∂x3

+ d4
∂4f(0, ·)
∂x4

+ d5
∂5f(0, ·)
∂x5

+ d6
∂6f(0, ·)
∂x6

+ d7
∂7f(0, ·)
∂x7

+O(h8),(36)

f(h5, ·) =f(0, ·) + e1
∂f(0, ·)
∂x

+ e2
∂2f(0, ·)
∂x2

+ e3
∂3f(0, ·)
∂x3

+ e4
∂4f(0, ·)
∂x4

+ e5
∂5f(0, ·)
∂x5

+ e6
∂6f(0, ·)
∂x6

+ e7
∂7f(0, ·)
∂x7

+O(h8),(37)

where hi = γih and

(38) ai =
γi1h

i

i!
, bi =

γi2h
i

i!
, ci =

γi3h
i

i!
, di =

γi4h
i

i!
, ei =

γi5h
i

i!
.

Here, γ1, γ2, γ3, γ4, and γ5 are arbitrary and can be varied to control the distribution
of the grid points when approximating the optimal exercise boundary. We leverage
this feature to manipulate the distribution of grid points around the left boundary
when computing the boundary values, hence presenting a high-order dynamic and
staggered boundary scheme. Denote

(39) i1 =
b7
a7
, j1 =

c7
b7
, k1 =

d7

c7
, l1 =

e7

d7
.
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If we multiply (33) by i1 and subtract it from (34), we obtain

i1f(h1, ·)− f(h2, ·) = (i1 − 1)f(0, ·) + (a1i1 − b1)
∂f(0, ·)
∂x

+ (a2i2 − b2)
∂2f(0, ·)
∂x2

+

+ (a3i3 − b3)
∂3f(0, ·)
∂x3

+ (a4i4 − b4)
∂4f(0, ·)
∂x4

+ (a5i5 − b5)
∂5f(0, ·)
∂x5

+ (a6i6 − b6)
∂6f(0, ·)
∂x6

+O(h8),(40)

j1f(h2, ·)− f(h3, ·) = (j1 − 1)f(0, ·) + (b1j1 − c1)
∂f(0, ·)
∂x

+ (b2j2 − c2)
∂2f(0, ·)
∂x2

+

+ (b3j3 − c3)
∂3f(0, ·)
∂x3

+ (b4j4 − c4)
∂4f(0, ·)
∂x4

+ (b5j5 − c5)
∂5f(0, ·)
∂x5

+ (b6j6 − c6)
∂6f(0, ·)
∂x6

+O(h8),(41)

k1f(h3, ·)− f(h4, ·) = (k1 − 1)f(0, ·) + (c1k1 − d1)
∂f(0, ·)
∂x

+ (c2k2 − d2)
∂2f(0, ·)
∂x2

+

+ (c3k3 − d3)
∂3f(0, ·)
∂x3

+ (c4k4 − d4)
∂4f(0, ·)
∂x4

+ (c5k5 − d5)
∂5f(0, ·)
∂x5

+ (c6k6 − d6)
∂6f(0, ·)
∂x6

+O(h8),(42)

l1f(h4, ·)− f(h5, ·) = (l1 − 1)f(0, ·) + (d1l1 − e1)
∂f(0, ·)
∂x

+ (d2l2 − e2)
∂2f(0, ·)
∂x2

+

+ (d3l3 − e3)
∂3f(0, ·)
∂x3

+ (d4l4 − e4)
∂4f(0, ·)
∂x4

+ (d5l5 − e5)
∂5f(0, ·)
∂x5

+ (d6l6 − e6)
∂6f(0, ·)
∂x6

+O(h8).(43)

Continuing similarly, the following dynamic weights and a fifth-order staggered
boundary scheme are then obtained as follows:

−s0,1

h2
f(0, ·) +

s1,1

h2
f(1, ·)− s2,1

h2
f(2, ·) +

s3,1

h2
f(3, ·)− s4,1

h2
f(4, ·) + f(5, ·) =

v1,1

h

∂f(0, ·)
∂x

+ v2,1
∂2f(0, ·)
∂x2

+ v3,1h
∂3f(0, ·)
∂x3

+O(h5),(44)
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where

s0,1 = i4(i3[i2(i1 − 1)− (j1 − 1)]− [j2(j1 − 1)− (k1 − 1)])

− (j3[j2(γ2j1 − γ3)− (k1 − 1)]− [k2(k1 − 1)− (l1 − 1)]),(45)

(46) s1,1 = i4i3i2i1, s2,1i4i3i2 + i4i3j1 + i4j2j1 + j3j2j1,

(47) s3,1 = i4i3 + i4j2 + i4k1 + j3k1 + j3j2 + k2k1, s4,1 = i4 + j3 + k2 + l1,

v1,1 = i4(i3[i2(γ1i1 − γ2)− (γ2j1 − γ3)]− [j2(γ2j1 − γ3)− (γ3k1 − γ4)])

− (j3[j2(γ2j1 − γ3)− (γ3k1 − γ4)]− [k2(γ3k1 − γ4)− (γ4l1 − γ5)]),(48)

v2,1 =
1

2!
i4(i3[i2(γ2

1 i1 − γ2
2)− (γ2

2j1 − γ2
3)]− [j2(γ2

2j1 − γ2
3)− (γ2

3k1 − γ2
4)])

− 1

2!
(j3[j2(γ2

2j1 − γ2
3)− (γ2

3k1 − γ2
4)]− [k2(γ2

3k1 − γ2
4)− (γ2

4 l1 − γ2
5)]),(49)

v3,1 =
1

3!
i4(i3[i2(γ3

1 i1 − γ3
2)− (γ3

2j1 − γ3
3)]− [j2(γ3

2j1 − γ3
3)− (γ3

3k1 − γ3
4)])

− 1

3!
(j3[j2(γ3

2j1 − γ3
3)− (γ3

3k1 − γ3
4)]− [k2(γ3

3k1 − γ3
4)− (γ3

4 l1 − γ3
5)]),(50)

Here,

(51) i2 =
b6j1 − c6
a6i1 − b6

, j2 =
c6k1 − d6

b6j1 − c6
, l2 =

d6l1 − e6

c6k1 − d6
,

(52) i3 =
j2(b5j1 − c5)− (c5k1 − d5)

i2(a5i1 − b5)− (b5j1 − c5)
, j3 =

k2(c5k1 − d5)− (d5l1 − e5)

j2(b5j1 − c5)− (c5k1 − d5)
,

(53) i3 =
j3[j2(b4j1 − c4)− (c4k1 − d4)]− [k2(c4k1 − d4)− (d4l1 − e4)]

i3[i2(a4i1 − b4)− (b4j1 − c4)]− [j2(b4j1 − c4)− (c4k1 − d4)]
,

It can be seen that the truncation error is given as

(54) R = Cγih
8 +O(h9),

where

Cγi =
1

8!
i4(i3[i2(γ8

1 i1 − γ8
2)− (γ8

2j1 − γ8
3)]− [j2(γ8

2j1 − γ8
3)− (γ8

3k1 − γ8
4)])

− 1

8!
(j3[j2(γ8

2j1 − γ8
3)− (γ8

3k1 − γ8
4)]− [k2(γ8

3k1 − γ8
4)− (γ8

4 l1 − γ8
5)]).(55)

Notice that the parameter on the right-hand side of (53) is independent of h. It is
important to further mention that even though we have O(h8) convergence, it is up
to a constant factor Cγi which is γi dependent. For a uniform scheme, this constant
is fixed. However, for the present high-order staggered scheme and observing (38)
and (51)-(53), it can easily be seen that Cγi can vary substantially based on the
controlling and adjustable factors γ1, γ2. γ3, γ4, and γ5 which represent the grid
points distribution. The constant factor Cγi , depending on how small or large it
is, can enable us to obtain a more or less accurate numerical solution with coarse
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grids. However, asymptotically, the high convergence rate may depend on the
smoothness of the function and the implemented high-order scheme. Finding an
optimal grid point distribution that minimizes Cγi can substantially enable a much
more accurate numerical solution with a large step size. This process could further
be trained to be adaptive. We hope to investigate this phenomenon in our future
work. Heuristically, a simple computation reveals the following parameters for Cγi
based on the grid points distribution

(56) Cγi = 0.77143, γ1 = 2, γ2 = 3, γ3 = 4, γ4 = 5, γ5 = 6;

(57) Cγi = 1.78646, γ1 = 2, γ2 = 4, γ3 = 5, γ4 = 6, γ5 = 7;

(58) Cγi = 95.23810, γ1 = 2, γ2 = 4, γ3 = 6, γ4 = 8, γ5 = 10.

From (56)-(58), it can easily be seen that the value of Cγi for grid points distribution
(2,3,4,5,6) is the smallest. This gain can improve accuracy in a non-asymptotic
scenario when the grid is coarse. We provide our further observation based on this
positive indication in the numerical example.

Furthermore, we also observed that shifting away from the left boundary at least
up to the first two grid points when implementing the Taylor series expansion for
computing the optimal exercise boundary provides a more efficient result. Hence,
we always select x̄ ≥ 2h and x̄� xmax. If we choose a uniform step size, we obtain
the following uniform fifth-order boundary scheme as

625f(x̄, ·)−625

4
f(2x̄, ·) +

1024

27
f(3x̄, ·)− 625

64
f(4x̄, ·) + f(5x̄, ·) =

874853

1728
f(0, ·)

+
60095

144
x̄
∂f(0, ·)
∂x

+ x̄2 3425

24

∂2f(0, ·)
∂x2

+ x̄3 125

6

∂3f(0, ·)
∂x3

+O(h8).(59)

The motivation for implementing the present high order dynamic and staggered
scheme is to enable us to select grid points very close to the left boundary point
location in such a way that we still shift away from the left boundary at least
up to the first two grid points when implementing the both the extrapolated and
conventional Taylor series expansion. We may refer the reader to Figures 1 and 2.

To compute the optimal exercise boundary with precise accuracy using our high
order staggered boundary scheme, we consider the square root transformation first
presented in the work of Kim et al. [17] for solving American options with front-
fixing. We further refer the reader to the work of Kim et al. [17, 18], Lee [19], and
Nwankwo and Dai [25, 26, 27] on various implementations of this transformation for
improving accuracy and recovering convergence rate when pricing American style
options. The square root function with fixed free-boundary is presented as follows:

(60) Q(x, t) =
√
U(x, t)− E − sf (t), ∀x.

Kim et al. [17] and Lee [19] analysed the characteristic of Q(x, t) and showed
that the function has a Lipschitz character and exhibits non-degeneracy and non-
singularity near the optimal exercise boundary. It is well known that these degener-
acy and singularity deteriorate the accuracy of American options. Furthermore, the
authors proved in their work that sufficient large angle exists between the exercise
region and continuation region such that

(61) m1 ≤
∂Q(0, t)

∂x
≤ m2, m1,m2 > 0.
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Here, we consider up to the third-order derivative (in space) of the function at the
left boundary point with

(62) Q(0, t) = 0,
∂Q(0, t)

∂x
=
rE

σ
,

∂2Q(0, t)

∂x2
=

2βt
√
rE

3σ3
,

(63)
∂3Q(0, t)

∂x3
=

2β2
t

√
rE

3σ5
+
r
√
rE

2σ3
,

Substituting (62) and (63) for ∂f(0,t)
∂x , ∂2f(0,t)

∂x2 , and ∂3f(0,t)
∂x3 on the right-hand-side

of (44), we obtain

−s0,1

h2
f(0, ·) +

s1,1

h2
f(1, ·)− s2,1

h2
f(2, ·) +

s3,1

h2
f(3, ·)− s4,1

h2
f(4, ·) + f(5, ·)

= v1,1
rE

σh
+ v2,1

2βt
√
rE

3σ3
+ v3,1h

(
2β2

t

√
rE

3σ5
+
r
√
rE

2σ3

)
+O(h5),(64)

The optimal exercise boundary is then computed as follows [17]:

(65)
dsf (t)

dt
= gh,tsf (t), gh,t =

$ −
√
$2 − 4ακh,t

2α
;

where

(66) α =
h3
√
rE

3σ5s2
f (t)

v3,1, $ =
2h2
√
rE

3σ3sf (t)
v2,1 +

4h3
√
rE

3σ5sf
v3,1;

κh,t =−M5,1 +
h
√
rE

σ
v1,1 −

h2
(
r − σ2

2

)√
rE

3σ3
v2,1

+
2h3

(
r − σ2

2

)2√
rE

3σ5
v3,1 +

h3r
√
rE

2σ3
v3,1,(67)

(68) M5,1 = s1,1Q(h1, ·)− s2,1Q(h2, ·) + s3,1Q(h3, ·)− s4,1Q(h4, ·) + s5,1Q(h5, ·).

Furthermore, we can generate another high-order staggered boundary scheme with
fewer stencils. To this end, following a similar approach as presented in (33)-(44),
we obtain:

−s0,2

h2
f(0, ·) +

s1,2

h2
f(1, ·)− s2,2

h2
f(2, ·) +

s3,2

h2
f(3, ·)− s4,2

h2
f(4, ·) + f(5, ·) =

v1,2

h

∂f(0, ·)
∂x

+ v2,2
∂2f(0, ·)
∂x2

+ v3,1
∂3f(0, ·)
∂x3

+O(h5),(69)

where

(70) i5 =
b6
a6
, j5 =

c6
b6
, k5 =

d6

c6
, l5 =

e6

d6
;

(71) i6 =
b5j5 − c5
a5i5 − b5

, j6 =
c5k5 − d5

b5j5 − c5
, k6 =

d5l5 − e5

c5k5 − d5
;

(72) i7 =
j6(b4j5 − c4)− (c4k5 − d4)

i6(a4i5 − b4)− (b4j5 − c4)
, j7 =

k6(c4k5 − d4)− (d4l5 − e4)

j6(b4j5 − c4)− (c4k5 − d4)
,
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(73) i8 =
j7[j6(b3j5 − c3)− (c3k5 − d3)]− [k6(c3k5 − d3)− (d3l5 − e3)]

i7[i6(a3i5 − b3)− (b3j5 − c3)]− [j6(b3j5 − c3)− (c3k5 − d3)]
,

s0,2 =i8(i7[i6(i5 − 1)− (j5 − 1)−

(k5 − 1)])− (j7[j6(j5 − 1)− (k5 − 1)]

− (j7[j6(j5 − 1)− (k5 − 1)]− [k6(k5 − 1)− (l5 − 1)]),(74)

(75) s1,2 = i8i7i6i5, s2,2 = i8i7i6 + i8i7i5 + i7j6j5 + j7j6j5,

(76) s3,2 = i8i7 + i8i6 + i8k5 + j7k5 + j7j6 + +k6k5, s4,2 = i8 + j7 + k6 + l5,

v1,2 =i8(i7[i6(γ1i5 − γ2)− (γ2j5 − γ3)−

(γ3k5 − γ4)])− (j7[j6(γ2j5 − γ3)− (γ3k5 − γ4)]

− (j7[j6(γ2j5 − γ3)− (γ3k5 − γ4)]− [k6(γ3k5 − γ4)− (γ4l5 − γ5)]),(77)

v2,2 =
1

2!
i8(i7[i6(γ2

1 i5 − γ2
2)− (γ2

2j5 − γ2
3)−

(γ2
3k5 − γ2

4)])− (j7[j6(γ2
2j5 − γ2

3)− (γ2
3k5 − γ2

4)]

− 1

2!
(j7[j6(γ2

2j5 − γ2
3)− (γ2

3k5 − γ2
4)]− [k6(γ2

3k5 − γ2
4)− (γ2

4 l5 − γ2
5)]).(78)

Subtracting (44) from (69), we obtain the second staggered high-order boundary
scheme

−s0,1 − s0,2

h2
f(0, ·) +

s1,1 − s1,2

h2
f(1, ·)− s2,1 − s2,2

h2
f(2, ·) +

s3,1 − s3,2

h2
f(3, ·)

− s4,1 − s4,2

h2
f(4, ·) + f(5, ·) =

v1,1 − v1,2

h

∂f(0, ·)
∂x

+ (v2,1 − v2,2)
∂2f(0, ·)
∂x2

+ (v3,1 − v3,2)
∂3f(0, ·)
∂x3

+O(h5),(79)

Substituting (62) into the right-hand side of (79)

−s0,1 − s0,2

h2
f(0, ·) +

s1,1 − s1,2

h2
f(1, ·)− s2,1 − s2,2

h2
f(2, ·) +

s3,1 − s3,2

h2
f(3, ·)

− s4,1 − s4,2

h2
f(4, ·) + f(5, ·) = (v1,1 − v1,2)

rE

σh
+ (v2,1 − v2,2)

2βt
√
rE

3σ3

+ (v3,1 − v3,2)h

(
2β2

t

√
rE

3σ5
+
r
√
rE

2σ3

)
+O(h5),(80)
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Figure 1. High order boundary scheme with uniform grid points
x̄ = 2h. The grid points in red represent those involved in the
computation of the optimal exercise boundary.

Figure 2. High order staggered boundary scheme with grid point
distribution (γ1, γ2, γ3, γ4) = (2, 3, 4, 5). The grid points in red
represent those involved in the computation of the optimal exercise
boundary.

It is important to mention that the present high-order staggered boundary schemes
with 4 and 5 stencils can be used to generate arbitrary weights based on the selected
grid point distribution. It gives us a control of the non-uniformity of our scheme and
the choice of grid point by simply adjusting the parameter γ1, γ2, γ3, γ4, γ5. This
approach can further be extended to generate boundary schemes with lower-order
accuracy when a low-order interior scheme is implemented.

2.3. Runge-Kutta 3(2) Bogacki and Shampine Adaptive Time-Stepping.
Several Runge-Kutta embedded pairs have been proposed and implemented in work-
s of literature [2, 3, 4, 5, 11, 12, 13, 16, 21, 25, 26, 27, 28, 30, 31, 32, 34, 36, 37].
Here, we consider 3(2) Bogacki-Shampine embedded pairs in [2] which are third-
order accurate. The authors argued that it outperforms other existing third-order
accurate methods with the second-order embedded method. Furthermore, efficient
implementation of 5(4) embedded pairs for solving systems of diffusion-convective-
reactive partial differential equations arising in the American options problem was
described in the works of Nwankwo and Dai [25, 26, 27]. We further refer the reader
to their works. Here, we slightly present some minor enhancements. The compu-
tational procedure for the implementation of the sixth-order compact scheme with
3(2) Bogacki-Shampine pairs is given as follows:

With slight abuse of notations, we let the two semi-discrete coupled systems of equa-
tions representing the asset option and delta sensitivity with the optimal exercise
boundary be given as

∂un

∂t
= Lnu,

∂wn

∂t
= Lnw;

Lnu =
σ2

2
B−1

5

(
Ahu

n + fnu,h
)

+ βnwn − run,

Lnw =
σ2

2
B−1

5

(
Ahw

n + fnw,h
)

+ βnB−1
5

(
Ahu

n + fnu,h
)
− rwn.

Ist computational stage:

Lnsf = gnhs
n
f , βn =

Lnsf
snf

+ ν, ν = r − σ2

2
;
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Lnu =
σ2

2
B−1

5

(
Ahu

n + fnu,h
)

+ βnwn − run,

Lnw =
σ2

2
B−1

5

(
Ahw

n + fnw,h
)

+ βnB−1
5

(
Ahu

n + fnu,h
)
− rwn,

s
n+ 1

4

f = snf +
1

2
kLnsf , un+ 1

4 = un +
1

2
kLnu, wn+ 1

4 = wn +
1

2
kLnw.

2nd computational stage:

Ln
s
n+1

4
f

= g
n+ 1

4

h s
n+ 1

4

f , βn+ 1
4 =
Ln+ 1

4
sf

s
n+ 1

4

f

+ ν;

L
n+ 1

4
u =

σ2

2
B−1

5

(
Ahu

n+ 1
4 + f

n+ 1
4

u,h

)
+ βn+ 1

4 wn+ 1
4 − run+ 1

4 ,

L
n+ 1

4
w =

σ2

2
B−1

5

(
Ahw

n+ 1
4 + f

n+ 1
4

w,h

)
+ βn+ 1

4B−1
5

(
Ahu

n+ 1
4 + f

n+ 1
4

u,h

)
− rwn+ 1

4 ,

s
n+ 2

4

f = snf +
3

4
kLnsf , un+ 2

4 = un +
3

4
kL

n+ 1
4

u , wn+ 2
4 = wn +

1

2
kL

n+ 1
4

w ,

3rd computational stage:

Ln
s
n+2

4
f

= g
n+ 2

4

h s
n+ 2

4

f , βn+ 2
4 =
Ln+ 2

4
sf

s
n+ 2

4

f

+ ν;

L
n+ 2

4
u =

σ2

2
B−1

5

(
Ahu

n+ 2
4 + f

n+ 2
4

u,h

)
+ βn+ 2

4 wn+ 2
4 − run+ 2

4 ,

L
n+ 2

4
w =

σ2

2
B−1

5

(
Ahw

n+ 2
4 + f

n+ 2
4

w,h

)
+ βn+ 2

4B−1
5

(
Ahu

n+ 2
4 + f

n+ 2
4

u,h

)
− rwn+ 2

4 ,

s
n+ 3

4

f = snf + k

(
2

9
Lnsf +

1

3
Ln+ 1

4
sf +

4

9
Ln+ 2

4
sf

)
.

un+ 3
4 = un + k

(
2

9
Lnu +

1

3
Lun+ 1

4 +
4

9
L
n+ 2

4
u

)
.

wn+ 3
4 = wn + k

(
2

9
Lnw +

1

3
Lwn+ 1

4 +
4

9
L
n+ 2

4
w

)
,

4th computational stage:

Ln
s
n+3

4
f

= g
n+ 3

4

h s
n+ 3

4

f , βn+ 3
4 =
Ln+ 3

4
sf

s
n+ 3

4

f

+ ν;

L
n+ 3

4
u =

σ2

2
B−1

5

(
Ahu

n+ 3
4 + f

n+ 3
4

u,h

)
+ βn+ 3

4 wn+ 3
4 − run+ 3

4 ,

L
n+ 3

4
w =

σ2

2
B−1

5

(
Ahw

n+ 3
4 + f

n+ 3
4

w,h

)
+ βn+ 3

4B−1
5

(
Ahu

n+ 3
4 + f

n+ 3
4

u,h

)
− rwn+ 3

4 ,

sn+1
f = s

n+ 3
4

f , s̄n+1
f = snf + k

(
7Lnsf + 6Ln+ 1

4
sf + 8Ln+ 2

4
sf + 3Ln+ 3

4
sf

)
,

un+1 = un+ 3
4 , ūn+1 = un + k

(
7Lnu + 6Lun+ 1

4 + 8L
n+ 2

4
u + 3L

n+ 3
4

u

)
,

wn+1 = wn+ 3
4 , w̄n+1 = wn + k

(
7Lnw + 6Lwn+ 1

4 + 8L
n+ 2

4
w + 3L

n+ 3
4

w

)
.

An error threshold is defined as follows:

(81) eu = ||ūn+1−un+1||∞, ew = ||w̄n+1−wn+1||∞, esf = |s̄n+1
f −sn+1

f |,
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such that we update the new time step at each time level based on the criterion
below

(82) knew = ρkold

(
ε

max{eu, ew, esf }

) 1
2

, max{eu, ew, esf } < ε;

(83) knew = ρkold

(
ε

max{eu, ew, esf }

) 1
3

, max{eu, ew, esf } ≥ ε.

Here, ε is a given tolerance and 0 < ρ < 1. Moreover, knew represent the optimal
time step if max{eu, ew, esf } < ε and as such, knew = k and the obtained numerical
solutions of the optimal exercise boundary, asset option, and delta sensitivity are
accepted. If max{eu, ew, esf } ≥ ε, we obtain a new time step based on (83) and
go back to stage 1. The process continues till if max{eu, ew, esf } < ε is achieved.
In the numerical example section, we will vary ρ and observe its effect on the
computational time and accuracy of our numerical approximations.

2.4. Second-order derivative of the optimal exercise boundary. In this s-
tudy, we are more interested to investigate the profiles of the derivatives of the
optimal exercise boundary after improving it using the high-order analytical ap-
proximation as presented in Subsection 2.2. We consider up to the second-order
derivative of the optimal exercise boundary. For the second-order derivative of the
optimal exercise boundary, we need to consider some extra derivations as follows:

(84) U(x, t) = Q2(x, t) + E − exsf (t),

(85) Ux3(0, t) = −
4
(
r − σ2

2

)
rE

σ4
− 4rE

σ4sf (t)

dsf (t)

dt
− sf (t),

(86) Ux3t(0, t) = − 4rE

σ4sf (t)

d2sf (t)

dt2
+

4rE

σ4s2
f (t)

(
dsf (t)

dt

)2

− dsf (t)

dt
,

(87) Ux4(0, t) =
8β2rE

σ6
+

4r2E

σ4
− sf (t),

(88) Ux5(0, t) = −80β3rE

9σ8
+

4r2E

σ4
− 80β3rE

9σ8
+

10
√
rE

σ
Ux4(0, t)− sf (t).

Differentiating the transformed American options model in (7) thrice and substi-
tuting (85)-(88), we obtain

− 4rE

σ4sf (t)

ds2
f (t)

dt2
+

4rE

σ4s2
f (t)

(
dsf (t)

dt

)2

− dsf (t)

dt

− σ2

2

(
−80β3rE

9σ8
+

4r2E

σ4
− 80β3rE

9σ8
+

10
√
rE

σ
Ux4(0, t)− sf (t)

)

− βt
(

8β2rE

σ6
+

4r2E

σ4
− sf (t)

)
+ r

(
−4rβt

σ4

)
= 0.(89)
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Solving for Qx4(0, t), we obtain

Qx4(0, t) =− 4
√
rE

5σ5sf (t)

ds2
f (t)

dt2
+

4
√
rE

5σ5s2
f (t)

(
dsf (t)

dt

)2

− 32β3
t

√
rE

45σ7
− 14βtr

√
rE

15σ5
.

(90)

Furthermore, as mentioned earlier, x̄ � x and if we chose x̄ = 2h and ignore
Q(0, ·) = 0 another high-order analytical approximation for approximating the
second-order derivative of the optimal exercise boundary is introduced as follows:

1024Q(x̄, ·)− 96Q(2x̄, ·) +
1024

81
Q(3̄x, ·)−Q(4x̄, ·) =

23380

27
x̄Qx(0, ·)

+
3320

9
x̄2Qx2(0, ·) +

800

9
x̄3Qx3(0, ·) +

32

3
x̄4Qx4(0, ·) +O(h8).(91)

We then compute the second-order derivative of the optimal exercise boundary as
follows:

d2sf (t)

dt2
= −%(t)

(
M4,h −

23380x̄
√
rE

27σ

)

− %(t)

[
6640x̄2βt

√
rE

27σ3
− 800x̄3

9

(
2β2

t

√
rE

3σ5
+
r
√

(rE

2σ3

)]

− 32%(t)

3

[
4x̄4
√
rE

5σ5s2
f (t)

(
dsf (t)

dt

)2

− 32x̄4β3
t

√
rE

45σ7
− 14x̄4βtr

√
rE

15σ5

]
.(92)

Here,
(93)

%(t) =
5σ5sf (t)

4
√
rE

, M4,h = 1024Q(x̄, ·)− 96Q(2x̄, ·) +
1024

81
Q(3̄x, ·)−Q(4x̄, ·).

Because the equations for computing the first and second-order derivatives of the
optimal exercise boundary do not directly involve time discretization, we can easily
compute them using the numerical solutions of the asset option at the nth−time
level based on (64) or (80) and (92).

3. Numerical Examples and Discussion

In this section, we consider three cases to verify and validate the performance of
our present method with respect to computational cost, numerical accuracy, and
recovering numerical convergence rate. To this end, we consider the following cases
with short, medium, and a long time to maturity:

(94) E = 100, r = 0.05, σ = 0.2, T = 0.5, 3.0;

(95) E = 100, r = 0.1, σ = 0.3, T = 1.0;

(96) E = 100, r = 0.08, σ = 0.2, T = 3.0.

Here, we use varying large tolerances and step sizes and adapt our time stepping to
be optimal at each time level based on the given tolerance and step size. Our code
is written in MATLAB R2022b with a laptop speed of 1.7GHz. For convenience,
we label our method as follows:
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• Sixth-order compact scheme with fifth-order near-boundary scheme and
5-stencil fifth-order staggered boundary scheme-CC-55 (γ1, γ2, γ3, γ4, γ5).
• Sixth-order compact scheme with fifth-order near-boundary scheme and

4-stencil fifth-order staggered boundary scheme-CC-54 (γ1, γ2, γ3, γ4).

3.1. Convergence Rate Result. We computed the convergence rate of our nu-
merical scheme using the case in (94) and verify how well it agrees with its theoreti-
cal counterpart. Because our adaptive scheme is third-order accurate, we computed
the convergence rate of our numerical scheme using SSPRK3 which has strong sta-
bility property [14, 29] and is third-order accurate. We computed the convergence
rates of the asset option, delta sensitivity, optimal exercise boundary, and the de-
rivative of the optimal exercise boundary with k = 10−6. It is worth mentioning
that to the best of our knowledge, that this is the first time the convergence rate of
the first derivative of the optimal exercise boundary is accounted for in literature.
The results were displayed in Tables 1-2.

From Tables 1-2, one can easily see that the obtained convergence rate is in very
good agreement with the implemented scheme as the step size decreases. It is better
than the one we obtained in our previous work [25, 26, 27] where we implemented
a fourth-order compact scheme. Also, a very high convergence rate was obtained
for the first-order derivative of the optimal exercise boundary. This is because we
computed the latter with the high-order analytical approximation. Furthermore, in
most cases, the error decreases a bit faster in grid points distributions (γ1, γ2, γ3,
γ4) = (2, 3, 4, 5) and (γ1, γ2, γ3, γ4, γ5) = (2, 3, 4, 5, 6) when compared with (γ1, γ2,
γ3, γ4) = (2, 4, 5, 6), (γ1, γ2, γ3, γ4, γ5) = (2, 4, 5, 6, 7),(γ1, γ2, γ3, γ4) = (2, 4, 6, 8),
and (γ1, γ2, γ3, γ4, γ5) = (2, 4, 6, 8, 10).

3.2. Numerical solution and comparison. We computed the numerical solu-
tion of the asset option for the case in (96). The benchmark value was obtained
from the work of Cox et al. [10]. The results were displayed in Table 3. We also
computed the numerical solutions of the optimal exercise boundary and its deriva-
tives with varying distributions of grid points. The numerical solutions were listed
in Table 8 for the case in (95). We displayed the plot profiles of the optimal exercise
boundary with its first and second-order derivatives in Figure 3 for the case in (96).
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Table 1. Maximum error and convergence rates in space with CC-55.

h Max. error Convergence rate Max. error Convergence rate
(2,3,4,5,6)

Options value Delta sensitivity
0.1 − − − −
0.05 6.080× 10−1 − 4.683× 100 −
0.025 4.807× 10−2 3.085 7.148× 10−1 2.804
0.0125 8.726× 10−4 6.359 1.177× 10−2 7.263
0.00625 2.643× 10−5 5.045 1.882× 10−4 4.608
Average CR 4.829 4.891

Opt. exer. boundary Opt. exer. boundary derivative
0.1 − − − −
0.05 6.080× 10−1 − 6.509× 100 −
0.025 4.807× 10−2 3.661 9.320× 10−1 2.804
0.0125 2.879× 10−4 7.384 6.066× 10−3 7.263
0.00625 1.502× 10−5 4.261 2.487× 10−4 4.608
Average CR 5.012 4.891

(2,4,5,6,7)
Options value Delta sensitivity

0.1 − − − −
0.05 1.322× 100 − 7.833× 101 −
0.025 6.621× 10−2 4.330 7.034× 10−1 3.477
0.0125 2.117× 10−3 4.967 1.623× 10−2 5.437
0.00625 9.130× 10−5 4.536 5.578× 10−4 4.863
Average CR 4.611 4.592

Opt. exer. boundary Opt. exer. boundary derivative
0.1 − − − −
0.05 1.919× 100 − 1.1047× 101 −
0.025 4.854× 10−2 5.118 7.723× 10−1 3.761
0.0125 2.945× 10−3 4.456 5.129× 10−3 7.234
0.00625 1.327× 10−4 4.363 8.326× 10−5 5.945
Average CR 4.646 5.647

(2,4,6,8,10)
Options value Delta sensitivity

0.1 − − − −
0.05 1.919× 100 − 1.041× 101 −
0.025 7.847× 10−2 4.612 8.004× 10−1 3.700
0.0125 3.241× 10−3 4.598 2.363× 10−3 5.081
0.00625 1.407× 10−4 4.525 8.436× 10−4 4.808
Average CR 4.578 4.529

Opt. exer. boundary Opt. exer. boundary derivative
0.1 − − − −
0.05 1.919× 100 − 1.183× 101 −
0.025 4.854× 10−2 5.304 6.956× 10−1 4.088
0.0125 2.945× 10−3 4.043 1.302× 10−2 5.739
0.00625 1.327× 10−4 4.472 2.758× 10−4 5.561
Average CR 4.606 5.620
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Table 2. Maximum error and convergence rates in space with CC-54.

h Max. error Convergence rate Max. error Convergence rate
(2,3,4,5)

Options value Delta sensitivity
0.1 − − − −
0.05 1.111× 100 − 6.890× 101 −
0.025 7.607× 10−2 3.868 7.542× 10−1 3.192
0.0125 1.682× 10−2 5.499 1.177× 10−2 5.824
0.00625 6.193× 10−5 4.764 1.882× 10−4 5.059
Average CR 4.710 4.692

Opt. exer. boundary Opt. exer. boundary derivative
0.1 − − − −
0.05 1.111× 100 − 9.188× 100 −
0.025 5.407× 10−2 4.461 8.443× 10−1 3.444
0.0125 1.245× 10−3 5.341 9.840× 10−2 9.796
0.00625 5.416× 10−5 4.523 8.988× 10−4 3.448
Average CR 4.775 5.562

(2,4,5,6)
Options value Delta sensitivity

0.1 − − − −
0.05 1.962× 100 − 1.061× 101 −
0.025 7.814× 10−2 4.650 8.087× 10−1 3.713
0.0125 3.567× 10−3 4.453 2.569× 10−2 4.976
0.00625 1.495× 10−4 4.577 8.988× 10−4 4.837
Average CR 4.578 4.529

Opt. exer. boundary Opt. exer. boundary derivative
0.1 − − − −
0.05 1.962× 100 − 1.167× 101 −
0.025 4.747× 10−2 5.369 8.213× 10−1 3.829
0.0125 3.291× 10−3 3.851 1.635× 10−2 5.650
0.00625 1.408× 10−4 4.547 2.938× 10−4 5.799
Average CR 4.589 5.093

(2,4,6,8)
Options value Delta sensitivity

0.1 − − − −
0.05 1.919× 100 − 1.041× 101 −
0.025 7.847× 10−2 4.876 8.004× 10−1 3.852
0.0125 3.241× 10−3 4.068 2.363× 10−3 4.678
0.00625 1.407× 10−4 4.585 8.436× 10−4 4.805
Average CR 4.510 4.205

Opt. exer. boundary Opt. exer. boundary derivative
0.1 − − − −
0.05 2.389× 100 − 1.192× 101 −
0.025 4.758× 10−2 5.650 9.817× 10−1 3.602
0.0125 4.596× 10−3 3.372 2.603× 10−2 5.237
0.00625 1.915× 10−4 4.585 5.015× 10−4 5.698
Average CR 4.535 4.846
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Table 3. Comparison of the asset option for (96) using ε = 10−4.

S Benchmark value [10]
100 6.9320
110 4.1550

(γ1, γ2, γ3, γ4) = (2,3,4,5)
h = 0.06 h = 0.03 h = 0.01

100 6.9316 6.9323 6.9322
110 4.1551 4.1552 4.1550

(γ1, γ2, γ3, γ4) = (2,4,6,8)
100 6.9310 6.9324 6.9322
110 4.1543 4.1553 4.1550

(γ1, γ2, γ3, γ4) = (3,4,5,6)
h = 0.06 h = 0.03 h = 0.01

100 6.9294 6.9325 6.9322
110 4.1524 4.1553 4.1550

(γ1, γ2, γ3, γ4) = (2,4,6,8)
100 6.9212 6.9326 6.9322
110 4.1427 4.1554 4.1550

Table 4. Comparison of the optimal exercise boundary and its
derivatives for (95) using CC-54 and ε = 10−4.

(γ1, γ2, γ3, γ4) = (2,3,4,5)
h 76.16 6.9320
sf (t) 76.16 76.16 76.16
s′f (t) -4.59 -4.52 -4.51

s′′f (t) 61.53 30.65 10.20

(γ1, γ2, γ3, γ4) = (2,4,6,8)
sf (t) 76.15 76.16 76.16
s′f (t) -4.63 -4.54 -4.51

s′′f (t) 96.75 48.11 15.11

(γ1, γ2, γ3, γ4) = (3,4,5,6)
sf (t) 76.15 76.16 76.16
s′f (t) -4.68 -4.52 -4.51

s′′f (t) 58.90 29.28 9.74

(γ1, γ2, γ3, γ4) = (3,5,7,9)
h = 0.06 h = 0.03 h = 0.01

sf (t) 76.14 76.16 76.16
s′f (t) -4.47 -4.51 -4.51

s′′f (t) 93.65 46.74 15.53

(γ1, γ2, γ3, γ4) = (3,6,9,12)
sf (t) 76.12 76.16 76.16
s′f (t) -4.48 -4.52 -4.51

s′′f (t) 128.63 64.25 21.33
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Table 5. CPU time(s) and options price value for SSPRK3 using
(96), h = 0.02, ρ = 0.9, CC-54, and (γ1, γ2, γ3, γ4) = (2, 4, 6, 8).
True value for S = 90 is 11.6976.

CPU time(s)
k = 4.0× 10−3 k = 8.0× 10−4 k = 4.0× 10−4

17 43 85
S = 90

11.6967 11.6976 11.6976

Table 6. CPU time(s) and options price value for 3(2) Bogacki-
Shampine pairs using (96), h = 0.02, ρ = 0.9, CC-54, and
(γ1, γ2, γ3, γ4) = (2, 4, 6, 8). True value for S = 90 is 11.6976.

ε = 10−2

CPU time(s) S = 90 min . k ave. k max . k
11 11.6976 4.9× 10−4 7.1× 10−3 1.6× 10−2

Table 7. Comparing total CPU time(s) and options price value
with 3(2) Bogacki-Shampine pairs using (96), h = 0.02, ε = 10−2,
CC-54, and (γ1, γ2, γ3, γ4) = (2, 4, 6, 8). True value for S = 90 is
11.6976.

ρ CPU time(s) S = 90
0.20 8 11.6976
0.30 7 11.6976
0.40 10 11.6976
0.50 12 11.6976
0.55 11 11.6976
0.60 10 11.6976
0.65 11 11.6976
0.70 12 11.6976
0.75 12 11.6976
0.80 11 11.6976
0.85 12 11.6976

We observed from Tables 3 and 4 that the obtained results are very close to
the benchmark value with very coarse grids. Furthermore, when the grid is very
coarse, we observed that the numerical solution from the grid points distribution
(γ1, γ2, γ3, γ4) =(2,3,4,5) is the most accurate when compared with the solution
obtained from (γ1, γ2, γ3, γ4) =(2,4,6,8) ,(3,4,5,6), and (3,6,9,12) using the most
coarse grid. Furthermore, In Table 4, it is important to observe how the numerical
solution of the optimal exercise boundary and its derivatives behave based on the
grid point distribution using the high-order staggered boundary scheme we present-
ed in this work. For instance, the numerical solution using (γ1, γ2, γ3, γ4) =(2,3,4,5)
is almost the same as the one obtained from (γ1, γ2, γ3, γ4) =(3,4,5,6). Also, the
numerical solution obtained with grid points distribution (γ1, γ2, γ3, γ4) =(2,4,6,8)
is like the one obtained from (γ1, γ2, γ3, γ4) =(3,5,7,9). As we have already men-
tioned, when the number of stencils increases, the high-order staggered boundary
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schemes leverage the position to keep away from the left boundary as much as pos-
sible and still use grid points very close to the latter for computing the boundary
values and the optimal exercise boundary. Hence, they enhance the accuracy of the
numerical approximations of the optimal exercise boundary, asset option, and their
derivatives.

Table 8. Comparison of the American put option price with some
of the existing methods based on front-fixing technique.

S WK [38] FF [9] H-FF [29]
h = 0.001 h = 0.008

80 20.2825 20.2799 20.2806
90 13.3117 13.3077 13.3079
100 8.7135 8.7107 8.7105
110 5.6867 5.6695 5.6823
120 3.7001 3.6863 3.6961

(γ1, γ2, γ3, γ4) = (2,4,6,8,10)
h = 0.05 h = 0.025 h = 0.01

80 20.2940 20.2863 20.2820
90 13.3091 13.3078 13.3077
100 8.7128 8.7108 8.7107
110 5.6848 5.6827 5.6826
120 3.6986 3.6966 3.6964

(γ1, γ2, γ3, γ4, γ5) = (2,3,4,5,6)
h = 0.05 h = 0.025 h = 0.01

80 20.2938 20.2863 20.2820
90 13.3083 13.3077 13.3077
100 8.7118 8.7107 8.7107
110 5.6838 5.6827 5.6826
120 3.6976 3.6965 3.6964

For instance, in our previous work [27] where we implemented a fourth-order
compact finite difference scheme and fifth-order RK-Dormand and Prince embed-
ded pairs [11] (which is one of 5(4) Runge-Kutta pairs that provides more accurate
results), we obtained sf (t) = 76.17 when h = 0.06. However, as shown in Table
4 with the grid point distribution (γ1, γ2, γ3, γ4) =(2,3,4,5), we obtained exactly
sf (t) = 76.17 when h = 0.06. This shows that our sixth order scheme with the
grid point distribution (γ1, γ2, γ3, γ4) =(2,3,4,5) provides more accurate numerical
solutions. In general, our numerical scheme yields highly accurate numerical ap-
proximations of the boundary values, asset option, and delta sensitivity with very
coarse grids and large tolerance up to ε = 10−2.

We also compared the total CPU time(s) and numerical accuracy between the
SSPRK3 scheme and 3(2) Bogacki-Shampine pairs with varying large tolerances.
Furthermore, we compared the total CPU time(s) and the accuracy of our numerical
approximation with 3(2) Bogacki-Shampine pairs and varying ρ. The results were
listed in Tables 5-7. For the computational time, when h = 0.02 and ρ = 0.9 we
observed from Tables 5 and 6 that 3(2) Bogacki-Shampine embedded pairs is more
than four times faster than SSPRK3 in achieving the same numerical accuracy. It
implies that we can achieve greater accuracy with fast computation, very coarse
grids, and large tolerance using 3(2) RK-Bogacki-Shampine pairs.
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Figure 3. Profile of the option value, delta sensitivity, optimal ex-
ercise boundary, and the derivatives of the optimal exercise bound-
ary with a long time to maturity (96), CC-54, h = 0.0125, ρ = 0.3,
ε = 10−6, and (γ1, γ2, γ3, γ4) = (2,4,6,8).

Furthermore, in Table 7 using h = 0.02, it can be easily seen that when ρ is varied
and for ρ = 0.3, we obtained the smallest total CPU total time of 7.0 seconds which
is more than six times faster than SSPRK3 with the same accuracy. It is worth
mentioning that we could further enhance our numerical result using higher-order
embedded pairs. However, in this work, we focus on lower-order pairs which involve
fewer functions evaluation.

For further comparison, we investigated the performance of our proposed method
as compared with the results obtained from the existing methods that implement-
ed front-fixing techniques which include the method work of Wu and Kwok [38],
Company et al. [9], and Sari and Gulen [29]. Here, we considered the parameter in
(94) for T = 3.0. The obtained result for this experiment was presented in Table 6.
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Figure 4. Profile of the optimal time step for each time level with
CC-54, h = 0.02, ε = 10−2, (γ1, γ2, γ3, γ4) = (2,3,4,5) and 3(2) RK-
Bogacki and Shampine embedded pairs. Here, K = 100, σ = 0.2,
and σ = 0.06, 0.07, 0.08, 0.09, 0.1.

Figure 5. Profile of the optimal time step for each time level with
CC-54, h = 0.02, ε = 10−2, (γ1, γ2, γ3, γ4) = (2,3,4,5) and 3(2) RK-
Bogacki and Shampine embedded pairs. Here, K = 100, r = 0.08,
and σ = 0.1, 0.2, 0.3, 0.4, 0.5.

Figure 6. Profile of the optimal time step for each time level with
CC-54, h = 0.02, ε = 10−2, (γ1, γ2, γ3, γ4) = (2,3,4,5) and 3(2) RK-
Bogacki and Shampine embedded pairs. Here, σ = 0.2, r = 0.08,
and K = 100, 80, 60, 40, 20.
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We observed that with a reasonable coarse grid, our results are in close agreement
with those obtained from existing methods.

Furthermore, we observe from Figure 3 that the numerical solutions of the first
and second-order derivatives of the optimal exercise boundary are very smooth. It
can easily be seen that s′′f (t) > 0 for all t > 0. Please see the work of Chen and

Chadam [6, 7] and Chen et al. [8] based on the convexity of the optimal exercise
boundary. Reflecting on the high convergence rate we obtained from the first-order
derivative of the optimal exercise boundary, we can argue that our method is very
efficient in approximating the optimal exercise boundary and its derivatives. It
remains to be seen the importance of the first and second-order derivatives of the
optimal exercise boundary in the pricing and hedging options.

Figures 4-6 show the plot profiles of the optimal time step for each time level. We
would like to observe the sensitivities of the optimal time step for each time level
with respect to the interest rate, volatility, and the strike price. This is because the
option value and its numerical approximation strongly depend on these parameters.
By formulating how we select the time step adaptively for each time level, we are
interested in how the optimal time step for each time level changes across these
important parameters when the latter is varied.

We observed from Figures 4-6 that the optimal time step selection is almost
independent of the varying strike prices and interest rates but strongly dependent
on the varying volatilities. If the other parameters are fixed as shown in Figure 5,
a decrease in volatility value results in large time step selection for each time level
and vice versa. Without the implementation of adaptive time stepping, likely, the
stability of our numerical scheme may strongly depend on the volatility parameter.
Like other RK-embedded pairs we have implemented in our previous works, one can
easily observe in Figures 4-6 that a very small time step is required at the payoff
and its neighbourhood for any set of parameters chosen. This is one of the well-
known features of the Runge-Kutta adaptive time integration methods that allow
the selection of small or large time steps in regions where there is high variation,
oscillation, and/or discontinuity or sufficient smoothness, respectively. It is much
expected because of the observable irregularity in this pricing model which occurs
at the payoff.

4. Conclusion

We have developed a numerical method for pricing American options with opti-
mal exercise boundary. In details, we employ a logarithmic Landau transformation
to front-fix the computational free boundary at x = 0. However, a discontinuous co-
efficient that involves the derivative of the optimal exercise boundary is introduced
in the convective term, which could deteriorate the accuracy of the American op-
tions. To overcome this challenge, we remove the convective term by introducing
the delta sensitivity to obtain a new two-equation model coupling the option value
and the delta sensitivity, as well as the optimal exercise boundary. We then employ
a standard sixth-order compact finite difference scheme for both equations in the
interior grid points and develop a novel fifth order staggered boundary scheme to
incorporate the compact scheme. The optimal exercise boundary and other bound-
ary values are approximated using a high-order analytical approximation that is
obtained from the staggered boundary scheme. As such, a stable sixth-order com-
pact finite difference scheme coupled with a fifth-order staggered boundary scheme
and the Runge-Kutta adaptive time stepping based on 3(2) Bogacki-Shampine pairs
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is obtained for pricing the American options. The precise values of the optimal ex-
ercise boundary, its derivatives, and the asset options and the delta sensitivity can
be obtained with a rather coarse grid. Numerical results show that the expected
convergence rate is obtained, and the present scheme is very fast in computation
and give highly accurate solutions with very coarse grids.
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