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DEEP SURROGATE MODEL FOR LEARNING GREEN’S

FUNCTION ASSOCIATED WITH LINEAR

REACTION-DIFFUSION OPERATOR

JUNQING JIA, LILI JU, AND XIAOPING ZHANG*

Abstract. In this paper, we present a deep surrogate model for learning the Green’s function
associated with the reaction-diffusion operator in rectangular domain. The U-Net architecture is
utilized to effectively capture the mapping from source to solution of the target partial differential

equations (PDEs). To enable efficient training of the model without relying on labeled data, we
propose a novel loss function that draws inspiration from traditional numerical methods used
for solving PDEs. Furthermore, a hard encoding mechanism is employed to ensure that the
predicted Green’s function is perfectly matched with the boundary conditions. Based on the

learned Green’s function from the trained deep surrogate model, a fast solver is developed to
solve the corresponding PDEs with different sources and boundary conditions. Various numerical
examples are also provided to demonstrate the effectiveness of the proposed model.

Key words. Reaction-diffusion operator, Green’s function, surrogate model, deep learning, fast
solver.

1. Introduction

With the rapid development and great success of deep learning technology in
computer vision, natural language processing and other fields, it has also shown an
increasing impact in the field of scientific computing, especially in the numerical
solution of partial differential equations (PDEs) [1, 2, 3]. The use of neural networks
to solve PDEs has been investigated in several early works, e.g., [4, 5], recent
advances in deep learning techniques have further stimulated new explorations in
this direction.

Representative methods of interest are the physics-informed neural network (PIN-
N) [3], the deep Galerkin method (DGM) [6] and the deep Ritz method (DRM)
[1]. All these methods model the mapping from space and/or time variables to
the system states with a fully connected neural network. Their differences mainly
lie in the construction of loss functions. The loss functions of PINN and DGM
are expressed as a weighted sum of PDE residuals at randomly selected interior
points as well as solution errors at initial/boundary points. This idea also has
been extended to solve inverse problems [3], fractional differential equations [7],
stochastic differential equations and uncertainty qualification [8, 9, 10] and other
applications. DRM [1] designs loss function using the variational form of PDEs,
requiring numerical integrations to train the network. Related works have subse-
quently emerged [11, 12, 13, 14]. Meanwhile, the solution of parameterized PDEs
is also receiving increasing attention. For example, PINNs with special treatments
are used to solve parameterized PDEs involving point sources in [15] and [16]; the
meta-learning methods coupled with PINNs are developed to solve parameterized
PDEs with different boundary conditions and domain shapes in [17] and [18].
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In theoretical research and engineering applications of various PDEs, including
Poisson, Helmholtz and wave equations, the use of Green’s function is significant.
Having obtained the associated Green’s function of the given differential operator,
the Green’s function method is used to precisely determine the solution of the
corresponding PDE, which is explicitly expressed in an integral form, with the
integral kernel based on the Green’s function. Green’s function is, in reality, a
solution of the corresponding PDE with a point source subject to the homogeneous
Dirichlet boundary condition. Such a problem can also be regarded as the solution
of a parametrized PDE, where the location of the point source is the parameter.

However, the Green’s function in a general domain typically lacks an analytic
form. Therefore, we must approximate the Green’s function numerically, which has
led to increased attention on corresponding numerical methods in recent decades.
Fortunately, the rapid development of deep learning techniques and their power-
ful expressive capability have introduced a potentially novel method for comput-
ing Green’s function. Supervised learning methods, such as those proposed by
[19] and [20], have been suggested to learn the Green’s function. However, using
these methods requires a considerable amount of labeled training data, which can
be acquired by repeatedly solving PDEs through traditional numerical methods
beforehand. The process of preparing training data consumes expensive compu-
tational resources. In addition, since these methods are purely data-driven, their
generalization ability is usually restricted by the dataset coverage. In contrast,
certain physics-driven models also have been proposed to compute Green’s func-
tion, including GF-Net [21] and BI-GreenNet [22]. GF-Net [21] extends the PINN
structure [3] to solve PDEs stipulated by Green’s function. Moreover, these models
utilize certain special techniques, such as the smoothness of the Dirac delta function
and domain decomposition approach to optimize the network training process. BI-
GreenNet [22] introduces a novel framework for computing Green’s function, which
leverages the fundamental solution, boundary integral method and neural networks
to achieve high accuracy levels.

All of the above methods are solely based on neural networks. In the past
decades, traditional numerical methods, such as finite difference, finite element and
finite volume methods, have been extensively studied for solving PDEs, especially
with point sources, to compute Green’s function. A plausible approach is to develop
a model to compute Green’s function by leveraging the benefits of both traditional
methods and neural networks. In this context, we propose to use the U-Net archi-
tecture to develop a deep surrogate model for learning the Green’s function of the
linear reaction-diffusion operator on a rectangular domain, and to design a novel
loss function, inspired by traditional numerical methods, which helps train the deep
surrogate model efficiently.

The remaining sections of the paper are organized as follows. In Section 1.1, we
briefly introduce the problem setting, including the reaction-diffusion equation, its
Green’s function as well as the Green’s representation formula. Section 2 presents
and discusses the deep surrogate model for learning the Green’s function of the lin-
ear reaction-diffusion operator on a rectangular domain. This section includes the
network architecture, data generation, loss function and training strategy. In Sec-
tion 3 we present a fast solver based on the proposed deep surrogate model to solve
the corresponding PDEs. Extensive numerical experiments and comparisons are
provided in Section 4 to demonstrate the outstanding performance of the proposed
method, including some ablation studies and the application of the deep surrogate
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model to the fast numerical solution of a target equation with different sources and
boundary conditions.

1.1. Problem setting and Green’s function. Let Ω ⊂ Rd be a bounded Lip-
chitz domain, we consider the following linear reaction-diffusion operator:

(1) L(u)(x) := −∇ · (a(x)∇u(x)) + r(x)u(x), x ∈ Ω,

where a(x) > 0 is the diffusion coefficient and r(x) ≥ 0 is the reaction coeffi-
cient. The corresponding reaction-diffusion equation with the Dirichlet boundary
condition can be represented as follows:

(2)

{
L(u)(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω,

where f(x) is the given source term and g(x) gives the boundary value. The
Green’s function G(x, ξ) represents the impulse response of the PDE subject to
homogeneous Dirichlet boundary condition, that is, for any impulse source point
ξ ∈ Ω, {

L(G)(x, ξ) = δ(x− ξ), x ∈ Ω,
G(x, ξ) = 0, x ∈ ∂Ω,

(3)

where δ(x) denotes the Dirac delta source function satisfying

(4) δ(x) =

{
0, if x ̸= 0

∞, if x = 0
and

∫
Rd

δ(x) dx = 1.

If the Green’s function G(x, ξ) is found, then the solution of (2) can be expressed
by

(5) u(x) =

∫
Ω

f(ξ)G(x, ξ) dξ −
∫
∂Ω

g(ξ)a(ξ)
∂G(x, ξ)

∂nξ
dsξ, ∀x ∈ Ω,

where nξ denotes the unit outer normal vector on ∂Ω.

2. The deep surrogate model for learning Green’s function

It is noteworthy that Eq. (3) is actually a parameterized PDE with the parameter
ξ and the homogeneous Dirichlet boundary conditions. We will propose a deep
surrogate model to solve such a parameterized PDE, which equivalently learns the
Green’s function associated with the linear reaction-diffusion operator (1), and
then uses it to construct a fast solver for solving the problem (2) based on the
formula (5). In order to represent the Green’s function obeying (3), an appropriate
convolutional neural network is adopted to model the mapping from the source
δ(x− ξ) to the solution G(x, ξ) of (3). In this paper, we take the two-dimensional
problem for illustration and assume Ω = [0, L1]× [0, L2], but the proposed method
can be naturally generalized to higher-dimensional rectangular domains.

2.1. The U-Net architecture. The U-Net is a representative example of a Con-
volutional Neural Network (CNN), which was originally proposed for medical image
segmentation, but was subsequently applied to a wide range of image processing
tasks. In recent years, with the widespread application of deep learning in scientific
computing, the U-Net has also been employed for regression tasks, particularly for
the deep learning based method for numerical solution of PDEs, e.g. [23].

Similar to all other CNNs, the U-Net employs filter kernels for convolutional
layers and pooling layers to extract features from input images. Nevertheless, the
U-Net architecture is devised with a unique ”U” shape, where the feature maps
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from the encoding path are concatenated with those from the decoding path using
skip connections. This approach enables the model to capture both high-level and
low-level features. Furthermore, the U-Net is recognized for its expansive path that
includes deconvolution or upsampling layers to progressively increase the spatial
resolution of the output.

The input tensor T ξ of the U-Net is designed with dimension of n × m × C,
where C represents the number of input channels. The output tensor Gξ of the
U-Net is dimensioned at n ×m. To better suit our needs, we also slightly modify
the classical architecture of the U-Net by introducing another two hyperparameters.
One of these is the channels of the first hidden layer, denoted as C1, which identifies
the number of features extracted at the beginning. The other one is the depth of
the encoder/decoder, denoted as D.

As depicted in Figure 1, each encoding operation in the U-Net downsamples the
input size of the previous layer while simultaneously doubling the channel number
of the input tensor. Conversely, each decoding operation in the U-Net doubles the
input size of the previous layer and halves the number of channels. By adding more
coding and decoding layers, the depth of this architecture can be easily increased.
To implement the hard encoding of the homogeneous boundary condition obeyed
by Green’s function, we add a zero padding operation at the end of the architecture.

Figure 1. Illustration of the architecture of the U-Net for the
proposed deep surrogate model for learning Green’s function. Note
Gξ = U-Net(T ξ,Θ) where the input tensor T ξ of the U-Net is of
dimension n × m × C and the output tensor T ξ is of dimension
n×m.

2.2. Approximation of the Dirac delta function. The Dirac delta function
(4) is approximated by a multidimensional Gaussian density function

(6) δ(x− ξ) ≈ ρ(x− ξ) =
1(√
2πσ

)2 exp

(
−|x− ξ|2

2σ2

)
,



DEEP SURROGATE MODEL FOR LEARNING GREEN’S FUNCTION 701

where the parameter σ > 0 denotes the standard deviation of the distribution. As
σ → 0, the function (6) converges to the Dirac delta function pointwisely except
at the point x = ξ. In practice, the standard deviation σ is set to be a value
proportional to the mesh size of the problem domain Ω.

2.3. Data generation. Let us uniformly partition the domain Ω in each direction
to obtain a rectangular mesh with nodes X = {xi,j = ((i − 1)h1, (j − 1)h2) | i =
1, · · · , n, j = 1, · · · ,m}, where h1 = L1/(n − 1) and h2 = L2/(m − 1). For each
fixed source point ξ, we first compute the distance between ξ and each node in the
mesh X, and then assemble them into an array

(7) Rξ = {∥xi,j − ξ∥2 | xi,j ∈X} .

Next a normalization is adopted to get

(8) Rξ ←
Rξ −Rmin

Rmax −Rmin
,

where Rmin and Rmax are the minimum and maximum of Rξ, respectively. The
right-hand term δ(x − ξ) of (3) is also evaluated on X for each ξ, which leads to
an array

(9) ρξ = {ρ(xi,j − ξ) | xi,j ∈X} ,

where ρ(·) is defined by (6).
Since the source point ξ can be randomly sampled at any location in the solution

domain Ω, we can easily generate the samples. All numerical experiments in Section
4 use the training set consisting of 2000 ξ samples generated with the uniform
distribution in Ω and the validation set consisting of 100 ξ samples equally spaced
in Ω. The input tensors {T ξ} consist of three types, including 1-channel input

T
(1)
ξ = ρξ, 2-channels input T

(2)
ξ = [Rξ,ρξ], and 3-channels input T

(3)
ξ = [X,ρξ].

2.4. Loss function. To train the deep surrogate model in a physics-driven fashion,
we need to construct a loss function based on the PDE (3). Unlike PINN and its
variants, we will not use the strong form of the PDE. Instead, we discretize (3)
by conventional numerical schemes. Specifically, we adopt the second-order central
finite difference scheme to discretize (3) on X, which leads to

(10) Lh(Gh)(xi,j , ξ) = ρ(xi,j − ξ).

where Gξ = {Gh(xi,j , ξ) | xi,j ∈ X} and Lh is the discrete operator for approxi-
mating the differential operator L given as follows:

(11)

Lh(Gh)(xi,j , ξ) = ci,jGh(xi,j , ξ)− ci+1,jGh(xi+1,j , ξ)

− ci−1,jGh(xi−1,j , ξ)− ci,j+1Gh(xi,j+1, ξ)

− ci,j−1Gh(xi,j−1, ξ) + rijGh(xi,j , ξ).

where rij = r(xi,j) and

ci+1,j = a(xi+1/2,j)/h
2
1, ci−1,j = a(xi−1/2,j)/h

2
1,

ci,j+1 = a(xi,j+1/2)/h
2
2, ci,j−1 = a(xi,j−1/2)/h

2
2,

ci,j = ci+1,j + ci−1,j + ci+1,j+1 + ci,j−1.
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Then a natural and common way to construct the loss function is to use the
residual of (10):

(12)

Lossres(Θ) =
∑
ξ

∥Lh(Gξ)− Sξ∥2

=
∑
ξ

∑
i,j

|Lh(Gh)(xi,j , ξ)− ρ(xi,j − ξ)|2,

where Sξ = {ρ(xi,j−ξ) | xi,j ∈X}, which is referred as the residual-type loss. It
is a discrete analogue of the loss function commonly used in PINN. Unfortunately,
numerical experiments in Section 4 exhibit that the use of such loss function is
quite hard to train the proposed deep surrogate model and could lead to a poor
performance.

Inspired by the idea of Jacobi iterative scheme for solving linear systems, we
propose and test a new loss function defined by

(13) Lossjac(Θ) =
∑
ξ

∥Gξ − G̃
(k)

ξ ∥2,

where G̃
(k)

ξ is the approximate solution of (10) obtained by using Jacobi iteration

scheme with the initial value G̃
(0)

ξ = Gξ and k iterations, i.e.,

(14)

G̃
(l+1)
h (xij , ξ) =

1

ci,j + rij

[
ρ(xi,j − ξ) + ci+1,jG̃

(l)
h (xi+1,j , ξ))

+ ci−1,jG̃
(l)
h (xi−1,j , ξ)) + ci,j+1G̃

(l)
h (xi,j+1, ξ))

+ ci,j−1G̃
(l)
h (xi,j−1, ξ))

]
, l = 0, 1, · · · , k − 1.

We will refer (13) as the Jacobi-type loss.
For comparison purposes, we also consider and test a data-driven loss function

as follows:

(15) Lossdata(Θ) =
∑
ξ

∥Gξ − Ĝξ∥2,

where Ĝξ is obtained by taking the final convergent result of the Jacobi iterative

solution G̃
(k)

ξ , i.e., Ĝξ = lim
k→∞

G̃
(k)

ξ .

2.5. Training strategies. This section explores training strategies for the deep
surrogate model equipped with Lossjac. The objective of the training process is to
form a virtuous circle through gradually optimizing the network from the approxi-
mate solutions generated by the Jacobi iteration method. The U-Net’s predictions
can then be served as a potentially improved initial solutions for the Jacobi iteration
in the subsequent training step.

Three options for choosing the optimal iteration number k in (13) are considered.
Using a fixed k in the Jacobi iteration scheme during the training process is a
conventional approach, referred as “constant strategy”. In this approach selecting
an optimal k is important to balance accuracy and computational complexity. The
second approach is to initially set a larger value for k and then gradually decrease it
during the training until it reaches a small value, referred as the “dynamic strategy”.
A more reasonable approach is to adaptively adjust k by comparing the validation
errors observed in two successive epochs. If the error observed in the current epoch
is significantly greater than that in the previous epoch, then k should be increased,
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and conversely, if it is smaller, then k needs to be decreased. This approach is
referred as “adaptive strategy”.

3. Fast PDE solver based on the learned Green’s function

Once the deep surrogate model is trained, numerical solution of the linear reaction-
diffusion problem (2) can be directly computed based on the Green’s formula (5)
through the learned Green’s function. To ensure accurate evaluation of the inte-
grals in (5) accurately, we apply numerical quadrature on the same rectangular
mesh (denoted by Rq = {Rl}) as that used for training the deep surrogate model.
Let us denote the intersection of the rectangle edges with the domain boundary by
Ebdryq = {Em}. By using the symmetry of Green’s function, we have

(16)

u(ξ) ≈
∑

Rl∈Rq

IRl

x,h[f(x)G(x, ξ)]

−
∑

Em∈Ebdry
q

IEm

x,h [g(x)a(x)(∇xG(x, ξ) · nx)],

where IRl

x,h[·] denotes the numerical quadrature for evaluating∫
Rl

f(x)G(x, ξ) dx

and IEm

x,h [·] the numerical quadrature for evaluating∫
Em

g(ξ)a(ξ)(∇xG(x, ξ) · nx) dsx,

respectively.

4. Numerical experiments

This section presents various numerical experiments. We first conduct ablation
studies for the deep surrogate model used to learn the Green’s function of the
Laplacian operator. Then, we test more examples on the learned Green’s functions
of the reaction-diffusion operator and corresponding fast solver. In the following
examples, the solution domain is chosen to be [−1, 1]× [−1, 1] and partitioned into
a uniform rectangular mesh of 64 × 64 uniform nodes, i.e., n = m = 64. In all
experiments, the maximum number of epochs and the batch size are to 150 and 6,
respectively. All experiments are implemented using the PyTorch framework and
run on the GTX 2080Ti card.

4.1. Ablation study of deep surrogate model. To simplify the matter, we
use the deep surrogate model for learning the Green’s function of the Laplacian
operator (i.e., a(x) ≡ 1 and r(x) ≡ 0) as an example. We conduct a series of
ablation studies to measure the influence of the model’s performance, including
the impact of network architecture, loss functions, input forms and the number of
Jacobi iterations. In this subsection, the number of Jacobi iterations remains fixed
at k = 20 (constant strategy) for Lossjac except for the experiments in subsections
4.1.4 and 4.1.5.
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4.1.1. Effect of the U-Net architecture. The U-Net architecture used for the
proposed deep surrogate model is determined by the number of channels of the first
hidden layer (C1) and the depth of its encoder/decoder (D), as already explained in
subsection 2.1. We carefully investigate its effect on the performance of the model,
and report the corresponding test results on the model sizes and the three training
MSE losses (i.e., the residual-type loss Lossres, the Jacobi-type loss Lossjac, and
the data-driven loss Lossdata) for the U-Net architecture under various values of
C1 and D in Table 1. Our observations include: 1) the prediction of the model
equipped with the residual-type loss (Lossres) is always unsatisfactory regardless
of the choice of the U-Net architecture; 2) for a fixed depth D, the performance of
the model will gradually improve as the number of channels C1 increases; 3) for the
model equipped with the Jacobi-type loss Lossjac, the performance improvement
of the model does not continue when the depth D increases up to a certain level.
To balance the size and performance of the proposed deep surrogate model, we will
use the U-Net architecture with C1 = 32 and D = 4 in the subsequent analysis,
which appears to perform the best in all cases based on Table 1.

Table 1. Results on the model sizes and the training MSE losses
for the U-Net architecture under various values of C1 and D.

C1 D Model Size Lossres Lossjac Lossdata
4 3 15.1K 3.69e-3 2.29e-5 1.85e-4
8 3 59.1K 2.60e-3 1.16e-5 7.93e-6
16 3 234K 3.10e-3 8.25e-6 3.41e-6
32 3 930K 2.88e-3 7.79e-6 2.65e-6
4 4 59.7K 3.25e-3 2.39e-6 8.09e-6
8 4 236K 2.67e-3 1.49e-6 2.16e-6
16 4 940K 2.90e-3 1.61e-6 1.40e-6
32 4 3.8M 3.56e-3 1.15e-6 1.67e-6
4 5 237K 3.83e-3 2.58e-6 6.74e-6
8 5 943K 3.33e-3 6.85e-6 2.10e-6
16 5 3.8M 2.86e-3 1.61e-6 1.49e-6
32 5 15M 2.52e-3 1.22e-6 1.16e-6

4.1.2. Effect of the loss functions. The key of training the proposed deep sur-
rogate model often lies in the choice of loss functions. Figure 2 presents a visual
comparison of the Green’s function computed by the finite difference method (as
the reference solution) with those predicted by the proposed deep surrogate model
equipped with the three different loss functions. The following observations are
made: 1) the model equipped with the residual-type loss learns the rough shape of
the Green’s function but its detailed values are almost completely inaccurate; 2) the
results predicted by the model equipped with the Jacobi-type loss and data-driven
loss are very similar and both are quite accurate.

Comparisons of the contour maps of the reference solution and the predicted
solutions with Lossjac and Lossdata are provided in Figure 3, together with the
corresponding L2 errors. It is observed that for the the models equipped with
Lossjac and Lossdata, the contour lines (indicating the gradient information) of
the predicted solutions overlap well with those of the reference solution. Figure 4
presents the heat maps of the errors for the predicted solutions by using Lossjac
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(a) Reference (b) Lossres

(c) Lossjac (d) Lossdata

Figure 2. Plots of Green’s functionsG(x, ξ) at ξ = (0, 0) comput-
ed by the finite difference method (as the reference solution) and
predicted by the proposed deep surrogate model equipped with
the three different loss functions (Lossres, Lossres, Lossdata) re-
spectively.

and Lossdata , from which, we find that the errors of the proposed model equipped
with Lossjac are comparable to that of the model equipped with Lossdata.

4.1.3. Effect of input forms. Here we investigate the effect of different input
forms on the the learned Green’s function. As mentioned in subsection 2.3, we pro-

vide three types of input tensors, including 1-channel input T
(1)
ξ = ρξ, 2-channels

input T
(2)
ξ = [Rξ,ρξ], and 3-channels input T

(3)
ξ = [X,ρξ]. Figure 5 shows the

contour maps of the Green’s functions G(x, ξ) at ξ = (0, 0) for the reference solution
and the predicted solutions by the proposed deep surrogate model with differen-
t input forms, where Lossjac is used. We find that the results caused by these
three input forms are almost the same, indicating that the performance of the deep
surrogate model is mainly determined by the point source information and extra
spatial location information isn’t necessary. Therefore, we will use the first input

form T
(1)
ξ in following experiments.
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e2 = 2.23× 10−3 e2 = 1.90× 10−3

(a) Lossjac (b) Lossdata

Figure 3. Comparisons of the contour maps of Green’s functions
G(x, ξ) at ξ = (0, 0) between the reference solution and the pre-
dicted solutions by the proposed deep surrogate model equipped
with Lossjac and Lossdata respectively. The corresponding L2 er-
rors (denoted as e2) are also provided.

(a) Lossjac (b) Lossdata

Figure 4. Heat maps of the errors of Green’s functions G(x, ξ) at
ξ = (0, 0) for the predicted solutions by using Lossjac and Lossdata
respectively.

4.1.4. Effect of the number of Jacobi iterations in the constant strategy.
The Jacobi scheme is a simple but important iterative method for solving large-
scale linear systems. Here we study the effect of the number of Jacobi iterations
in the constant strategy on the performance of the proposed deep surrogate model.
Experimental results with a fixed number of Jacobi iterations k are shown in Fig.
6. We find that k has a significant impact on the model’s performance: 1) when k
is set to be relatively small, the difference between the predicted solution and the
reference solution is significant (see Fig. 6-(a) and Fig. 6-(b)); 2) as k increases,
the predicted solution gradually matches the reference solution (see Fig. 6-(c)),
and subsequently, the number of iterations tends to be saturate, which means that
further increase in k may not improve the predicted solution, and may even lead to
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e2 = 4.33× 10−3

(a) Reference (b) T
(1)
ξ

e2 = 4.14× 10−3 e2 = 2.23× 10−3

(c) T
(2)
ξ (d) T

(3)
ξ

Figure 5. Contour maps of the Green’s functions G(x, ξ) at ξ =
(0, 0) for the reference solution and the predicted solutions by the
proposed deep surrogate model with different input forms. The
corresponding L2 errors (denoted as e2) are also provided.

a poor predictive performance of the model (see Fig. 6-(d)). In fact, if k is set to be
large enough, the approximate solution produced by the Jacobi iteration scheme is
almost the exact solution, and our model then could be regarded as the data-driven
model. As mentioned earlier, the predicted solution generated by the data-driven
surrogate model lacks some regularized constraints, which partially explains the
phenomenon in Fig 6-(d). That is to say, there is no need to choose large number
for k in practice. Although the incomplete Jacobi iterations may produce imperfect
approximate solutions, it still provides a good estimate (label) for the training of the
surrogate model, then this estimate is somehow corrected by the back-propagation
algorithm. As the training progresses, a more accurate regularized solution will be
generated in the end.

4.1.5. Effect of the number of Jacobi iterations in the dynamic and adap-
tive strategies. Now we investigate the effect of the other two training strategies,
including the dynamic and adaptive ways to adjust the number of Jacobi itera-
tions during the training process, on the model’s performance. In our setting, the
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e2 = 4.86× 10−3 e2 = 3.5× 10−3

(a) k = 1 (b) k = 5

e2 = 2.23× 10−3 e2 = 4.72× 10−3

(c) k = 20 (d) k = 40

Figure 6. Comparisons of contour maps of the Green’s functions
G(x, ξ) at ξ = (0, 0) for the reference solution and the predict-
ed solutions by the proposed deep surrogate model with different
number of Jacobi iterations in the constant strategy. The corre-
sponding L2 errors (denoted as e2) are also provided.

dynamic strategy is to initially set k = 40, and then reduce k by 10 for every 20
epochs until it is ultimately maintained at 10. The adaptive strategy is to initially
set k = 40 for the first epoch, and then let k be adaptively adjusted in [0,20] the
remaining process. Specifically, if Losscur > 1.2Losspre, multiply k by 2, and if
Losscur < 0.8Losspre, divide k by 2, where Losscur and Losspre are the validation
losses at the current and previous epochs, respectively.

The evolution of the number of Jacobi iterations k and the validation loss during
the training process for three training strategies are shown in Fig. 7 and Fig.
8, respectively, where we fix k = 20 for the constant strategy. Compared with
the constant strategy, the other two strategies, especially the adaptive strategy,
significantly reduce the total number of Jacobi iterations, while the downtrend of
the loss function remains similar for all three strategies. We present the contour
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Figure 7. Evolution of the number of Jacobi iterations k during
the training process for three training strategies, where we fix k =
20 for the constant strategy.

Figure 8. Evolution of the validation loss during the training
process for three training strategies.

maps of the predicted Green’s functions at ξ = (0, 0) by the proposed deep surrogate
model with the three different training strategies in Fig. 9, from which it can be
seen that the dynamic and adaptive strategies significantly reduce computational
complexity, while the predicted results are comparable to those of the constant
strategy. Therefore we will always use the adaptive strategy for all the remaining
experiments.

4.2. More examples for learning Green’s functions. More experimental re-
sults about the learned Green’s functions for different linear reaction-differential
operators, produced by the proposed deep surrogate model, are provided in this
subsection. Comparisons of contour maps (and corresponding errors) shown in Fig.
10 verify that our model can produce accurate prediction results for Green’s func-
tion of Laplacian operator at different source positions, even near the boundary or
corner of the domain. We also investigate the deep surrogate model for learning
Green’s function of the reaction-diffusion operator (1) with the variable coefficients

(17) a(x) = 1 + 2x2
2, r(x) = 1 + x2

1,

and the corresponding results are shown in Figure 11, which demonstrate our model
again works very well.

4.3. Fast solvers for solving PDEs. In this subsection, we conduct some exper-
iments for investigating performance of the fast solvers (16) based on the learned



710 J. JIA, L. JU, AND X. ZHANG

e2 = 2.23× 10−3 e2 = 2.97× 10−3 e2 = 3.54× 10−3

(a) constant (b) dynamic (c) adaptive

Figure 9. Comparisons of contour maps of the Green’s functions
G(x, ξ) at ξ = (0, 0) for the reference solution and the predicted
solutions by the proposed deep surrogate model with the three
different training strategy. The corresponding L2 errors (denoted
as e2) are also provided.

e2 = 2.23× 10−3 e2 = 1.38× 10−3 e2 = 2.19× 10−3

(a) ξ = (0, 0) (b) ξ = (−0.75,−0.75) (c) ξ = (0.5, 0)

Figure 10. Comparisons of contour maps of the Green’s functions
G(x, ξ) for the reference solution and the predicted solutions by
the proposed deep surrogate model for the Laplacian operator with
different source positions. The corresponding L2 errors (denoted
as e2) are also provided.

Green’s function in solving the linear reaction-diffusion equation (2). For the choice

of numerical quadratures, we adopt IRl

x,h as the 2D Simpson’s rule and IEm

x,h as the

1D Simpson’s rule, and the gradient ∇xG(x, ξ) on the boundary is approximated
by a first order difference scheme. For the visualization and the computation of
L2 error between the exact solution and the approximate soution provided by fast
solvers, we approximately compute u(ξ) by (16) on a 64× 64 uniform mesh.

4.3.1. Laplacian equation. Let us consider the Laplacian equation. First, we
choose the exact solution as

(18) u(x1, x2) = sin(λπx1) sin(λπx2)

and the source term is determined accordingly, where λ is used to determine the
frequency of the solution. In this case, the boundary condition is homogeneous,
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e2 = 3.11× 10−3 e2 = 1.09× 10−3 e2 = 2.44× 10−3

(a) ξ = (0, 0) (b) ξ = (−0.75,−0.75) (c) ξ = (0.5, 0)

Figure 11. Comparisons of contour maps of the Green’s functions
G(x, ξ) for the reference solution and the predicted solutions by the
proposed deep surrogate model for the reaction-diffusion operator
(17) with different source positions. The corresponding L2 errors
(denoted as e2) are also provided.

i.e., g = 0, and the second integral in (5) vanishes. Plots of the exact solution, the
numerical solution and their contour maps are shown in Figure 12 for the case of
λ = 2 and Figure 13 for the case of λ = 4. We see that our fast solver produces
good numerical solutions, and the L2 errors are within acceptable ranges.

e2 = 2.97× 10−2

(a) reference (b) prediction (c) contour

Figure 12. Plots of the exact solution (left) and the numeri-
cal solution (middle) produced by the fast solver based on the
learned Green’s function for the Poisson equation with the solu-
tion sin(2πx1) sin(2πx2). The comparison of their contour maps
(right) is also provided with the corresponding L2 errors (denoted
as e2).

Second, we choose the exact solution as

(19) u(x1, x2) = cos(λπx1) cos(λπx2)

and the boundary condition (inhomogeneous now) and source term are determined
accordingly. Plots of the exact solution, the numerical solution and their contour
maps are shown in Figure 14 for the case of λ = 2 and Figure 15 for the case
of λ = 4, from which we see that the fast solver is also suitable for solving the
Laplacian equation with inhomogeneous boundary condition.
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e2 = 5.98× 10−2

(a) reference (b) prediction (c) contour

Figure 13. Plots of the exact solution (left) and the numeri-
cal solution (middle) produced by the fast solver based on the
learned Green’s function for the Poisson equation with the solu-
tion sin(4πx1) sin(4πx2). The comparison of their contour maps
(right) is also provided with the corresponding L2 errors (denoted
as e2).

e2 = 3.22× 10−2

(a) reference (b) prediction (c) contour

Figure 14. Plots of the exact solution (left) and the numeri-
cal solution (middle) produced by the fast solver based on the
learned Green’s function for the Poisson equation with the solu-
tion cos(2πx1) cos(2πx2). The comparison of their contour maps
(right) is also provided with the corresponding L2 errors (denoted
as e2).

4.3.2. The reaction-diffusion equation. We consider the reaction-diffusion e-
quation with the coefficients defined in (17) and the exact solution is set to be

(20) u(x1, x2) = 10−(x2
1+2x2

2+1).

The boundary condition and source term are then determined accordingly. Plots
of the exact solution, the numerical solution and their contour maps are shown in
Figure 16, from which we see that numerical solution produced by the fast solver
(16) based on the learned Green’s function again matches the exact solution very
well.
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e2 = 5.13× 10−2

(a) reference (b) prediction (c) contour

Figure 15. Plots of the exact solution (left) and the numeri-
cal solution (middle) produced by the fast solver based on the
learned Green’s function for the Poisson equation with the solu-
tion cos(4πx1) cos(4πx2). The comparison of their contour maps
(right) is also provided with the corresponding L2 errors (denoted
as e2).

e2 = 8.31× 10−3

(a) reference (b) prediction (c) contour

Figure 16. Plots of the exact solution (left) and the numerical
solution (middle) produced by the fast solver based on the learned
Green’s function for the linear reaction-diffusion equation with the
coefficients (17) and the solution (20). The comparison of their
contour maps (right) is also provided with the corresponding L2

errors (denoted as e2).

5. Conclusion

In this paper we propose and numerically study a deep surrogate model for
learning Green’s function of linear reaction-diffusion operator based on the U-Net
architecture. Inspired by the Jacobi iteration scheme for solving linear systems, a
novel Jacobi-type loss function and corresponding training strategies are designed
and demonstrated to be very effective. In addition, a fast solver is tested and
shown to be effective for numerically solving linear reaction-diffusion equations
based on the learned Green’s function. The proposed model is a beneficial attempt
to integrate deep learning with traditional numerical methods. It fully utilizes the
powerful expressive capability of neural networks, and on the other hand, it also
combines advantages of traditional numerical methods.
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