
INTERNATIONAL JOURNAL OF c⃝ 2024 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 21, Number 5, Pages 739–763 doi: 10.4208/ijnam2024-1030

IMPROVING THE EXPRESSIVE POWER OF DEEP NEURAL

NETWORKS THROUGH INTEGRAL ACTIVATION

TRANSFORM

ZEZHONG ZHANG, FENG BAO, AND GUANNAN ZHANG∗

Abstract. The impressive expressive power of deep neural networks (DNNs) underlies their
widespread applicability. However, while the theoretical capacity of deep architectures is high,
the practical expressive power achieved through successful training often falls short. Building on

the insights gained from Neural ODEs, which explore the depth of DNNs as a continuous variable,
in this work, we generalize the traditional fully connected DNN through the concept of continuous
width. In the Generalized Deep Neural Network (GDNN), the traditional notion of neurons in

each layer is replaced by a continuous state function. Using the finite rank parameterization of the
weight integral kernel, we establish that GDNN can be obtained by employing the Integral Activa-
tion Transform (IAT) as activation layers within the traditional DNN framework. The IAT maps
the input vector to a function space using some basis functions, followed by nonlinear activation in

the function space, and then extracts information through the integration with another collection
of basis functions. A specific variant, IAT-ReLU, featuring the ReLU nonlinearity, serves as a
smooth generalization of the scalar ReLU activation. Notably, IAT-ReLU exhibits a continuous
activation pattern when continuous basis functions are employed, making it smooth and enhancing

the trainability of the DNN. Our numerical experiments demonstrate that IAT-ReLU outperforms
regular ReLU in terms of trainability and better smoothness.

Key words. Integral transform, generalized neural network, continuous ReLU activation pattern,
expressive power of neural network.

1. Introduction

Deep learning, particularly deep neural networks (DNNs), has not only achieved
remarkable success in traditional computer science fields such as computer vision
[1] and natural language processing [2] but has also gained rapid popularity in other
scientific communities, such as numerical partial differential equations (PDEs) [3]
and biology [4]. Their cross-disciplinary popularity stems from their remarkable
ability as highly expressive black-box function approximators. With high enough
expressive power, as long as we can define a desired input-output map by a loss
function, they can approximate such functions through brute force optimization,
making them useful in many applications.

Despite the work of Hornik showing the universal approximation ability of DNNs
with one hidden layer [5], in practice, selecting an appropriate architecture with
good hyperparameters, such as width and depth, is crucial. The architecture choice
plays a significant role in achieving good practical expressive power, which refers to
the model’s trainability through gradient-based optimization [6, 7]. In other words,
even with a large number of parameters, a poorly chosen architecture can result in
limited practical expressive power, especially for deep architectures. By considering
the model depth as a continuous variable, Neural ODEs, as introduced in [8], offer

Received by the editors on December 13, 2023 and, accepted on May 16, 2024.

2000 Mathematics Subject Classification. 35R35, 49J40, 60G40.
∗Corresponding author.

739



740 Z. ZHANG, F. BAO, AND G. ZHANG

improved expressive power without increasing the number of parameters. In this
continuous depth setting, the forward propagation is formulated as an integral with
respect to the depth variable.

Inspired by the idea of continuous depth, in this work, we introduce a General Deep
Neural Network (GDNN) that explores the concept of continuous width. This ap-
proach is also rooted in the classical conceptual extension in functional analysis,
where finite-dimensional vectors are generalized to infinite-dimensional univariate
functions and matrix-vector multiplications become integral transforms. With this
concept, in GDNN, the state vector is regarded as a (continuous) function defined
over the interval [-1,1]. Consequently, the weight matrices and bias vectors are also
generalized to weight integral kernels and bias functions. The forward propagation
of GDNN becomes recursively integrating the activated state functions with the
weight kernel. A normal DNN can be viewed as a discretization of GDNN, where
the standard weight matrices and bias vectors are obtained by evaluating the weight
integral kernel and bias function on 2D and 1D mesh points, respectively. There
are many existing methods to parameterize the weight kernel [9], and in this paper,
we mainly focus on the finite rank parameterization of the weight kernel. Under
this parameterization, GDNN is equivalent to a traditional DNN with the Integral
Activation Transform (IAT), which serves as a multivariate (Rd → Rd) nonlinear
activation layer. In IAT, the input vector is first transformed into a state func-
tion by treating its elements as coefficients of some predetermined basis functions.
Then, a pointwise activation is applied to the state function. Finally, the output
vector is obtained by integrating the activated state function with another set of
basis functions. We also show that by choosing rectangular functions as the basis
functions, the IAT simplifies to the standard element-wise activation.

When the pointwise nonlinear activation is ReLU, we obtain a variant termed IAT-
ReLU. Intriguingly, it is observed that both IAT-ReLU and element-wise ReLU
exhibit a common characteristic where the activation matrix in the forward map is
identical to the gradient. For example, applying ReLU element-wise to an input vec-
tor z = [z1, ..., zd]

T ∈ Rd can be expressed as ϕ(z) = diag([1z1>0(z), ...,1zd>0(z)])z,
and the activation matrix diag([1z1>0(z), ...,1zd>0(z)]) in the forward map is also
the gradient. This connection can be further elucidated through Euler’s theorem
for homogeneous functions, as both ReLU and IAT-ReLU are classified as homoge-
neous functions.

At first, it might seem unsurprising that IAT-ReLU becomes equivalent to ReLU
when employing rectangular basis functions. However, our findings indicate that
this equivalence persists regardless of the basis functions chosen, effectively expand-
ing the scope for developing ReLU-like activation functions beyond the limitations
of rectangular basis functions. In IAT-ReLU, the activation matrix is continuously
determined by the activation pattern D(z), a compact subset of the interval [−1, 1].
This activation pattern is defined as D(z) = {s ∈ [−1, 1] : pT (s)z ≥ 0}, where z
represents the input vector and p(s) = [p1(s), . . . , pd(s)]

T is a set of selected ba-
sis functions. With rectangular basis functions, the activation pattern comprises
fixed sub-intervals, each aligning with the support of a rectangular basis function.
The inclusion of these intervals depends on the sign of z, leading to a piecewise
constant activation pattern, which also makes the gradient of ReLU discontinu-
ous. Conversely, when using continuous basis functions, the activation pattern in
IAT-ReLU is not confined to predefined sub-intervals. Instead, it can form infin-
itely many subsets within the domain [−1, 1]. Furthermore, we demonstrate that



IMPROVING THE EXPRESSIVE POWER OF DEEP NEURAL NETWORKS 741

the activation pattern can vary continuously with the input z, presenting multiple
advantages:

• A continuous pattern leads to a continuous gradient, making the IAT-ReLU
smooth and facilitating more stable training compared to ReLU, which is non-
smooth and has a discontinuous gradient.

• The gradient can directly flow through the activation pattern, enabling the
direct training of the activation pattern itself. In contrast, ReLU lacks gradient
flow through the pattern as it is determined by the sign of z.

• With a continuous pattern, it becomes possible to decouple the activation pat-
tern from the model parameters while still maintaining a continuous function.
In the case of ReLU, decoupling the activation pattern results in a discontinuous
model.

Moreover, the selection of basis functions with high total variation can increase the
variability of activation patterns in domain [−1, 1]. This is analogous to increasing
the number of linear pieces in the ReLU network, where each linear piece is defined
as the collection of inputs with the same activation pattern[10], and it is believed
that by having more linear pieces the ReLU network will have more expressive
power[11, 12].

We summarize the main contributions of this work as follows:

• We introduce the concept of GDNN and establish an equivalence between IAT
and GDNN when using a finite rank parameterization for the weight kernel.

• We derive explicit expressions for the forward and backward computations of
IAT-ReLU, as well as numerical methods to approximate them.

• We propose a generalize the activation pattern D(z) and analyze the continuity
and variation of D(z) under different choices of basis functions.

• We provide numerical examples to demonstrate that IAT-ReLU has higher prac-
tical expressive power compared to ReLU, and show the impact of basis function
selection and discretization on IAT-ReLU.

The rest of this paper is organized as follows: Section 1.1 offers an overview of
related literature. Section 2 details the construction of the GDNN as an extension
of the traditional DNN. In Section 3, the IAT is introduced and its association
with GDNN is explored. Section 4 analyzes and compares IAT-ReLU with the
scalar ReLU, focusing on aspects such as smoothness, activation patterns, and the
decoupling of the activation patterns. Section 5 presents a range of numerical
experiments to assess the influence of basis function choices, and discretization
strategy in terms of expressive power. The paper concludes in Section 6 with final
remarks and perspectives.

1.1. Related works: Infinitely Wide Neural Network: At initialization,
the behavior of a neural network (NN) in the limit of infinite width is equivalent
to that of a Gaussian process (GP). This correspondence was initially noted in [13]
for NNs with a single hidden layer and was later extended to multilayer NNs in
[14, 15]. Additionally, [16] demonstrated that the training dynamics of infinite-
width NNs can also be described by a kernel called the Neural Tangent Kernel
(NTK), which was later extended to convolutional neural networks by [17]. After



742 Z. ZHANG, F. BAO, AND G. ZHANG

discretization, the proposed GDNN can be transformed into a DNN of arbitrary
width. However, it is important to note that the notion of width in the discretized
GDNN differs significantly from the concept of infinitely wide neural networks in
kernel regimes. In the discretized GDNN, the width is derived from the evaluation
of the weight integral kernel function on a 2D mesh grid, which leads to non-i.i.d.
samples. This is in contrast to the GP regime, which relies on the Central Limit
Theorem and assumes i.i.d. parameters. Similarly, the NTK regime is based on
overparameterization, whereas the integral kernel in the GDNN is governed by only
moderate-sized parameters. Therefore, the discretized GDNN does not align with
either the GP regime or the NTK regime.

Integral transform in DNN: The concept of using integral transforms to rep-
resent hidden layers in DNNs has been explored in the context of Neural Operator
[9, 18], but there are notable distinctions between their approach and ours. Firstly,
their focus is primarily on operator learning, specifically mapping PDE parameters
to PDE solutions, whereas our work centers around utilizing integral transforms
to analyze the expressive power of DNNs. Secondly, they primarily study different
ways of characterizing the integral transform and find that Fourier Neural Operator
(FNO) [18] works best. In contrast, we focus on the finite rank parameterization of
the integral kernel and derive the equivalent IAT as an activation layer, which is now
only characterized by the choice of basis functions. Lastly, our use of a 1D hidden
state function provides greater analytical tractability. For instance, with the ReLU
activation function, we are able to compute the integral transforms analytically,
enhancing the interpretability of the model.

Expressive power of ReLU network: The piecewise linear behavior of ReLU
networks has been extensively studied, with research investigating convergence[19,
20, 21, 22, 23], generalization ability [24, 25, 26, 22, 27, 28, 29], and expressive power
[24, 26, 30, 12]. The linear regions in ReLU networks correspond to inputs with
the same activation pattern, and estimating the maximum number of linear pieces
has been a focus of a series of works [31, 32, 11, 33, 34, 35]. Empirical evidence
[10, 36], however, suggests that the practical number of linear regions is often
lower than the theoretical maximum and exhibits minimal changes during training.
In our proposed IAT-ReLU network, which becomes a piecewise linear function
after discretization, we have control over the number of linear pieces through the
choice of discretization. Analytically evaluating IAT-ReLU leads to infinitely many
linear regions. Through numerical experiments, we have observed two effects of the
number of linear pieces controlled by the mesh size. Firstly, it enhances solution
smoothness, thereby improving performance in tasks that require smoothness, such
as function fitting. Secondly, a larger number of linear pieces promotes gradient
continuity and increases training stability.

2. Generalized Deep Neural Network (GDNN)

In this section, we present the GDNN as a generalization of the traditional DNN,
conceptualized by treating the network width as a continuous variable. Subsection
2.1 details the construction of the GDNN, and in subsection 2.2, we provide a
parameterization framework for the GDNN.

2.1. The Construction of GDNN. We begin by constructing the GDNN as a
continuous extension of the traditional DNN, from the perspective of width. This



IMPROVING THE EXPRESSIVE POWER OF DEEP NEURAL NETWORKS 743

concept is illustrated through a basic 3-layer NN, comprising an input layer, an
output layer, and one fully connected (FC) layer. These components encapsulate
all necessary elements, and deeper structures can be easily achieved by stacking
additional FC layers without further complications.

Consider x ∈ Rd0 as the model input and y ∈ Rd3 as the NN output. The tradi-
tional NN structure is outlined as:

Input layer: z1 = W 0x+ b0(1a)

FC layer: u1 = σ(z1),(1b)

z2 = W 1u1 + b1,(1c)

Output layer: u2 = σ(z2),(1d)

y = W 2u2 + b2,(1e)

where Wn ∈ Rdn×dn−1 for i = 0, 1, 2 are weight matrices, bn ∈ Rdn+1 , for i = 0, 1, 2
are bias vectors and σ(·) is the nonlinear activation function.

Inspired by Neural ODEs [8], which conceptualize depth as a continuous variable,
our approach uniquely considers network width as a continuous variable. In line
with this, the vectors of hidden neurons in the traditional DNN are replaced by state
functions, defined within the interval [−1, 1]. To accommodate for this change, the
GDNN employs integral transforms instead of the affine transformations found in
the traditional DNNs. In the input layer of GDNN, the input vector x is used
to expand the input weight functions w0(s1), creating a continuous state function
z1(s1) over the interval [−1, 1]. The FC layer then applies a pointwise activation
σ(·) to z1(s1), resulting in the activated state function u1(s1). This function is
then integrated with the weight kernel w1(s2, s1) over s1, generating the next state
function z2(s2). In the output layer, the activated state function u2(s2) integrates
with the output weight functions w2(s2), to yield the final output vector y. Addi-
tionally, bias functions b0(s1) and b1(s2) are incorporated into the states z1(s1) and
z2(s2), respectively. The complete GDNN structure is thus expressed as follows:

Input layer: z1(s1) = xTw0(s1) + b0(s1)(2a)

FC layer: u1(s1) = σ(z1(s1)),(2b)

z2(s2) =

∫ 1

−1

w1(s2, s1)u1(s1)ds1 + b1(s2),(2c)

Output layer: u2(s2) = σ(z2(s2)),(2d)

y =

∫ 1

−1

w2(s2)u2(s2)ds2 + b2,(2e)

where z1, z2 : [−1, 1] → R are the state functions, u1, u2 : [−1, 1] → R are the
corresponding activated state function, w0 : [−1, 1] → Rd0 is the input weight
function, w1 : [−1, 1] × [−1, 1] → R are weight kernel, w2 : [−1, 1] → Rd3 is the
output weight function, b0, b1 : [−1, 1] → R are bias functions and b2 is the same
bias vector in Eqs. (1).

DNN as a Special Case of GDNN: By selecting the 2D weight kernel w1(·, ·),
the 1D bias functions b0(·) and b1(·), and the 1D input/output weight functions
w2(·) and w0(·) in Eqs. (2) as piecewise constant (PC) functions, as illustrated



744 Z. ZHANG, F. BAO, AND G. ZHANG

in the left column of Figure1, we can exactly compute the integral transform in
the GDNN. In such scenarios, this integral transform is equivalent to an affine
transformation, simplifying the GDNN to a traditional DNN. In other words, the
traditional DNN can be perceived as a particular instance of the GDNN, realized
by selecting the generalized weight kernels, bias functions, and weight functions as
PC functions.

Row

1.00.60.20.20.61.0

Column

1.0
0.6

0.2
0.2

0.6
1.0

2

1

0

1

W00
W01

W02
W03

W04

W10
W11

W12
W13

W14

W20
W21

W22
W23

W24

W30
W31

W32
W33

W34

W40
W41

W42
W43

W44

Weight matrix

Auxiliary variable si 1
1.0

0.5
0.0

0.5
1.0

Auxiliary variable si

1.0
0.5

0.0
0.5

1.0

2

1

0

1

Weight kernel (Continuous)

Auxiliary variable si 1
1.0

0.5
0.0

0.5
1.0

Auxiliary variable si

1.0
0.5

0.0
0.5

1.0

2

1

0

1

Weight kernel (Discretized)

1.0 0.5 0.0 0.5 1.0
Vector index

1.0

0.5

0.0

0.5

1.0
Bias vector

1.0 0.5 0.0 0.5 1.0
Auxiliary variable si

1.0

0.5

0.0

0.5

1.0
Bias function (Continuous)

1.0 0.5 0.0 0.5 1.0
Auxiliary variable si

1.0

0.5

0.0

0.5

1.0
Bias function (Discretized)

Figure 1. The visualization for the weight kernels and bias func-
tions. Left column: The PC weight kernel and bias function, with
the height of each segment controlled by the corresponding weight
matrix and bias vector values. Middle column: The continuous
weight kernel and bias function, as a generalization of the PC
weight kernel and bias function. Right column: The discretized
version of the continuous weight kernel and bias function, repre-
sented in the form of PC functions.

GDNN as an Infinitely Wide DNN: In cases where the weight kernel and bias
functions are not piecewise constant, exact computation of the GDNN becomes
generally infeasible, necessitating an appropriate discretization approach. In our
framework, discretized weight matrices and bias vectors are derived by sampling
the weight integral kernels and bias functions at the predetermined mesh points,
resulting in matrices in RM×M and vectors in RM , with M being the mesh size.
After the discretization, integral transforms in GDNN become affine transforma-
tions, rendering the discretized GDNN analogous to a traditional DNN equipped
with such affine transformations. Notably, the size of these affine transformations
depends on the mesh size M , contrasting with traditional DNNs where affine trans-
formations correspond to the fixed number of neurons in each layer. As M tends
towards infinity, the discretized GDNN progressively mirrors a finitely wide DNN,
ultimately converging to the GDNN in its analytical form. This convergence can
also be understood as the approximation of a continuous function using PC func-
tions, as illustrated in the right column of Figure 1.

2.2. Parameterization of GDNN. In the GDNN framework, much like in tradi-
tional DNNs, the trainable parameters include the weight functions/kernels, w0(·),



IMPROVING THE EXPRESSIVE POWER OF DEEP NEURAL NETWORKS 745

w1(·, ·), w2(·), and bias functions/vectors b0(·), b1(·), b2. However, the direct train-
ing of these infinite-dimensional functions is impractical, and it is necessary to adopt
a suitable parameterization for effective training. In our approach, we use 1D ba-
sis functions to construct and parameterize all the continuous 1D weight and bias
functions. Additionally, the 2D weight integral kernels are formed by directly mul-
tiplying these 1D basis functions, a technique known as finite rank parameterization
for the integral kernel. The detailed parameterization scheme is as follows:

Input layer: w0(s1) = (W 0)Tp1(s1)(3a)

b0(s1) = (b0)Tp1(s1),(3b)

FC layer: w1(s2, s1) = (p2(s2))TW 1q1(s1),(3c)

b1(s2) = (b1)Tp2(s2),(3d)

Output layer: w2(s2) = W 2q2(s2),(3e)

where {W 0,W 1,W 2, b1, b2} are parameters from the same space as those in the
DNN described in Eq. (1), and pn, qn : R → Rdn for n = 1, 2 are the selected
collections of 1D input and output basis functions, respectively. In subsequent
sections, we demonstrate that this parameterized GDNN is equivalent to a DNN
equipped with a special Integral Activation Transform as its activation layers.

3. Integral Activation Transform (IAT)

In this section, we first give the definition of the IAT in Subsection 3.1, then es-
tablish its connection with the GDNN in Subsection 3.2, and finally, present the
numerical approximation of the IAT in Subsection 3.3.

3.1. Integral Activation Transform (IAT). Let p(·) = [p1(·), ..., pd1
(·)]T and

q(·) = [q1(·), ..., qd2(·)]T denote two sets of basis functions, serving as the input
and output basis functions for the IAT respectively, where p1, ..., pd1

, q1, ..., qd2
:

[−1, 1] → R are all 1D basis functions. We construct the IAT Iσ
p,q : Rd1 → Rd2 as

a nonlinear activation layer in the following manner:

(4) u = Iσ
p,q(z) =

∫ 1

−1

q(s)σ(zTp(s))ds,

where σ : R → R represents the nonlinear activation function, with z ∈ Rd1 as the
input and u ∈ Rd2 as the output.

Contrary to the typical activation functions in DNNs, which are applied to each
component of the input z to directly generate the components of the output u,
the IAT adopts an alternative approach, operating activation in a function space
defined over [−1, 1]. In the IAT, the input vector z is initially mapped to a state
function zTp(s) defined on [−1, 1], with z serving as the coefficients for the input
basis p(s). Then, the pointwise activation function σ is applied to the state function
to introduce the nonlinearity. Finally, this activated state function σ(zTp(s)) is in-
tegrated with the output basis q(s) to produce the output vector u. The conceptual
diagram of IAT is depicted in Figure 2.

In IAT, there is flexibility in selecting the input basis p(·), output basis q(·), and
activation function σ(·). The input basis p(·) plays a crucial role in forming the
state function zTp(s), upon which the nonlinear activation is applied. The choice



746 Z. ZHANG, F. BAO, AND G. ZHANG

Figure 2. The schematic for IAT with ReLU activation: First,
the input vector z is mapped to the state function zTp(s) by treat-
ing z as coefficients of the input basis p(s). Then, a pointwise
activation function σ is applied to the state function to introduce
nonlinearity. Finally, the activated state function σ(zTp(s)) is in-
tegrated with the output basis q(s) to produce the output vector
u. In the case of ReLU activation, the red dots represent the roots
of the state function, which determine the segments of the state
function that are set to zero.

of input basis significantly influences the interaction between the nonlinearity and
the input vector z. Conversely, the output basis q(·) is in charge of extracting
pertinent information from the activated state function, and different choices here
can yield distinct IAT behaviors, a topic that will be explored in Section 5.1.

A specific basis function worthy of mention is the rectangular function, depicted
as the output basis q(s) in Figure 2. Rectangular functions represent the simplest
form of PC functions. Selecting these rectangular functions for both p(·) and q(·)
can lead to PC weight kernels and bias functions shown in Figure 1. Consequently,
this choice can simplify the IAT to a traditional element-wise activation function,
described as:

(5) Iσ
p,q(z) = σ(z),

where σ(·) is individually applied to each component of z.

3.2. Connection to GDNN. This subsection demonstrates the equivalence of
the GDNN as described in Eqs. (2) with its parameterization in Eqs. (3) to a
traditional DNN equipped with the IAT, defined in Eq. (4). To proceed, we also
assume that all considered basis functions pn(·), qn(·), n = 1, 2 are linear indepen-
dent within each collection.

Firstly, in the input layer, the state function z1(s1) lies within the span of p1(s1),
and can be expressed as

z1(s1) =
(
p1(s1)

)T
z1,



IMPROVING THE EXPRESSIVE POWER OF DEEP NEURAL NETWORKS 747

where z1 represents the coefficients for p1(s1). By substituting Eqs. (3a,3b) into
Eq. (2a) we have

z1(s1) =
(
(W 0)Tp1(s1)

)T
x+

(
p1(s1)

)T
b0

=
(
p1(s1)

)T (
W 0x+ b0

)
.

By linear Independence of p1(s1), we obtain

(6) z1 = W 0x+ b0.

In the FC layer, z2(s2) is within the span of p2(s2) and can be represented as

z2(s2) =
(
p2(s2)

)T
z2.

By substituting Eqs. (3c,3d) into Eq. (2c), we have

z2(s2) =

∫ 1

−1

(
p2(s2)

)T
W 1q1(s1)u1(s1)ds1 +

(
p2(s2)

)T
b1

=
(
p2(s2)

)T (
W 1

∫ 1

−1

q1(s1)u1(s1)ds1 + b1
)

=
(
p2(s2)

)T (
W 1

∫ 1

−1

q1(s1)σ((p1(s1))Tz1)ds1 + b1
)

=
(
p2(s2)

)T (
W 1Iσ

p1,q1(z1) + b1
)

=
(
p2(s2)

)T (
W 1u1 + b1

)
.

Following the linear independence of p2(s2), we obtain

(7) z2 = W 1u1 + b1,

where

(8) u1 = Iσ
p1,q1(z1).

For the output layer, substituting Eq. (3e) into Eq. (2e) yields

y =

∫ 1

−1

W 2q2(s2)u2(s2)ds2 + b2

= W 2

∫ 1

−1

q2(s2)σ(z2(s2))ds2 + b2

= W 2

∫ 1

−1

q2(s2)σ((p2(s2))Tz2)ds2 + b2

= W 2

∫ 1

−1

q2(s2)σ((p2(s2))Tz2)ds2 + b2

= W 2Iσ
p2,q2(z2) + b2

= W 2u2 + b2.

This gives the last piece of the derivation, and we have

(9) y = W 2u2 + b2,

where

(10) u2 = Iσ
p2,q2(z2).



748 Z. ZHANG, F. BAO, AND G. ZHANG

Combining the above derivations in Eqs. (6,7,8,9,10), the GDNN as described in
Eqs. (2) with its parameterization in Eqs. (3) can be reformulated as follows:

Input layer: z1 = W 0x+ b0(11a)

FC layer: u1 = Iσ
p1,q1(z1),(11b)

z2 = W 1u1 + b1,(11c)

Output layer: u2 = Iσ
p2,q2(z2),(11d)

y = W 2u2 + b2,(11e)

which is equivalent to the classical DNN in Eqs. (1) with the element-wise activation
function σ(·) replaced by IAT Iσ

pn,qn for n = 1, 2.

3.3. The approximation of IAT. The IAT, Iσ
p,q(z), as defined in Eq. (4)

comprises d2 1D integrals over the interval [−1, 1] and each integral is given by∫ 1

−1
qi(s)σ(z

Tp(s))ds, where i = 1, · · · , d2. Without making further assumptions

on q(·), p(·), and σ(·), these integrals can be approximated using the midpoint rule

with a uniform partition of [−1, 1]. This discretized version of IAT, denoted as Îσ
p,q,

is then expressed as:

(12) û = Îσ
p,q(z) =

2Qσ(PTz)

M

where M is the number of partition for the interval [−1, 1] and P ∈ Rd1×M and
Q ∈ Rd2×M represent the evaluation of basis functions p(·) and q(·) at theM chosen
mesh points. The discretization of the IAT mirrors the discretization process of the
weight kernel in GDNN, as discussed in Section 2.1. Specifically, the discretized
weight kernel w1(·, ·), as parameterized in Eq. (3c), is expressed as an M by M

matrix Ŵ 1 = (P 2)TW 1Q1, where P 2 and Q1 are matrices that correspond to the
evaluations of the basis functions p2(·) and q1(·), respectively.

Furthermore, the gradient of the discretized IAT-ReLU, as defined in Eq. (12), can
be computed as:

(13) ∇zÎσ
p,q(z) =

2Q diag(σ′(PTz)) PT

M
.

According to [37], when σ(zTp(s)) is differentiable for all z and almost all s ∈
[−1, 1], the Leibniz integral rule can be applied to calculate the gradient of Iσ

p,q(·).
By interchanging the integration and differentiation, the gradient is given by:

(14) ∇zIσ
p,q(z) =

∫ 1

−1

q(s)(p(s))Tσ′(zTp(s))ds.

This expression provides an analytical formula for the gradient, under the differen-
tiability condition of σ(·). Notably, this analytical gradient aligns with the numer-
ical gradient in Eq. (13). However, dealing with non-smooth activation functions
like ReLU requires more careful consideration when interchanging integration and
differentiation, a topic further explored in Section 4.

4. IAT-ReLU

In this section, we focus on a variant of the IAT using the ReLU as the activa-
tion function, referred to as IAT-ReLU and denoted by IReLU

p,q . In Subsection 4.1,



IMPROVING THE EXPRESSIVE POWER OF DEEP NEURAL NETWORKS 749

we begin by establishing explicit formulas for the forward and backward compu-
tations in IAT-ReLU, demonstrating that IAT-ReLU generalizes the scalar ReLU.
Subsequently, we investigate the activation patterns of IAT-ReLU in Subsection
4.2 and discuss its computational approach in Subsection 4.3. Finally, we explore
decoupling the activation pattern from model parameters in Subsection 4.4.

4.1. IAT-ReLU as a generalization of ReLU. We begin by establishing that
IAT-ReLU is a natural generalization of the scalar ReLU. For simplicity, we use
ϕ(·) to denote both scalar and element-wise ReLU, depending on the input type.
When ReLU is applied element-wise to a vector z = [z1, . . . , zd] ∈ Rd, the operation
can be expressed in the linear form as follows:

(15) ϕ(z) = [1z1≥0(z)z1, ...,1zd≥0(z)zd]
T = Sϕ(z)z

where Sϕ(z) = diag([1z1≥0(z), ...,1zd≥0(z)]) ∈ Rd×d is called the activation matrix.
This activation matrix is piecewise constant, implying that ∇zS

ϕ(z) = 0 almost
everywhere. And it follows that the gradient of the element-wise ReLU is also
equivalent to its activation matrix, expressed as:

(16) ∇zϕ(z) = Sϕ(z).

We proceed to establish that IAT-ReLU exhibits similar properties to the scalar
ReLU. For IAT-ReLU, we can rewrite its expression as follows:

IReLU
p,q (z) =

∫ 1

−1

q(s)σ(zTp(s))ds

=

∫ 1

−1

q(s)1zTp(s)>0(s)(z
Tp(s))ds

=

∫
{s∈[−1,1]:zTp(s)>0}

q(s)(p(s))T dsz

= S(D(z))z.

This implies that the IAT-ReLU has the same linear form as follows:

(17) IReLU
p,q (z) = S(D(z))z,

where S(D(z)) ∈ Rd×d is the activation matrix for IAT-ReLU. Its expression is
given by

(18) S(D(z)) =

∫
{s∈D(z)}

q(s)pT (s)ds.

where D(z) is called the activation pattern and is defined as:

(19) D(z) = {s ∈ [−1, 1] : pT (s)z > 0}.
This formulation confirms that IAT-ReLU maintains the linear form analogous to
the scalar ReLU.

We now derive the gradient of IReLU
p,q (z). Let the state function be denoted as

f(s,z) = zTp(s) and we can first rewrite IReLU
p,q (z) as

IReLU
p,q (z) =

∫
D(z)

q(s)f(s, z)ds.

The dependence of IReLU
p,q (z) on the input z is through two paths: the state function

f(s,z) and the activation pattern D(z). The set D(z), a subset of [−1, 1], consists
of disjoint intervals characterized by boundary points rk, k = 1, . . . ,K, at which



750 Z. ZHANG, F. BAO, AND G. ZHANG

f(·, z) changes sign. Therefore, the gradient of IReLU
p,q (z) will have the general

expression as follows:

(20) ∇zIReLU
p,q (z) = S(D(z)) +

K∑
k=1

f(rk, z)q(rk)(∇zrk)
T

where ∇zrk is the gradient of boundary point rk with respect to the input z. In
the above expression, the first term represents the gradient through f(s, z) and the
second sum stands for the gradient on D(z) through each rk.

While the dependence through f(s, z) always exists, we only need to analyze the
dependence through D(z) via rk, and we identify two scenarios for such dependency.
In the first scenario, f(·, z) intersects the x-axis at rk, making rk a root of f(·, z).
Here, rk has a nonzero gradient with respect to z, i.e., ∇zrk ̸= 0. However,
f(rk, z) = 0 since rk is the root, resulting in f(rk,z)q(rk)(∇zrk)

T = 0. In the
second scenario, f(·, z) changes sign at rk due to a jump discontinuity. From
the definition of the f(·, z), the discontinuities in f(·, z) can only come from the
discontinuities within basis p(·), and are independent of the value of z. Therefore,
we have ∇zrk = 0, which leads to f(rk, z)q(rk)(∇zrk)

T = 0 despite f(rk, z) ̸= 0.
Combining the both cases, the gradient of IReLU

p,q (z) is simplified to:

(21) ∇zIReLU
p,q (z) = S(D(z)).

This implies that the gradient of IReLU
p,q (z) = S(D(z))z with respect to z equals

S(D(z)), despite the non-zero gradient of S(D(z)) on z.

By comparing Eq. (15) with Eq. (17), and Eq. (16) with Eq. (21), it becomes evi-
dent that both ReLU and IAT-ReLU exhibit a shared linear form, as characterized
by their activation matrices, respectively. Additionally, their gradients are found
to be equivalent to their activation matrices. The primary difference between them
resides in the specific values taken by the activation matrix S(D(z)) as a function
of z. The forthcoming subsections will undertake a detailed investigation of the
behavior of the activation matrix S(D(z)).

In addition, the gradient formulation in Eq. (21), derived for the non-smooth acti-
vation ReLU, aligns with the gradient in Eq. (14), obtained under the assumption
of a smooth activation function. This alignment suggests that the numerical ap-
proximation in Eq. (12) remains consistent for IAT-ReLU as well. This consistency
underscores the robustness of the IAT framework, capable of accommodating both
smooth and non-smooth activation functions without compromising the integrity
of its gradient approximation.

4.2. The activation pattern of IAT-ReLU. From Eq. (17), we observe that
the nonlinearity within IReLU

p,q (z) is determined by the variation of S(D(z)). Specif-

ically, when S(D(z)) remains locally constant, IReLU
p,q (z) behaves as a linear map.

Further inspection of Eq. (18) reveals that the activation matrix S(D(z)) is de-
pendent on the input z through the activation pattern D(z). It is important to
note that the function S(·) itself is not directly related to z. Hence, the subse-
quent subsections focus on analyzing the variation of D(z) as a function of z. We
will investigate two distinct types of variations in D(z): local variations and global
variations.



IMPROVING THE EXPRESSIVE POWER OF DEEP NEURAL NETWORKS 751

4.2.1. The local variation of D(z). The local variation of D(z) concerns how
D(z) changes relate to local variations in z. Here, we specifically investigate two
aspects of such local variation: the presence of local changes in D(z) as z varies
locally and the continuity of such changes in z.

As discussed above, we know that D(z) is a subset of [−1, 1], and there are two
scenarios on how D(z) is determined by z:

• In the first scenario, D(z) is determined by the roots of f(·; z) = zTp(·), which
requires f(·; z) to be continuous, and this is achieved by choosing continuous
input basis functions p(·). Generally speaking, variations in the coefficients z
induce perturbations in the roots of f(·;z), ultimately causing changes in D(z).
Therefore, when D(z) determined by the roots of f(·; z), there are local changes
in D(z) as z changes. In addition, if the rk is a single root of f(·; z), the gradient
is given by

(22)
∂rk
∂z

= − p(rk)

zTp′(rk)
.

If p(·) and p′(·) are both continuous and given that D(z) is solely determined by
single roots, then D(z) will be continuous in z. In addition, if p(·) are analytic
functions, the continuity of D(z) in z is ensured, regardless of the root types,
owing to the fact that the roots of analytic function are continuous functions of
their coefficients.

• In the second scenario, D(z) is determined by the discontinuity of f(·; z), which
comes from the discontinuities in p(·). The rectangular basis functions, illus-
trated as the output basis in Figure 2, exemplify this situation. Since the
discontinuities in p(s) do not change, D(z) is merely selecting the sub-intervals
on which f(·; z) is positive, and the sub-intervals are defined by the fixed dis-
continuities in p(s). Consequently, D(z) is confined to a finite set of possible
choices. As z changes, based on the active discontinuities that separate the
positive and negative part of f(·; z), D(z) either remains unchanged or under-
goes an abrupt transition to another configuration. Thus, when D(z) is shaped
by the discontinuity of f(·;z), local changes in D(z) from z are absent except
for jumps. This stands in stark contrast to the first scenario, where D(z) can
undergo continuous changes as z varies. Additionally, in this second scenario,
it is obvious that D(z) lacks continuity in z.

From the integral definition in Eq. (18), it can be seen that S(·) is absolute conti-
nuity with respect to D(z). The aforementioned properties of D(z) can be directly
extended to characterize the activation matrix S(D(z)), which governs the gradient
∇zIReLU

p,q (z), as expressed in Eq. (21).

Regarding the mapping IReLU
p,q (z) itself, the continuity of D(z) dictates the smooth-

ness of IReLU
p,q (z), since the continuity of D(z) decides the continuity of S(D(z)) in

z. Therefore, a continuous D(z) yields a smooth IReLU
p,q (z), and vise versa.

In the context of training a NN with IReLU
p,q (z), two major consequences arise. The

first one is the plateau phenomenon observed during training, characterized by
an initial rapid loss reduction, followed by an extended stagnation period before
another rapid decrease. This behavior is commonly observed in NNs with ReLU
activation in the literature. The plateau is a consequence of S(D(z)) being piecewise
constant, which, in turn, results from the piecewise constant nature of D(z). If



752 Z. ZHANG, F. BAO, AND G. ZHANG

D(z) remains static during training, the nonlinearity S(D(z)) remains unchanged
as the model parameters are updated, effectively making the NN behave like a
linear model. Gradient descent can rapidly minimize the loss within the subspace
defined by the fixed S(D(z)) [38], leading to a quick initial loss decrease followed
by a prolonged stagnation period until a more favorable D(z) emerges, if at all.
Continuous changes in D(z) as the model parameters are updated prevent gradient
descent from saturating within a fixed subspace, reducing the likelihood of the
model getting stuck in a local minimum and thereby enhancing overall trainability.

The second consequence is training stability, a property derived from the continu-
ity of the gradient S(D(z)), which is ultimately determined by the continuity of
D(z). When the gradient S(D(z)) is discontinuous, slight changes in the parame-
ters could lead to significant jumps in the gradient, leading to unstable or divergent
training dynamics. This instability is often manifested by a highly fluctuating loss
curve. Common strategies to address this issue involve using a smaller learning
rate, which, however, slows down training, or overparameterizing the model to con-
trol the expected changes in the activation pattern, aiming to stabilize the training
process [19]. In contrast, the use of analytic p(·) to achieve a continuous D(z) en-
sures that the gradient remains continuous with respect to the model parameters,
eliminating unexpected jumps. This continuity in the gradient facilitates a much
smoother decay of the loss during the training process compared to scenarios with
a discontinuous gradient.

4.2.2. The global variation of D(z). The global variation of D(z) assesses
how much D(z) varies across the input domain. In Eq. (17), the nonlinearity
of IReLU

p,q (z) is determined by changes in the activation matrix S(D(z)) via D(z).
Specifically, if a ReLU network exhibits a constant activation pattern in a region,
the model reduces to a linear map in that region, limiting its expressive power.
Many researchers posit that the number of activation patterns (linear pieces) in a
ReLU network contributes to its expressiveness [32]. To enhance a ReLU network’s
expressiveness, diverse activation patterns are preferred across the input space. This
implies that as the input varies, the activation pattern should change to introduce
more linear pieces. With a greater number of distinct activation patterns corre-
sponding to various input space regions, the network achieves enhanced expressive
capacity to model intricate relationships and capture diverse data patterns.

Conversely, with the selection of a continuous input basis p(·), IAT-ReLU can
manifest a continuous activation pattern, akin to finitely many linear pieces. Each
linear piece represents a straight line passing through the origin, as the positive part
of f(·; z) remains unchanged when the input z is scaled to az, where a is a non-zero
constant. However, an infinite number of linear pieces does not necessarily imply
increased expressive power if the activation pattern only exhibits slight changes
across the input domain. Therefore, choosing an appropriate p(·) is crucial to
ensure that the activation pattern D(z) explores a diverse range of subsets in the
interval [−1, 1] as z varies. As mentioned earlier, the activation pattern D(z) is
determined by the roots of f(·; z). In selecting basis functions, two strategies can
be considered to enhance the variation of D(z) by increasing the diversity of roots
in f(·; z) as z varies.

• Use basis functions with zero integral: Using input basis functions p(·) each
with zero integral ensures that the state function f(·, z) also possesses a zero
integral. This guarantees that f(·, z) intersects the x-axis, leading to at least



IMPROVING THE EXPRESSIVE POWER OF DEEP NEURAL NETWORKS 753

one root or two roots if p(·) are also cyclic. This condition prevents situations
where the f(·, z) lies entirely above or below zero. Additionally, each z will
activate approximately half of [−1, 1], resulting in a more balanced distribution
of D(z) as a subset of [−1, 1].

• Use basis functions with large total variations: Another strategy is to select
basis functions characterized by large total variations, with typical examples
being global basis functions. These functions are sensitive to small changes
in any component of the input z, inducing substantial variations in the state
function f(·; z) as well as its roots. As a result, the activation pattern will
demonstrate increased diversity across the input space, potentially granting the
model greater nonlinearity to capture diverse patterns in the data and enhance
its expressive power.

4.3. The approximation of IAT-ReLU. The gradient of IReLU
p,q (z) in Eq. (21)

is equivalent to the gradient of IAT for smooth activation action in Eq. (14). There-
fore, the discretization method used in Eq. (12) can also be applied to IReLU

p,q (z),

and we denote this discretized version as ÎReLU
p,q (z). Under this discretization, the

activation pattern D(z) ⊂ [−1, 1] is represented by the discretized activation pat-

tern D̂(z) ∈ RM , which captures the sign of f(·,z) on the M chosen evaluation

points. As a result, D̂(z) remains piecewise constant, as very small perturbations
in z may not change the sign of f(·, z) on the evaluation points if the evaluation

points are not dense enough. Therefore, ÎReLU
p,q (z) remains a piecewise linear func-

tion. However, by choosing a large number of evaluation points M , we can make
each linear piece smaller and make ÎReLU

p,q (z) smoother while still being piecewise
linear. As M approaches infinity, we obtain infinitely many linear pieces, and
ÎReLU
p,q (z) converges to IReLU

p,q (z) which is a smooth function. An example of the
above discussion is demonstrated in Figure 3. For M = 10 and M = 20, the loca-
tions where the activation pattern changes are marked by the green dashed lines
and we consider M = 10, 000 as an example of the continuous activation pattern.
As we increase the mesh size M , each linear piece becomes smaller, and the fitted
solution becomes smoother while still being a piecewise linear function. It becomes
a truly smooth function when the activation pattern is continuous. For discrete
patterns (M = 10 and 20), the decoupled model exhibits discontinuities where the
activation pattern changes. On the other hand, the continuous activation pattern
still provides a continuous solution even after we decouple the activation pattern
from the parameters that generate them.

Alternatively, to circumvent the reliance on numerical integration techniques, we
can approximate the IAT-ReLU computation nearly exactly by analytically solv-
ing the integral in Eq. (4). This approach involves accurately finding the roots
of the state function, which are illustrated as the red dots in Figure 2. This can
be accomplished either through root-finding algorithms like bisection or Newton’s
method, or by employing specific classes of basis functions. For instance, when
using piecewise linear basis functions, the state function becomes piecewise linear,
allowing for the roots to be analytically determined for each linear segment. Once
these roots are identified, the integral can be computed analytically by applying the
fundamental theorem of calculus. It is worth noting that the root-finding proce-
dure can be performed off the computation graph during forward propagation since
gradients from z to roots are multiplied by zero in the gradient of IReLU

p,q (z). By
achieving high-accuracy root finding, we can obtain a continuous activation pattern



754 Z. ZHANG, F. BAO, AND G. ZHANG

1.0

0.5

0.0

0.5

1.0

Coupled Model (M=10) Coupled Model (M=20) Coupled Model (M=10000)

Activation Pattern (M=10) Activation Pattern (M=20) Activation Pattern (M=10000)

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Decoupled Model (M=10)

1.0 0.5 0.0 0.5 1.0

Decoupled Model (M=20)

1.0 0.5 0.0 0.5 1.0

Decoupled Model (M=10000)

Figure 3. Activation pattern for 3-layer IAT-ReLU network in
Eqs. (11) with 10 neurons in each layer for fitting sin(2πx) in
[−1, 1]. Top row: The fitted solution for original IAT-ReLU the
model. Middle row: The activation patterns at the two hidden
layers. The x-axis corresponds to the input space, while the y-
axis represents the two activation pattern spaces, with the first
hidden layer positioned above the red line and the second hidden
layer below the red line. Bottom row: The fitted solution for the
decoupled model, where the activation pattern is taken from the
trained model in the middle row. From left to right, we show the
results for M=10,20, and 10000, respectively.

D(z) as a subset of [−1, 1], resulting in a smooth IReLU
p,q (z). However, this approach

requires more computational resources for the root-finding procedure compared to
the computational cost of the two extra matrix multiplications involved in Eq. (12).

Remark 1 (Higher order derivative). For applications that require higher-order
derivatives, such as Physics-Informed Neural Networks (PINN), it is necessary to

compute IReLU
p,q (z) analytically instead of using the discretized version ÎReLU

p,q (z),
as the latter has zero second-order derivatives everywhere, similar to the ReLU
activation. To capture higher-order derivatives, it is important to preserve the
gradient between z and the roots rk when computing IReLU

p,q (z) analytically. This
can be achieved by numerically inserting the value of the gradient from Eq. (22)



IMPROVING THE EXPRESSIVE POWER OF DEEP NEURAL NETWORKS 755

into the roots rk obtained from the root-finding algorithms. Alternatively, if the basis
functions p(·) are piecewise linear, it is possible to derive an explicit expression for
the root in terms of z. However, this specific aspect is left as future work. In the
scope of this paper, we focus on tasks that do not require higher-order derivatives,
such as classification and regression.

Remark 2 (Scaling of the basis functions). In addition to choosing the shape of the
basis functions p(·) and q(·), it is also important to select a proper scaling constant
for them. It is worth noting that IReLU

p,q (z) exhibits homogeneity with respect to the
scaling of p(·), q(·), and z. Let a1, a2 and a3 be three scalars, the homogeneity of
IReLU
p,q (z) means

(23) IReLU
a1p,a2q(a3z) = a1a2a3IReLU

p,q (z).

This equation shows that scaling p(·), q(·), and z does not change the overall non-
linearity of the function. One simple trick that can be used to avoid the scaling issue
is to apply batch normalization after the IAT-ReLU layer. Batch normalization can
help standardize the IAT-ReLU and make them more robust to scaling variations.

4.4. The decoupled IAT-ReLU network. When considering the IAT-ReLU as
an activation layer in a DNN, an interesting aspect is to decouple the activation
matrices from the hidden states that generate them. For the purpose of demonstra-
tion, let’s consider the same 3-layer DNN described in Eqs. (1). Using the linear
form from Eq. (17), we can write the DNN in a similar deep linear form as follows:

(24) y = W 2(S(D2)(W 1(S(D1)(W 0x+ b0) + b1)) + b2

where D1 = D(z1) and D2 = D(z2) is the activation patterns of hidden states z1

and z2, respectively. We can also write Eq. (24) in a more general form as follows:

(25) y = F (x,W,D(x,W))

where W = [W 0, b0,W 1, b1,W 2, b2] represents all the parameters of the DNN,
and D(x,W) = [D1(x,W),D2(x,W)] represents all the activation patterns as a
function of the model input x and the parameter W.

Indeed, we can observe that the nonlinearity in the model is solely determined by
the activation pattern D(x,W). When D(x,W) remains constant with respect
to x and W, the model output y exhibits a linear relationship with the input x
and each parameter pair (Wn, b

n), where n = 0, 1, 2. Thus, the W in the second
argument of F (·, ·, ·) controls the linearity of the mapping from x to y, while the
W in D(x,W) controls the nonlinearity from x to y.

For instance, in the case of a ReLU DNN, D(x,W) characterizes each linear piece,
and the W in the second position of F (·, ·, ·) determines the linear mapping within
each piece. We also believe that using the same W to control both the linear and
nonlinear aspects of the model simultaneously makes the optimization for W chal-
lenging. This is in contrast to the traditional approach where the mesh structure,
which can be viewed as the linear pieces represented by D(x,W), is first deter-
mined, and subsequent computations are performed within each linear piece, which
is governed by the W in the second position of F (·, ·, ·).

Therefore, a natural idea is to decouple the linearity and nonlinearity of the model
into two collections of parameters. In other words, we can rewrite Eq. (25) as
follows:

(26) y = F (x,W1,D(x,W2))



756 Z. ZHANG, F. BAO, AND G. ZHANG

where W1 is the parameters controlling the linearity and W2 represents the pa-
rameters associated with the nonlinearity through the activation pattern.

This idea has been explored in the work of [39] for ReLU networks. However, de-
coupling the activation matrix in ReLU networks poses two major problems. First,
there is the issue of discontinuity. If the activation pattern jumps when the hidden
state is not zero, it introduces a discontinuity in the model. For coupled ReLU, this
issue is avoided because the activation pattern only changes when the state is at
zero. The second problem is the inability to learn the parameters W2 that generate
a good activation pattern. Since there is no gradient flowing through the discrete
pattern, it becomes impossible to optimize and update the parameters through
gradient-based optimizers. As a result, these parameters can only be randomly ini-
tialized, limiting the model’s ability to learn an effective activation pattern based
on the data.

For IAT-ReLU with continuous input basis p(·), we do not have the aforementioned
problems. Firstly, the activation pattern is a continuous function of the model
input, and after decoupling, the resulting model will still be continuous, which
is demonstrated in Figure 3. This ensures a continuous mapping between the
input and output. Secondly, for continuous p(·), the pattern is determined by the
roots and these roots have non-zero gradients flowing through them. This makes
active learning of the activation pattern through gradient-based optimizer possible,
in contrast to the previous case with ReLU where the pattern has zero gradient
everywhere. Thirdly, another advantage is that all activation patterns reside in
the same space [−1, 1], regardless of the network width. This enables the transfer
of patterns between networks with different widths, providing more flexibility. In
the case of ReLU, the pattern is an Rd vector, and it needs to match the width of
another network, limiting its transferability.

5. Numerical experiments

In this section, we conduct numerical experiments to assess the expressive power of
IAT-ReLU. We focus on two tasks: fitting a high-frequency function and random
label memorization, which are shown in Figure 4. Both tasks require a high degree
of expressive power to achieve good performance. The first task involves approxi-
mating a periodic function using piecewise linear functions, which typically require
a large number of linear pieces. The second task evaluates the model’s ability to
memorize and recall random labels. While smoothness is not crucial for label mem-
orization, the task still demands a high level of expressive power. By examining
the performance of IAT-ReLU on these tasks, we can gain insights into its ability
to handle complex functions and exhibit exceptional expressive power.

5.1. Choice of the basis functions. When selecting the basis function for IAT-
ReLU applied to DNN, we consider four properties: continuity, smoothness, global
variation, and zero integral. Based on these properties, six candidate basis func-
tions are included in our numerical experiments as visualized in Figure 5, and they
are listed as follows. The Rectangular (Rect) basis functions are local, discontinu-
ous, and exhibit a piecewise constant activation pattern. Choosing the Rect basis as
both input and output basis reduces IAT-ReLU to scalar ReLU. The Piecewise Lin-
ear (PWL) basis serves as the continuous counterpart to the Rect basis, featuring
locally varying activation patterns. Piecewise Quadratic (PWQ) basis functions are



IMPROVING THE EXPRESSIVE POWER OF DEEP NEURAL NETWORKS 757

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0
2D Random Label Memorization

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
2D Function Fitting

Figure 4. Visualization of the test problems to demonstrate the
expressive power. Left: Random label memorization, where color
represents the label (-1 and 1) and labels are provided on 50 by 50
uniform mesh points in [−1, 1]2. Right: high-frequency function
in 2D space. The target function is sampled on 50 by 50 uniform
mesh points in [−1, 1]2.

1

0

1
Rect PWL PWQ Fourier PWL-w Rect-w

1

0

1

1

0

1

1

0

1

1

0

1

-1 -0.5 0 0.5 1
1

0

1

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 5. Visualization of the tested basis function with collec-
tion size d = 6 and discretization M = 180, where the collection
size d also determines the number of partitions for all the piecewise
functions. Each column corresponds to one collection of p(·).

smooth versions of Rect basis. The Rectangular Wavelet (Rect-w) basis functions
incorporate the zero integral property to enhance the global variation of the activa-
tion pattern. The Piecewise Linear Wavelet (PWL-w) is the continuous version of
the Rect-w basis. Lastly, Fourier basis functions are smooth with global variation
and zero integral, and their analytic nature ensures a globally continuous activation



758 Z. ZHANG, F. BAO, AND G. ZHANG

pattern. Notably, although PWL, PWQ, and PWL-w lack globally continuous acti-
vation patterns, their tendency for activation pattern jumps is minimal. Therefore,
these basis functions can be considered to have an almost continuous activation
pattern. The properties of these basis functions are summarized in Table 1.

Table 1. properties for basis.

Continuous Smooth Global Zero integral
Rect 7 7 7 7

PWL 3 7 7 7

PWQ 3 3 7 7

Fourier 3 3 3 3

PWL-w 3 7 7 3

Rect-w 7 7 7 3

Table 3 and Table 2 present the performance of IAT-ReLU for different combi-
nations of basis functions. The performance is measured by mean-squared error
(MSE) and prediction accuracy, respectively. Comparing the input basis func-
tion, we observe that the basis functions with zero integral (Rect-w, PWL-w, and
Fourier basis), outperform the local input basis functions (Rect, PWL, and PWQ).
This is because the zero integral basis functions exhibit an enriched activation pat-
tern, leading to increased expressive power and improved trainability. Notably, the
Fourier input basis demonstrates the best overall performance across both tasks.
Regarding the output basis, the local basis functions (Rect, PWL, and PWQ) ex-
hibit relatively better performance. The best performance in both tasks is achieved
with the PWQ output basis. These results demonstrate the effectiveness of combin-
ing the input basis functions, based on properties from Section 4.2.2 for promoting
the global variation of the activation pattern, with local output basis functions to
extract the enriched features.

Table 2. The prediction accuracy (correctly predicted labels / the
total number of points) for the random label memorization task.
Top: Performance of IAT-ReLU under different choices of basis
function with discretization M=500, where each row corresponds to
the same input basis p(·) and each column corresponds to the same
output basis q(·). The best 10 cases are highlighted in boldface.
Bottom: Performance for traditional scalar activation functions.

Reulsts for IAT-ReLU

p(·)
q(·)

Rect PWL PWQ Fourier PWL-w Rect-w

Rect 89.7% 90.5% 92.1% 89.4% 86.5% 86.1%
PWL 85.8% 87.3% 85.2% 93.0% 86.2% 86.5%
PWQ 85.5% 80.4% 80.5% 91.6% 86.7% 88.9%
Fourier 93.2% 92.5% 94.1% 89.5% 89.5% 88.4%
PWL-w 90.5% 93.0% 92.3% 91.9% 82.8% 86.3%
Rect-w 90.1% 95.1% 98.3% 89.2% 85.7% 82.7%

Scalar Activation
ReLU Tanh Sigmoid
90.4% 84.7% 83.9%



IMPROVING THE EXPRESSIVE POWER OF DEEP NEURAL NETWORKS 759

Table 3. MSE for 2D function fitting problem. Top: Perfor-
mance of IAT-ReLU under different choices of basis function with
discretization M=500, where each row corresponds to the same in-
put basis p(·) and each column corresponds to the same output
basis q(·).The best 10 cases are highlighted in boldface. Bottom:
Performance for traditional scalar activation functions.

Reulsts for IAT-ReLU

p(·)
q(·)

Rect PWL PWQ Fourier PWL-w Rect-w

Rect 8.8E-4 2.6E-3 1.8E-3 2.0E-3 1.5E-3 3.0E-3
PWL 1.7E-4 2.5E-4 7.5E-5 3.9E-4 2.5E-4 1.9E-4
PWQ 1.6E-4 1.0E-4 6.7E-5 5.2E-4 2.2E-4 2.4E-4
Fourier 7.9E-5 7.0E-5 9.9E-5 1.0E-4 7.6E-5 1.9E-4
PWL-w 2.7E-4 2.0E-4 1.3E-4 2.8E-4 3.9E-4 3.3E-4
Rect-w 1.1E-3 3.1E-3 3.1E-3 2.6E-3 3.0E-3 2.7E-3

Scalar Activation
ReLU Tanh Sigmoid
1.1E-3 4.1E-6 3.2E-6

5.2. Choosing discretization M. Another important aspect of IAT-ReLU is
the discretization parameter, M , which controls the smoothness of the solution
by determining the number of linear pieces. Figure 6 illustrates the performance
of IAT-ReLU with different mesh ratios, where the discretization M is set as
M = d × mesh ratio. To maintain consistent discretization error across different
network widths d in our experiment, we use the mesh ratio to control the discretiza-
tion error instead of M directly. This is because the network width d determines
the number of basis functions in IAT-ReLU, and the discretization error depends
on the complexity of the state function, which is largely controlled by the number
of basis functions d. As a result, as d increases, the discretization M should also
increase accordingly. Notably, for piecewise basis functions, the mesh ratio can
also be viewed as the number of evaluation points per segment. From Figure 6,
we observe two key effects of increasing the discretization. Firstly, for tasks that
require smoothness, such as the function fitting task, higher discretization improves
the final fitting quality. Conversely, for tasks that do not require smoothness, like
the random label memorization task, increasing the discretization yields limited
improvements in performance. Our results show that a mesh ratio of 2 yields the
best performance. Deviations from this ratio lead to decreased performance, which
we attribute to the complexity of the decision boundary in the randomly labeled
dataset. Given the random label, the decision boundaries are highly irregular,
which requires more linear pieces to accurately capture the intricate zigzag pat-
tern in the decision boundary. However, as M increases further, the introduced
smoothness becomes a constraint, preventing the network from making the sharp
turns necessary to delineate the zigzag decision boundaries, which in turn reduces
performance. Additionally, finer discretization results in more continuous gradients
of the parameters. This is achieved by having more piecewise constant pieces in the
solution. Therefore, increasing the discretization enhances training stability, even
if the solution does not necessarily demand smoothness.



760 Z. ZHANG, F. BAO, AND G. ZHANG

1 2 4 8 16 32 64 128 256
Mesh ratio

10 5

10 4

10 3

10 2

M
SE

2D Function Fitting

1 2 4 8 16 32 64 128 256
Mesh Ratio

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

2D Random Label

Figure 6. The performance of the IAT-ReLU network for dif-
ferent mesh ratios. The red dots in the graph represent outcomes
from 10 independent runs of the test problems, while the blue curve
indicates their average. The network structure comprises 10 fully
FC layers, each with width d being 10. For IAT-ReLU, the dis-
cretization M = d×mesh ratio is used for the integral evaluation,
and the Fourier and PWQ basis have been selected as the input
and output basis functions, respectively. Left: MSE in the func-
tion fitting problem with different mesh ratios. Right: Accuracy
in label memorization problem with different mesh ratios.

6. Conclusion

In this work, we propose the IAT as a means to increase the practical expressive
power of DNNs. The IAT utilizes input and output basis functions to perform ac-
tivation in the function space. By choosing different input/output basis functions
and nonlinear activations, various versions of IAT can be obtained. In addition,
we also showed the equivalence between the IAT and GDNN. In particular, when
the nonlinear activation function is ReLU, we have IAT-ReLU, which serves as a
generalization of ReLU. We demonstrate that IAT-ReLU and ReLU share the same
forward and backward propagation structure. Moreover, by selecting appropriate
basis functions (continuous with large total variation), IAT-ReLU exhibits contin-
uous and enriched activation patterns, enhancing the expressive power of DNNs.
Numerical experiments support the superiority of IAT-ReLU over ReLU and other
activation functions. This study also suggests several potential avenues for future
research.

Firstly, the idea of activation pattern pre-training and transfer can be explored.
With the generalized activation pattern proposed in this study, it is possible to
transfer a well-trained activation pattern to an untrained model of different sizes.
By fixing the transferred activation pattern, the remaining optimization problem
becomes simpler, since each pair of weight matrix and bias vector is linear to the
model output. Following this direction, Transnet [40] is introduced, in which the ac-
tivation pattern of shallow NN is carefully designed and pretrained for transferring.
After transferring and fixing the activation pattern, the remaining optimization
can be solved by a simple least square. Secondly, training DNNs with decoupled
activation patterns can be considered. Instead of fixing the activation pattern, we
can train another network solely responsible for providing the activation pattern,
while the original network focuses on linear coefficients. This is feasible due to the
non-zero gradient flowing through the activation pattern. This approach allows for



IMPROVING THE EXPRESSIVE POWER OF DEEP NEURAL NETWORKS 761

separate optimization procedures for the activation pattern and linear coefficients.
Thirdly, there is room for further optimization of basis functions. In this study, we
only scratched the surface by considering six types of basis functions. It is worth
exploring and designing additional basis functions to improve performance. In ad-
dition to designing new basis functions, we may also consider mixing basis functions
of different properties, such as a mixture of local and global basis functions. Lastly,
alternative optimization algorithms can be explored. IAT-ReLU represents a new
class of activation functions that are 1-homogeneous and smooth when choosing
continuous basis functions. Being 1-homogeneous implies that only the angle of the
input matters in IAT-ReLU. Therefore, it is possible to investigate other optimiza-
tion algorithms that focus on controlling the angle of the state vector by updating
the parameters. These research directions have the potential to advance our under-
standing and utilization of IAT-ReLU, paving the way for further enhancements in
the expressive power and performance of DNNs.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research, Applied Math-
ematics program under the contract ERKJ387 at the Oak Ridge National Labora-
tory, which is operated by UT-Battelle, LLC, for the U.S. Department of Energy
under Contract DE-AC05-00OR22725. The first author (FB) would also like to
acknowledge the support from U.S. National Science Foundation through project
DMS-2142672 and the support from the U.S. Department of Energy, Office of Sci-
ence, Office of Advanced Scientific Computing Research, Applied Mathematics pro-
gram under Grant DE-SC0022297.

References

[1] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,

2016.
[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep bidirectional

transformers for language understanding, arXiv preprint arXiv:1810.04805, 2018.
[3] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear partial dif-
ferential equations, Journal of Computational physics, vol. 378, pp. 686–707, 2019.

[4] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvu-

nakool, R. Bates, A. Ž́ıdek, A. Potapenko, et al., Highly accurate protein structure prediction

with alphafold, Nature, vol. 596, no. 7873, pp. 583–589, 2021.
[5] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural networks,

vol. 4, no. 2, pp. 251–257, 1991.

[6] S. S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein, Deep information propagation,
arXiv preprint arXiv:1611.01232, 2016.

[7] B. Hanin, Which neural net architectures give rise to exploding and vanishing gradients?,
Advances in neural information processing systems, vol. 31, 2018.

[8] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, Neural ordinary differential
equations, Advances in neural information processing systems, vol. 31, 2018.

[9] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and
A. Anandkumar, Neural operator: Learning maps between function spaces, arXiv preprint

arXiv:2108.08481, 2021.
[10] B. Hanin and D. Rolnick, Deep relu networks have surprisingly few activation patterns,

Advances in neural information processing systems, vol. 32, 2019.
[11] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, Understanding deep neural networks with

rectified linear units, arXiv preprint arXiv:1611.01491, 2016.



762 Z. ZHANG, F. BAO, AND G. ZHANG

[12] I. Daubechies, R. DeVore, S. Foucart, B. Hanin, and G. Petrova, Nonlinear approximation
and (deep) relu networks, Constructive Approximation, vol. 55, no. 1, pp. 127–172, 2022.

[13] R. M. Neal, Bayesian learning for neural networks, vol. 118. Springer Science & Business
Media, 1996.

[14] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-Dickstein, Deep
neural networks as gaussian processes, arXiv preprint arXiv:1711.00165, 2017.

[15] A. G. d. G. Matthews, M. Rowland, J. Hron, R. E. Turner, and Z. Ghahramani, Gaussian
process behaviour in wide deep neural networks, arXiv preprint arXiv:1804.11271, 2018.

[16] A. Jacot, F. Gabriel, and C. Hongler, Neural tangent kernel: Convergence and generalization
in neural networks, Advances in neural information processing systems, vol. 31, 2018.

[17] S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and R. Wang, On exact computation
with an infinitely wide neural net, Advances in neural information processing systems, vol. 32,
2019.

[18] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-

kumar, Fourier neural operator for parametric partial differential equations, arXiv preprint
arXiv:2010.08895, 2020.

[19] Z. Allen-Zhu, Y. Li, and Z. Song, A convergence theory for deep learning via over-

parameterization, in International Conference on Machine Learning, pp. 242–252, PMLR,
2019.

[20] Y. Li and Y. Yuan, Convergence analysis of two-layer neural networks with relu activation,
Advances in neural information processing systems, vol. 30, 2017.

[21] S. S. Du, X. Zhai, B. Poczos, and A. Singh, Gradient descent provably optimizes over-
parameterized neural networks, arXiv preprint arXiv:1810.02054, 2018.

[22] X. Zhang, Y. Yu, L. Wang, and Q. Gu, Learning one-hidden-layer relu networks via gra-
dient descent, in The 22nd international conference on artificial intelligence and statistics,

pp. 1524–1534, PMLR, 2019.
[23] D. Zou, Y. Cao, D. Zhou, and Q. Gu, Stochastic gradient descent optimizes over-

parameterized deep relu networks, arXiv preprint arXiv:1811.08888, 2018.
[24] Z. Allen-Zhu, Y. Li, and Y. Liang, Learning and generalization in overparameterized neural

networks, going beyond two layers, Advances in neural information processing systems,
vol. 32, 2019.

[25] Y. Li and Y. Liang, Learning overparameterized neural networks via stochastic gradient
descent on structured data, Advances in neural information processing systems, vol. 31,

2018.
[26] S. Arora, S. Du, W. Hu, Z. Li, and R. Wang, Fine-grained analysis of optimization and

generalization for overparameterized two-layer neural networks, in International Conference

on Machine Learning, pp. 322–332, PMLR, 2019.
[27] G. Zhang, J. Zhang, and J. Hinkle, Learning nonlinear level sets for dimensionality reduction

in function approximation, in Advances in Neural Information Processing Systems (H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett, eds.), vol. 32,

pp. 13199–13208, Curran Associates, Inc., 2019.
[28] Y. Teng, Z. Wang, L. Ju, A. Gruber, and G. Zhang, Level set learning with pseudoreversible

neural networks for nonlinear dimension reduction in function approximation, SIAM Journal
on Scientific Computing, vol. 45, no. 3, pp. A1148–A1171, 2023.

[29] M. Yang, P. Wang, D. del Castillo-Negrete, Y. Cao, and G. Zhang, A pseudo-reversible
normalizing flow for stochastic dynamical systems with various initial distributions, arXiv
preprint arXiv:2306.05580, 2023.

[30] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, The expressive power of neural networks: A

view from the width, Advances in neural information processing systems, vol. 30, 2017.
[31] R. Pascanu, G. Montufar, and Y. Bengio, On the number of response regions of deep feed

forward networks with piece-wise linear activations, arXiv preprint arXiv:1312.6098, 2013.
[32] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, On the number of linear regions of deep

neural networks, Advances in neural information processing systems, vol. 27, 2014.
[33] T. Serra, C. Tjandraatmadja, and S. Ramalingam, Bounding and counting linear regions

of deep neural networks, in International Conference on Machine Learning, pp. 4558–4566,

PMLR, 2018.
[34] T. Serra and S. Ramalingam, Empirical bounds on linear regions of deep rectifier networks,

in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5628–5635,
2020.



IMPROVING THE EXPRESSIVE POWER OF DEEP NEURAL NETWORKS 763

[35] X. Xie, G. Zhang, and C. G. Webster, Non-intrusive inference reduced order model for fluids
using deep multistep neural network, Mathematics, vol. 7, no. 8, 2019.

[36] B. Hanin and D. Rolnick, Complexity of linear regions in deep networks, in International
Conference on Machine Learning, pp. 2596–2604, PMLR, 2019.

[37] G. B. Folland, Real analysis: modern techniques and their applications, vol. 40. John Wiley
& Sons, 1999.

[38] M. Ainsworth and Y. Shin, Plateau phenomenon in gradient descent training of relu networks:
Explanation, quantification, and avoidance, SIAM Journal on Scientific Computing, vol. 43,
no. 5, pp. A3438–A3468, 2021.

[39] J. Fiat, E. Malach, and S. Shalev-Shwartz, Decoupling gating from linearity, arXiv preprint

arXiv:1906.05032, 2019.
[40] Z. Zhang, F. Bao, L. Ju, and G. Zhang, Transnet: Transferable neural networks for partial

differential equations, Journal of Scientific Computing, vol. 99, no. 2, 2024.

Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37831.

E-mail : zhangz2@ornl.gov

Department of Mathematics, Florida State University, Tallahassee, FL 32306.

E-mail : bao@math.fsu.edu

Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37831.

E-mail : zhangg@ornl.gov


	1. Introduction
	1.1. Related works:

	2. Generalized Deep Neural Network (GDNN)
	2.1. The Construction of GDNN
	2.2. Parameterization of GDNN

	3. Integral Activation Transform (IAT)
	3.1. Integral Activation Transform (IAT)
	3.2. Connection to GDNN
	3.3. The approximation of IAT

	4. IAT-ReLU
	4.1. IAT-ReLU as a generalization of ReLU
	4.2. The activation pattern of IAT-ReLU
	4.3. The approximation of IAT-ReLU
	4.4. The decoupled IAT-ReLU network

	5. Numerical experiments
	5.1. Choice of the basis functions
	5.2. Choosing discretization M

	6. Conclusion
	Acknowledgments
	References

