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HOW CAN DEEP NEURAL NETWORKS FAIL EVEN WITH

GLOBAL OPTIMA?

QINGGUANG GUAN

Abstract. Fully connected deep neural networks are successfully applied to classification and
function approximation problems. By minimizing the cost function, i.e., finding the proper weights
and biases, models can be built for accurate predictions. The ideal optimization process can
achieve global optima. However, do global optima always perform well? If not, how bad can

it be? In this work, we aim to: 1) extend the expressive power of shallow neural networks
to networks of any depth using a simple trick, 2) construct extremely overfitting deep neural
networks that, despite having global optima, still fail to perform well on classification and function
approximation problems. Different types of activation functions are considered, including ReLU,

Parametric ReLU, and Sigmoid functions. Extensive theoretical analysis has been conducted,
ranging from one-dimensional models to models of any dimensionality. Numerical results illustrate
our theoretical findings.

Key words. Deep neural network, global optima, binary classification, function approximation,
overfitting.

1. Introduction

Fully connected deep neural networks are the fundamental components of mod-
ern deep learning architectures, serving as the building blocks for various models
like convolutional neural networks [12], transformers [21], and numerous others.
The effectiveness of deep neural networks lies in their ability to approximate com-
plex functions, making them essential tools for tasks ranging from image recognition
to natural language processing. However, along with their expressive power, deep
neural networks also exhibit a phenomenon known as overfitting, where they may
fit the training data very well instead of capturing the underlying patterns. This
underscores the importance of understanding both the approximation capabilities
and the limitations of deep neural networks. Since neural network models are ob-
tained through training, which involves optimizing a cost function. The ultimate
goal is to find the global optima, which represent configurations of the network
parameters that minimize the discrepancy between the predicted outputs and the
actual targets. However, achieving global optima does not guarantee optimal per-
formance, as the network may still suffer from overfitting or other issues. Therefore,
it is crucial to thoroughly examine the properties of global optima to understand
how they affect the performance of the model.

In this paper, we will focus on the regression problem formulated as scalar-valued
function approximation. Let the target be a scalar-valued function g(x) (in the case
of binary classification, g(x) has values 1 and −1). The variable is x ∈ Rd, where
d is a positive integer. The training set is defined as{

xl, yl

}L

l=1
,

where yl = g(xl), and x1,x2, ...,xL are samples drawn from a uniform distribution
in a d-dimensional cube [0, 1]d. Thus, the input layer has d neurons, and the output
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layer has one neuron. Suppose there are K hidden layers in the network. We define
the output as a function fK(x), omitting the parameters of weights and biases in
the function definition. The cost functions are Median Absolute Error (MAE error)
defined in equation (1) or Mean Squared Error (MSE error) defined in equation (2):

Cmae(W,B) =
1

L

L∑
l=1

∣∣∣g(xl)− fK(xl)
∣∣∣,(1)

Cmse(W,B) =
1

L

L∑
l=1

(
g(xl)− fK(xl)

)2
,(2)

whereW,B are weights and biases of fK(x). From (1) and (2), we know Cmae(W,B)
≥ 0 and Cmse(W,B) ≥ 0. If there exist W ∗ and B∗ such that Cmae(W

∗, B∗) = 0
or Cmse(W

∗, B∗) = 0, then (W ∗, B∗) is a global minimizer for the corresponding
cost function.

For properly designed binary classification and function approximation problems,
we can construct neural networks of any depth that fit the training data perfectly,
achieving global optima and zero training loss. However, those neural networks
have the worst generalization error. The extreme case is that the model only works
on the training set; for any data not in the training set, the output of the model is
meaningless.

The paper is organized as follows: In Section 2, we propose a simple trick to
extend the universal approximation of shallow networks to deep neural networks of
any depth. Various activation functions are considered. In Section 3, we construct
examples of binary classification and function approximation in one, two, and high
dimensions for networks with ReLU activation functions. Section 4 is devoted to
deep neural networks with Parametric ReLU activation functions. The construc-
tions are slightly different compared to the ReLU function. In Section 5, we only
consider function approximation problems for networks with Sigmoid activation
functions. Conclusions are drawn in Section 6.

2. A Simple Trick to Extend the Expressivity of Shallow Neural Net-
works to Any Depth

The approximation properties of shallow neural networks have been extensively
studied, including universal approximation [3, 17, 9, 1, 4, 13], and higher order
estimations [19, 20]. However, extending these existing results to any depth is
either too complicated or requires many neurons in the subsequent hidden layers, see
[8, 22, 6, 18, 10]. Before presenting examples that can cause deep neural networks
(DNNs) to fail, we employ a very simple trick to extend the expressive power
of shallow neural networks to networks of any depth, the minimum width of the
following attached hidden layers can be as small as one. The activation functions
are assumed to be ReLU-like [15, 2, 11], which have a linear part x, if x ≥ 0; or C2

continuous with bounded second order derivatives, such as Sigmoid, Tanh, Softplus
[5], Gaussian and RBFs [17].

Theorem 2.1. Suppose a bounded scalar valued function f(x),x ∈ Rd, d ≥ 1 can
be approximated by a fully connected neural network with K hidden layers, K ≥ 1,
then after attaching N extra hidden layers with any width ≥ 1, the function can still
be approximated by the deep neural network with K + N hidden layers. N can be
any positive integer.
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Proof. Let fK be the approximation of f obtained by a neural network with K
hidden layers. Suppose that by increasing the number of neurons and adjusting
weights and biases, we can achieve fK → f .

Next, we will develop a method to construct fK+N such that it also approximates
the function f . Suppose the activation function a(·) has a bounded second-order
derivative and a′(c) ̸= 0, where c is a constant. Then at layer K + n, n ≥ 1, we
select one neuron, and let its input be

p1 = ϵfK + c,(3)

pn =
1

a′(c)
a(pn−1)−

a(c)

a′(c)
+ c, n ≥ 2,(4)

where ϵ > 0 is a small enough number, the inputs for other neurons at layer K+ n
are set to zeros. The output of hidden layer K+ N is set to

(5) fK+N =
1

a′(c)ϵ
a(pN)−

a(c)

a′(c)ϵ
,

and we have the estimation

(6) |fK+N − fK| ≤ Cϵ,

where C > 0 doesn’t depend on ϵ.
Since a(·) is a C2 continuous function and its second order derivative is bounded.

To prove (6), from (3)-(4), by Taylor’s expansion

a(pn−1) = a(c) + a′(c)(pn−1 − c) +
a′′(ξn−1)

2
(pn−1 − c)2,

where ξn−1 is a value between pn−1 and c, we have

pn = pn−1 +
a′′(ξn−1)

2a′(c)
(pn−1 − c)2, n ≥ 2,(7)

where |a′′(ξn−1)/2a
′(c)| ≤ M . Subtracting c from both sides, we obtain

|pn − c| ≤ |pn−1 − c|+M |pn−1 − c|2, 2 ≤ n ≤ N.(8)

Summing (8) for n = 2, 3, · · · , we have

|pn − c| ≤ |p1 − c|+M
n−1∑
i=1

|pi − c|2, 2 ≤ n ≤ N.(9)

From (9), |p1 − c| ≤ |fK|ϵ, fK is bounded and N is finite, we obtain

|pn − c| ≤ CNϵ, 2 ≤ n ≤ N,(10)

where CN is a constant only depends on M,N and the bound of fK. Then from (7),
we have

pN = p1 +
N−1∑
i=1

a′′(ξi)

2a′(c)
(pi − c)2.(11)

So that by (10) and (11), we have

pN = p1 +O(ϵ2),

from (3), (5) and Taylor’s expansion of a(pN), we have

fK+N = (pN − c)/ϵ+O(ϵ)

= (pN − p1)/ϵ+ (p1 − c)/ϵ+O(ϵ)

= fK +O(ϵ)
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which verifies (6).
For ReLU-like activation functions, at layer K + n, n ≥ 1, we also select one

neuron, let its input be the same as (3)-(4), where c > 0 is larger enough such that
p1 > 0. Then equation (4) becomes

pn = c+
a(pn−1)− a(c)

a′(c)

= c+ (pn−1 − c)/1

= pn−1,

where 2 ≤ n ≤ N. So that we have

fK+N = fK,

which concludes the proof. �

3. Examples for Networks with ReLU Activation Functions

3.1. One-Dimensional Examples. We start with a one-dimensional input vari-
able x ∈ [0, 1], and a fully connected neural network consisting of two hidden layers
with ReLU activation functions, and one output neuron with the linear activation
function. We define the width of the first hidden layer as H1 and the width of the
second hidden layer as H2. This network can be represented as a function f2(x).
The cost function can be Median Absolute Error or Mean Squared Error. For
classification and approximation problems, we divide the interval [0,1] into N − 1
intervals with equal distances and collect xi = (i−1)/(N−1), i = 1, 2, · · · , N . The
pairs {xi, yi}Ni=1 form the training set, where yi can be labels or function values. In
the following sections, the lower bounds of H1 and H2 are the minimal widths for
hidden layer 1 and hidden layer 2 in the neural networks.

3.1.1. One-Dimensional Binary Classification. We define the training set as
{xi, yi}Ni=1, where yi = −1, if xi < 0.5, and yi = 1 if xi ≥ 0.5. Our goal is to obtain
a model capable of predicting the label for any given x ∈ [0, 1]. Ideally, for any
x < 0.5, the prediction should be −1, and for any x ≥ 0.5, the prediction should
be 1. Let dis(x, {xi}Ni=1) denote the distance between x and the set {xi}Ni=1.

Proposition 3.1.1. If H1 ≥ 2N + 1 and H2 ≥ 2, there exist weights and biases
such that the loss function is zero, i.e., the optimal global minimum is achieved.
Meanwhile, for any ϵ > 0 small enough, if dis(x, {xi}Ni=1) > ϵ, then f2(x) = 0,
indicating that the classification of x is neither 1 nor -1. It lies on the decision
boundary and cannot be determined.

Proof. Next, we demonstrate how to build these networks. Let h > 0, as shown in
[22, 6], at xi, a basis function can be constructed

(12) ϕi(x) =
1

h
a(x− xi + h)− 2

h
a(x− xi) +

1

h
a(x− xi − h),

where a(x) is the ReLU activation function, ϕi(x) has the height 1, and compact
support [xi − h, xi + h]. Figure 2(a) is an example of ϕi(x) with xi = 0.5 and
h = 1/10.

To reduce the number of neurons in the hidden layers, let h = 1
2(N−1) , we use

2N + 1 neurons in the first hidden layer, each neuron has distinct input as: x− xi,
x−xi−h or x−xi+h, i = 1, 2, · · · , N . Then, with the fact x−xi+1+h = x−xi−h,
using the output of first hidden layer, we can construct basis functions ϕi(x), where
i = 1, 2, · · · , N , each possessing non-overlapping compact support.
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For the second hidden layer, we use 2 neurons, the input of first neuron is:

(13) I1(x) :=

 ∑
i for xi≥0.5

ϕi(x)

− b1,

where b1 is the bias. It’s easy to see that I1(x) is the result of a linear combination
of the output of the first hidden layer with b1 subtracted. Similarly, we have the
input of the second neuron:

(14) I2(x) :=

( ∑
i for xi<0.5

ϕi(x)

)
− b2.

Let b1, b2 ∈ [0, 1), then the final output is:

f2(x) :=
a(I1(x))

1− b1
+ (−1)

a(I2(x))

1− b2
,

which concludes the proof. �

Remark 3.1.1. Let b = b1 = b2 ∈ [0, 1). Then, the measure of compact support
for f2(x) on [0, 1] is 1− b. Additionally, f2(xi), where i = 1, 2, · · · , N , corresponds
exactly to the correct label.

For a fixed N , the weights and biases of the model represent a global optimal
solution for both MSE and MAE cost functions. Consequently, there exist infinitely
many global optimal solutions due to the variability of b1, b2. Nevertheless, the
model will fail to predict any point’s label if the point lies outside a small region
around any xi.

Let N be 6, we show the structure of the proposed network in Figure 1, where
the green cubes are intermediate values. Figure 2(b) shows the graph of f2(x) when
b1 = b2 = 0, while Figure 2(c) shows f2(x) when b1 = b2 = 0.9. As b1, b2 approach
1, f2(x) develops “spikes”.

Remark 3.1.2. For the cross-entropy cost function

− 1

N

N∑
i=1

yi log
(
f2(xi)

)
+ (1− yi) log

(
1− f2(xi)

)
,

we can set the final output as

f2(x) :=
1

2

a(I1(x))

1− b1
− 1

2

a(I2(x))

1− b2
+

1

2
.

Figure 2(d) shows f2(x) when N = 6, b1 = b2 = 0.95.

3.1.2. One-Dimensional Function Approximation. Suppose g(x) is a contin-
uous function for x ∈ [0, 1]. To approximate g(x) by the neural network, we define
the training set {xi, yi}Ni=1, where yi = g(xi). Ideally, f2(x) approaches g(x) point-
wise as the widths of the hidden layers increase. The specific ways to construct
such networks are given in [22, 6]. However, if we go to another direction, even
with global optima, the approximation can be very poor.

Proposition 3.1.2. If H1 ≥ N + 2 and H2 ≥ N , there exist weights and biases
such that the loss function is zero. Meanwhile, for any ϵ > 0 small enough, if
dis(x, {xi}Ni=1) > ϵ, then f2(x) = 0, indicating if g(x) ̸= 0, the approximation is
poor.
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x

Input

Hidden layer 1

φi(x)

Hidden layer 2
Output

Figure 1. The network structure for 1-D binary classification
when N = 6.
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Figure 2. (a) The basis function ϕi(x), xi = 0.5, h = 0.1; (b)
f2(x) when N = 6, b1 = b2 = 0; (c) f2(x) when N = 6, b1 =
b2 = 0.9; and, (d) f2(x) for the cross-entropy cost function, where
N = 6, b1 = b2 = 0.95.

Proof. Let h be 1/(N − 1) and ϕi(x) be the same as (12). For the first hidden
layer, we employ N + 2 neurons. Each neuron has a distinct input, such as x− xi,
x−xi−h, or x−xi+h, where i = 1, 2, · · · , N . Then, with the fact that x−xi+1 =
x− xi − h, using the output of the first hidden layer, we can build basis functions
ϕi(x), i = 1, 2, · · · , N , which have overlapping compact support. Then we use N
neurons in second hidden layer and the final output is:

f2(x) :=
N∑
i=1

yi
a(ϕi(x)− b)

1− b
,
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where b ∈ [0, 1). So as b → 1, the approximation will fail though it is the global
optimal solution. �

Until now, the networks have only two hidden layers, how about deeper ones,
can we still make them fail? The answer is yes, we discuss the construction in the
following proposition.

Proposition 3.1.3. Since g(x) is bounded, so is f2(x), we can add M hidden layers
with ReLU activation functions and apply equations (3) -(5), with ϵ > 0 and large
enough c, we obtain

f2+M(x) = f2(x),

where M is any positive integer and f2+M(x) represents the output of the deeper
neural network.

But for one-dimensional problems, to cause neural networks to fail, the number
of neurons needs to be even larger than the training data. Generally, this scenario is
not encountered in practical use. In the next sections, we will explore how, even with
a huge amount of high-dimensional input data and smaller-sized neural networks,
failures can still occur. Proposition 3.1.3 also works for higher dimensional binary
classification and approximation problems.

3.2. Two-Dimensional Examples. In this section, we will build two dimen-
sional “basis functions” based on one dimensional ones. The input variable is
(x, y) ∈ R2, the region is [0, 1]× [0, 1]. We define the one dimensional basis function
as:

(15) ϕ(ξ) =
1

h
a(ξ + h)− 2

h
a(ξ) +

1

h
a(ξ − h),

where ξ ∈ [0, 1], h > 0, a(ξ) is the ReLU function. As in Section 3.1, we have the
training set data {(xi, yj), zi,j}Ni,j=1, where x1 = y1 = 0, xN = yN = 1, xi, yj are
uniformly distributed in [0, 1], zi,j can be labels or function values. Denote

(16) ϕi(x) = ϕ(x− xi) and ϕj(y) = ϕ(y − yj).

Then we can define the 2-D “basis function” as:

Φ(x, y) =
∑
{xi}

ϕi(x) +
∑
{yj}

ϕj(y),

where sets {xi}, {yj} are chosen as needed, see Figure 3 for examples. Similar to
Section 3.1, we consider a fully connected neural network with two input neurons,
2 +M hidden layers with ReLU activation functions, and one output neuron with
linear activation function. We define the width of the first hidden layer as H1, the
width of the second hidden layer as H2, and the width of the (2+k)th hidden layer
as H2+k, where 1 ≤ k ≤ M, M can be any positive integer. Additionally, we denote
the output of the neural network as f2+M(x, y). The cost function options include
MSE error or MAE error.

3.2.1. Two-Dimensional Binary Classification. In the training set {(xi, yj),
zi,j}Ni,j=1 for the binary classification problem, zi,j = −1 if xi < 0.5, and zi,j = 1 if

xi ≥ 0.5. The size of the training data is N2.

Proposition 3.2.1. If H1 ≥ 4N + 2, H2 ≥ 2, and H2+k ≥ 1, 1 ≤ k ≤ M, there
exist weights and biases such that the loss function is zero. Meanwhile, for any
ϵ > 0 small enough, if dis((x, y), {xi, yj}Ni,j=1) > ϵ, then f2+M(x, y) = 0.
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Proof. Let xi+1 − xi = yj+1 − yj = 2h > 0. Firstly, we construct the network with
two hidden layers. For the first hidden layer, we need 2(2N + 1) neurons. Each
neuron has a distinct input as follows: x− xi, x− xi − h, or x− xi + h; and y− yj ,
y − yj − h, or y − yj + h, where i, j = 1, 2, · · · , N . Then, we can use the output of
the first hidden layer to construct the “basis function” Φ(x, y) with a selected set
{xi, yj}.

For the second hidden layer, we need 2 neurons, the input of the first neuron is:

(17) I1(x, y) :=
∑

xi≥0.5

ϕi(x) +

N∑
j=1

ϕj(y)− b1,

where b1 is the bias. I1(x) is the linear combination of first hidden layer’s output
minus b1. Similarly, we have the input of the second neuron:

(18) I2(x, y) :=
∑

xi<0.5

ϕi(x) +
N∑
j=1

ϕj(y)− b2.

Let b1, b2 ∈ [1, 2), then the final output for this network is:

f2(x, y) :=
a(I1(x, y))

2− b1
+ (−1)

a(I2(x, y))

2− b2
.

If b1, b2 go to 2, f2(x, y) develops “spikes”, see (a), (b) in Figure 4 for examples.
Follow Proposition 3.1.3, we then construct the network with 2+M hidden layers,

such that f2+M(x, y) = f2(x, y). �

Proposition 3.2.2. Let b = b1 = b2 ∈ [1, 2), then the measure of compact support
for f2+M(x, y) on [0, 1]×[0, 1] is bounded by N2(2−b)2/(N−1)2, which is decreasing
to 0 as b → 2.

Proof. For a certain point (xi, yj), xi ≥ 0.5, let’s see how the compact support
around it will shrink. The region to be considered is constrained to [xi − h, xi +
h]× [yj − h, yj + h]. On this region, it’s easy to see, we have

f2+M(x, y) = f2(x, y) =
a(ϕi(x) + ϕj(y)− b)

2− b
.

Then the question becomes what’s the area of compact support for a(ϕi(x)+ϕj(y)
−b), on which we have ϕ(x−xi)+ϕ(y− yj)− b ≥ 0. Since ϕ(x−xi), ϕ(y− yj) ≤ 1,
we can remove the region on which ϕ(x− xi) + 1− b ≤ 0 or ϕ(y − yj) + 1− b ≤ 0.
Then the compact support of f2(x, y) around (xi, yj) is contained in a region

[xi − (2− b)h, xi + (2− b)h]× [yj − (2− b)h, yj + (2− b)h]

with area less than (2(2− b)h)2. The analysis here can be applied to calculate the
upper bound of high dimensional compact support’s volume around a certain point.
The total area on which the model f2+M(x, y) can give us some positive feedback
is less than 4N2(2− b)2h2 where h = 1/(2N − 2). The upper bound of the model’s
accuracy can be shown in Figures 5(a) and 5(b). �

As the dimension increases, with a fixed number of sub-intervals in each dimen-
sion, we have more training data. Let M = 1, then the network has three hidden
layers. We can compare the number of neurons and the size of training set in the
following table:
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N 50 100 1000
Data Set size = N2 2500 10000 1000000
First hidden layer 202 402 4002
Second hidden layer 2 2 2
Third hidden layer 1 1 1

So even the size of training set is larger than the number of neurons, the model can
still fail with the global optimal solution we constructed. Also more layers do not
help.

If we increase the number of neurons in the second hidden layer, then using the
basic shapes shown in Figure 3, we can build a variety of examples not only for
binary classification but also for multi-class classification.

3.2.2. Two-Dimensional Function approximation. To approximate a con-
tinuous function g(x, y), (x, y) ∈ [0, 1]2 by the ReLU neural network with 2 + M
hidden layers, we use the training set {(xi, yj), zi,j}Ni,j=1, where zi,j = g(xi, yj).
xi, yj ∈ [0, 1] are uniformly distributed , x1 = y1 = 0, xN = yN = 1.

Proposition 3.2.3. If H1 ≥ 2N + 4, H2 ≥ N2 and H2+k ≥ 1, 1 ≤ k ≤ M, there
exist weights and biases such that the loss function is zero. Meanwhile, for any
ϵ > 0 small enough, if dis((x, y), {xi, yj}Ni,j=1) > ϵ, then f2+M(x, y) = 0, indicating
if g(x, y) ̸= 0, the approximation is poor.

Proof. Let h = xi+1 − xi = yj+1 − yj , we define the “basis function” as:

(19) Φi,j(x, y) = ϕi(x) + ϕj(y),

where ϕi, ϕj are defined in (16), i, j = 1, 2, · · · , N , and Φi,j(x, y) has the height
2, see Figure 3(a) for an example. The inputs for first hidden layer are similar as
classification problem, however, we only need 2(N+2) neurons, which is less. Using
the outputs of the first hidden layer, we can build “basis functions”: Φi,j(x, y).
Then we need N2 neurons in second hidden layer, which is much more, and the
final output is:

f2(x, y) :=
N∑

i,j=1

zi,j
a(Φi,j(x, y)− b)

2− b
,

where b ∈ [1, 2). So as b → 2, the approximation will fail though it is the global
optimal solution. Deeper networks will fail if constructed in the same way as
described in Proposition 3.1.3. �

3.3. High Dimensional Model Problems. In this section, the examples will
be generalized to high dimension. Let x ∈ Rd, d ≥ 3,

x = (x1, x2, · · · , xd),

the region is a d dimensional hyper-cube [0, 1]d. And {x1,i1}Ni1=1 is denoted as the
set of scalar values, which are uniformly distributed in the first dimension within
the interval [0, 1]. Similarly, we have the set in the jth dimension within the interval
[0, 1] as {xj,ij}Nij=1, where j = 2, · · · , d. The training set is defined as

(20) Ξ :=

{(
x1,i1 , x2,i2 , · · · , xd,id

)
, yi1,i2,··· ,id

}N

i1,i2,··· ,id=1

,

where x1,1 = x2,1 = · · · = xd,1 = 0, x1,N = x2,N = · · · = xd,N = 1, yi1,i2,··· ,id
can be labels or function values. We denote the basis function in jth dimension,
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(a) (b)

(c) (d)

Figure 3. (a) 2-D “basis function” with xi = yj = 0.5 and
h = 0.1; (b) 2-D “basis function” with xi = yj = 0.5, 0.7, 0.9
and h = 0.1; (c) 2-D “basis function” with xi = 0.1, 0.3, yj =
0.1, 0.3, 0.5, 0.7, 0.9 and h = 0.1; and, (d) 2-D “basis function”
with xi = 0.1, 0.3, 0.7, 0.9, yj = 0.1, 0.3, 0.7, 0.9 and h = 0.1.

(a) (b)

Figure 4. Here N = 4, x1 = y1 = 0, xN = yN = 1, h = 1/6 =
(xi+1 − xi)/2. (a) Graph of a(I1(x, y))/(2 − b1) with b1 = 1; (b)
Graph of a(I1(x, y))/(2− b1) with b1 = 1.5.

centered at xj,ij , as

(21) ϕj,ij (xj) = ϕ(xj − xj,ij ),
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Figure 5. Graph for upper bound of model’s accuracy N2(2 −
b)2/(N−1)2. (a) For fixed N , let b vary from 1.2 to 2; (b) for fixed
b, let N vary from 50 to 10000.

where xj is the jth variable of x. Then we can define the d-dimensional “basis
function” as:

Φ(x) =
d∑

j=1

 ∑
{xj,ij

}

ϕj,ij (xj)

 ,

where sets {xj,ij} are chosen as needed. We consider a fully connected neural
network comprising d input neurons, 2+M hidden layers employing ReLU activation
functions, and one output neuron with a linear activation function. The width of
the first hidden layer is denoted as H1, the width of the second hidden layer as
H2, and the width of the (2 + k)th hidden layer as H2+k, where 1 ≤ k ≤ M, and
M represents any positive integer. Furthermore, we let the output of the neural
network be f2+M(x, y). The cost function can be MSE or MAE errors.

3.3.1. High Dimensional Binary Classification. Suppose in the training set
Ξ, see (20), yi1,i2,··· ,id = −1 if x1,i1 < 0.5, and yi1,i2,··· ,id = 1 if x1,i1 ≥ 0.5. The
size of the training set is Nd. We define dis(x,Ξx) as the distance between x ∈ Rd

and the set Ξx from Ξ, which is

(22) Ξx :=

{(
x1,i1 , x2,i2 , · · · , xd,id

)}N

i1,i2,··· ,id=1

.

Proposition 3.3.1. If H1 ≥ 2dN + d, H2 ≥ 2, and H2+k ≥ 1, 1 ≤ k ≤ M, there
exist weights and biases such that the loss function is zero. Meanwhile, for any
ϵ > 0 small enough, if dis(x,Ξx) > ϵ, then f2+M(x) = 0.

Proof. Let xj,ij+1 − xj,ij = 2h > 0, j = 1, 2, · · · , d. For the first hidden layer, we
require d(2N+1) neurons. Each neuron has distinct inputs: xj−xj,ij , xj−xj,ij −h,
or xj − xj,ij + h. Then, we can use the output of first hidden layer, to build “basis
function” Φ(x) with a selected sets {xj,ij}, j = 1, 2, · · · , d.

For the second hidden layer, we need 2 neurons, the input of first neuron is:

(23) I1(x) :=
∑

x1,i1≥0.5

ϕ1,i1 +
d∑

j=2

N∑
ij=1

ϕj,ij − b1,
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(a) (b)

Figure 6. Density color plots for a 3-D function: blank means
0, blue indicates values close to zero. The center of each diamond
has a value of 1, while the surface has a value of 0. Here N = 4,
xj,1 = 1/8, j = 1, 2, 3, h = 1/8, (a) Graph of a(I1(x))/(3− b) with
b = 2.1; (b) Graph of a(I1(x))/(3− b) with b = 2.7.

where b1 is the bias. I1(x) is the linear combination of first hidden layer’s output.
Similarly, we have the input of second neuron:

(24) I2(x) :=
∑

x1,i1<0.5

ϕ1,i1 +

d∑
j=2

N∑
ij=1

ϕj,ij − b2.

Let b = b1 = b2 ∈ [d− 1, d), and the final output be:

f2(x) :=
a(I1(x))

d− b
+ (−1)

a(I2(x))

d− b
.

The measure of compact support for f2(x) on [0, 1]d is decreasing to 0 as b → d. If
we addM extra hidden layers, as in Proposition 3.1.3, the function f2+M(x) = f2(x)
can be constructed. �

Similar to the 2-D case, we know the compact support of f2+M(x) around
(x1,i1 ,x2,i2 ,· · · , xd,id) is contained in a region with d-volume less than (2(d− b)h)d,
where b = b1 = b2 ∈ [d− 1, d).

Remark 3.3.1. The total d-volume on which the model f2+M(x) can give us some
positive feedback is less than

Nd

(N − 1)d
(d− b)d.

An example for 3-D case can be seen in Figure 6. As b approaches d from d− 1,
a higher-dimensional problem demonstrates analogous behaviors.

3.3.2. Image classification. This is another example of a high-dimensional clas-
sification problem. Suppose we have 3 × 3 pixel images, which can be viewed as
3 × 3 matrices or 9-dimensional vectors, with each pixel’s grayscale ranging from
0 to 255. These images are divided into two classes. The ‘dark’ class comprises
pixels with values less than 128, while the ‘light’ class consists of pixels with values
greater than or equal to 128, as shown in Figure 7. This serves as the ground truth.
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(a) (b)

Figure 7. (a) Nine ‘dark’ pictures each has 3×3 pixels; (b) Nine
‘light’ ones each has 3×3 pixels.

Usually, we build a model to predict classes with less training data compared
with the ground truth. To choose the training data, we employ the color reduction
as a transform of each pixel’s gray scale:

(25)
⌊ p

m

⌋
×m, m = 1, 2, · · · , 255,

where 0 ≤ p ≤ 255 represents the value of a given pixel, the ⌊ ⌋ symbol denotes
the floor function. The color and texture of images undergo unnoticeable changes
if m ≤ 5. Based on this observation, let 2 ≤ m ≤ 5. The training set is defined as
follows:

Ξ :=

{(
x1,i1 , x2,i2 , · · · , x9,i9

)
, yi1,i2,··· ,i9

}N

i1,i2,··· ,i9=1

,

where N = ⌊255/m⌋ + 1, xj,ij = m(ij − 1), ij = 1, 2, · · · , N, j = 1, 2, · · · , 9. The
‘dark’ set is defined as

yi1,i2,··· ,i9 = −1, if x1,i1 , x2,i2 , · · · , x9,i9 < 128.

The ‘light’ set is defined as

yi1,i2,··· ,i9 = 1, if x1,i1 , x2,i2 , · · · , x9,i9 ≥ 128.

Combining the ‘dark’ and ‘light’ sets, we have the training set, which can be nor-
malized by dividing each element xj,ij by 255. The structure of the neural network
is the same as in Section 3.3.

Proposition 3.3.2. If H1 ≥ 18N + 9, H2 ≥ 2, and H2+k ≥ 1, 1 ≤ k ≤ M, there
exist weights and biases such that the loss function is zero. Meanwhile, for any
picture with 3× 3 pixels, if it’s not in the training set, then it can’t be classified.

Proof. Let 2h = m/255 = xj,ij+1 − xj,ij , where 2 ≤ m ≤ 5, for the first hidden
layer, we need 9(2N + 1) neurons, and the inputs are similar to those in Section
3.3.1. For the second hidden layer, we only need 2 neurons; however, the inputs
differ from those in Section 3.3.1. The input of the first neuron is:

(26) I1(x) :=
9∑

j=1

N∑
xj,ij

<0.5

ϕj,ij − b1,
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where b1 is the bias. I1(x) is the linear combination of the output from the first
hidden layer. Similarly, let b2 be the bias, we have the input for the second neuron:

(27) I2(x) :=
9∑

j=1

N∑
xj,ij

≥0.5

ϕj,ij − b2.

Let b = b1 = b2 ∈ [8, 9), then with M more hidden layers, the final output can be:

f2+M(x) :=
a(I1(x))

9− b
+ (−1)

a(I2(x))

9− b
.

For b close enough to 9, the model can only recognize images within the training set,
even if the images differ by only one pixel with a one-unit grayscale variation. �

Remark 3.3.2. The number of all ‘dark’ and ‘light’ images is 2 × 1289, so even
when considering the training set, for m = 2, the accuracy of the constructed model
is as low as 649/1289 = 1/512.

For simplicity, assume the network has just two hidden layers. We can compare
the size of the training set and the number of neurons for m = 2, 5, 10, as described
in (25), in the following table:

m 2 5 10
Training Set size 2× 649 2× 269 2× 139

First hidden layer 2313 945 477
Second hidden layer 2 2 2

The dataset is huge, and the number of neurons is relatively small. However, our
model will still fail to reach acceptable accuracy, even with the global optimal
solution and more hidden layers.

3.3.3. High Dimensional Function approximation. To approximate a con-
tinuous function g(x), where x ∈ [0, 1]d, using a ReLU neural network with 2 +
M hidden layers, we define the training set Ξ as in (20), where yi1,i2,··· ,id =
g(x1,i1 , x2,i2 , · · · , xd,id), and xj,1 = 0, xj,N = 1, j = 1, 2, · · · , d. The values xj,ij ∈
[0, 1] are distributed uniformly. The cost functions are MSE or MAE errors. Using
the notations in Section 3.3.1, we have the following proposition.

Proposition 3.3.3. If H1 ≥ dN +2d, H2 ≥ Nd, and H2+k ≥ 1, 1 ≤ k ≤ M, there
exist weights and biases such that the loss function is zero. Meanwhile, for any
ϵ > 0 small enough, if dis(x,Ξx) > ϵ, then f2+M(x) = 0, which means if g(x) ̸= 0,
the approximation is poor.

Proof. Let h be xj,ij+1 − xj,ij . We define the “basis function” as:

(28) Φi1,i2,··· ,id(x) =

d∑
j=1

ϕj,ij ,

where ϕj,ij is introduced in (21), and Φi1,i2,··· ,id(x) has a maximum height of d.
The inputs for the first hidden layer are similar to those in the binary classifica-

tion problem. However, we only need d(N + 2) neurons, which is fewer. Then we
need Nd neurons in the second hidden layer, which is significantly more, and the
final output would be:

f2+M(x) :=

N∑
i1,i2,··· ,id=1

yi1,i2,··· ,id
a(Φi1,i2,··· ,id(x)− b)

d− b
,
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where b ∈ [d − 1, d). As b approaches d, the approximation will fail even though
f2+M(x) represents the global optimal solution. �

4. Constructions for Networks with Parametric ReLU Activation Func-
tions

In this section, we will show how to construct the global optimal solutions for
networks with Parametric ReLU activation functions, which are proposed in [7].
The cost functions can be MSE or MAE errors. The Parametric ReLU activation
function is denoted as:

(29) σ(x) =

{
αx if x < 0

x if x ≥ 0
,

where α ̸= 1 can be positive, negative or 0. If α = 0, then (29) becomes ReLU
activation function; if α = 0.01, (29) is the Leaky ReLU activation function [14],
see Figure 8(a). Let q(x) = σ(x)− σ(x− c), c > 0, we can plot its graph as shown
in Figure 8(b), where c = 1. Furthermore, by subtracting αc from q(x) and scaling
the result by dividing it by the factor 1− α, we can define a function a(x) as

(30) a(x) :=
σ(x)− σ(x− c)− αc

1− α
=


0 if x < 0

x if 0 ≤ x < c

c if x ≥ c

,

see Figure 8(c). Also, we can define the basis function similar as ReLU activation
function in 1-D:

(31) ϕ(x) :=
σ(x+ h)− 2σ(x) + σ(x− h)

(1− α)h
=


0 if x < −h

1 + x
h if − h ≤ x < 0

1− x
h if 0 ≤ x < h

0 if x ≥ h

,

where h > 0, see Figure 8(d). Here we have the building blocks ϕ(x) and a(x) for
constructing the optimal global solution of fully connected deep neural networks
with Parametric ReLU activation functions. Compared with ReLU networks, the
main differences in formulating examples, which can fail the networks, lie in the
second hidden layer.

Similar to Section 3.1, we consider a fully connected neural network with 2 +M
hidden layers and one output neuron with linear activation function. We define the
width of the first hidden layer as H1, the width of the second hidden layer as H2,
and the width of the (2 + k)th hidden layer as H2+k, where 1 ≤ k ≤ M, M can be
any positive integer.

4.1. One Dimensional Binary Classification Problem. The binary classifica-
tion problem is the same as in Section 3.1.1. Let x1 = 0, xN = 1 and xi distribute
uniformly in [0, 1] with correct label, and the output of the neural network be
f2+M(x).

Proposition 4.1.1. If H1 ≥ 2N + 1, H2 ≥ 4, and H2+k ≥ 1, 1 ≤ k ≤ M, there
exist weights and biases such that the loss function is zero. Meanwhile, ∀ϵ > 0 small
enough, if dis(x, {xi}Ni=1) > ϵ, then f2+M(x) = 0.

Proof. Let 2h = xi+1 − xi, and we define

(32) ϕi(x) = ϕ(x− xi),
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Figure 8. (a) Graphs of two Parametric ReLU activation func-
tions; (b) Graphs of σ(x) − σ(x − 1) with different α; (c) Graph
of a(x) with c = 1, α ̸= 1; (d) Graph of basis function ϕ(x) with
h = 1, α ̸= 1.

where ϕ(x) is from (31). For the first hidden layer, we need 2N + 1 neurons, each
neuron has distinct input as: x − xi or x − xi − h or x − xi + h, i = 1, 2, · · · , N .
From (31) and (32), we can build basis functions ϕi(x), i = 1, 2, · · · , N .

Then we define the linear combinations of first hidden layer’s outputs as:

(33) I1(x) :=
∑

i for xi≥0.5

ϕi(x)− b1,

where b1 is the bias. Similarly, we have

(34) I2(x) :=
∑

i for xi<0.5

ϕi(x)− b2.

For the second hidden layer, we need at least 4 neurons. The inputs of the first
and second neurons are: I1(x) and I1(x) − c, where c must be large enough, i.e.,
c ≥ maxx(I1(x)). The inputs of the third and fourth neurons are: I2(x) and
I2(x)− c, where c ≥ maxx(I2(x)).

Let b = b1 = b2 ∈ [0, 1), then let the output of the second hidden layer be:

f2(x) :=
a(I1(x))

1− b
+ (−1)

a(I2(x))

1− b
,

where a(·) is from (30). Take I1(x) for example. Since c is greater than or equal to
I1(x), we have

(35) a(I1(x)) =

{
0 if I1(x) < 0

I1(x) if I1(x) ≥ 0
,

where x ∈ [0, 1]. So, if c is big enough, a(·) plays the same role as the ReLU
activation function in truncating the negative part of I1(x). As b approaches 1, the
measure of the compact support of f2(x) will shrink to 0. However, f2(xi), where
i = 1, 2, · · · , N, has the correct label.
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If we add more hidden layers to the network, then we can pass f2(x) + C, where
C > 1, to a neuron in the later hidden layers. From the definition of the Parametric
ReLU function, we have

σ(f2(x) + C) = f2(x) + C.

The value of f2(x) + C won’t be changed. Then, at the final step, we subtract c2
from it, which gives us:

f2+M(x) = f2(x),

where f2+M(x) is the output of the deep neural network. �

4.2. One Dimensional Function Approximation. Similar to Section 3.1.2,
we use the Parametric ReLU network to approximate a continuous function g(x),
x ∈ [0, 1]. The training set is {xi, yi}Ni=1, where yi = g(xi). The cost functions are
MSE or MAE errors.

Proposition 4.2.1. If H1 ≥ N + 2, H2 ≥ 2N , and H2+k ≥ 1, 1 ≤ k ≤ M, there
exist weights and biases such that the loss function is zero. Meanwhile, ∀ϵ > 0
small enough, if dis(x, {xi}Ni=1) > ϵ, then f2+M(x) = 0, indicating if g(x) ̸= 0, the
approximation is poor.

Proof. Since xi ∈ [0, 1] is distributed uniformly, with x1 = 0, xN = 1, let h =
xi+1 − xi, the basis function is

(36) ϕi(x) = ϕ(x− xi),

where ϕ(x) is defined in (31). For the first hidden layer, we need N + 2 neurons,
with each neuron having a distinct input: x − xi or x − xi − h or x − xi + h,
i = 1, 2, · · · , N . This allows us to build the basis functions ϕi(x). Then we need
2N neurons in the second hidden layer. Following the construction in Proposition
4.1.1, the final output is:

f2+M(x) :=

N∑
i=1

yi
a(ϕi(x)− b)

1− b
,

where a(·) is denoted in (30), c in a(·) should be large enough, and b ∈ [0, 1). So
as b → 1, the approximation will fail, even though f2+M(x) is the global optimal
solution. �

4.3. High Dimensional Problems. We employ the same settings and notations
for high-dimensional binary classification and function approximation problems as
in Section 3.3, except for the basis function ϕ(x) and the activation function. For
Parametric ReLU, we have the following propositions.

Proposition 4.3.1. For binary classification problem, if H1 ≥ 2dN + d, H2 ≥ 4,
and H2+k ≥ 1, 1 ≤ k ≤ M, there exist weights and biases such that the loss
function is zero. Meanwhile, for any ϵ > 0 small enough, if dis(x,Ξx) > ϵ, then
f2+M(x) = 0.

Proof. Assume that the second hidden layer has at least 4 neurons. The input of
first neuron is:

(37) I1(x) :=
∑

x1,i1≥0.5

ϕ1,i1 +

d∑
j=2

N∑
ij=1

ϕj,ij − b1

where b1 ∈ [d− 1, d) is the bias, and ϕj,ij = ϕ(xj − xj,ij ). This ensures that I1(x)
is the linear combination of outputs of the first hidden layer’s neurons. The input
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of the second neuron is I1(x) − c, where c is large enough. Similarly, the input of
the third neuron is:

(38) I2(x) :=
∑

x1,i1<0.5

ϕ1,i1 +
d∑

j=2

N∑
ij=1

ϕj,ij − b2,

where b2 ∈ [d− 1, d). The input of the fourth neuron is I2(x)− c, where c ≥ I2(x).
Let b = b1 = b2. Then the final output can be constructed as:

f2+M(x) :=
a(I1(x))

d− b
+ (−1)

a(I2(x))

d− b
,

where a(·) is defined in (30). The measure of the compact support for f(x) on
[0, 1]d decreases to 0 as b → d, which concludes the proof. �
Proposition 4.3.2. For function approximation problem, if H1 ≥ dN + 2d, H2 ≥
2Nd, and H2+k ≥ 1, 1 ≤ k ≤ M, there exist weights and biases such that the loss
function is zero. Meanwhile, for any ϵ > 0 small enough, if dis(x,Ξx) > ϵ, then
f2+M(x) = 0, which means if g(x) ̸= 0, the approximation is poor.

Proof. Let h be xj,ij+1 − xj,ij . We define the “basis function” same as (28). We

need 2Nd neurons in second hidden layer, each pair is used to construct a(·), and
the final output is:

f2+M(x) :=
N∑

i1,i2,··· ,id=1

yi1,i2,··· ,id
a(Φi1,i2,··· ,id(x)− b)

d− b
,

where a(·) is defined in (30), c in a(·) should be large enough,

yi1,i2,··· ,id = g(x1,i1 , x2,i2 , · · · , xd,id),

and b ∈ [d − 1, d). So as b → d, the approximation will fail, even though it is
the global optimal solution. Deeper networks will fail in the same way as the 1-D
case. �
5. Constructions for Networks with Sigmoid Activation Functions

In this section, we will show that to approximate functions using deep neural
networks with sigmoid activation functions, there exist solutions that can be as
close to the global optima as possible, but the approximation is still very poor.

Let g(x) be a continuous function, where x ∈ [0, 1]d. The training set Ξ is
defined in (20). The cost functions can be MSE or MAE errors. We follow the
ideas proposed in Chapter 4 of [16], which visually prove that a shallow neural
network can compute any function. However, our purpose is to construct solutions
that fit the training data very well but are only good approximations near the
training points Ξx. Ξx is defined in (22). Then, we extend the results to deep
networks by Theorem 2.1.

We begin by constructing the one-dimensional basis function ϕ(x), which is de-
fined as

(39) ϕ(x) =
σ(Kx+ 1)− σ(Kx− 1)

σ(1)− σ(−1)
,

where K > 0, σ(x) = 1/(1 + e−x) is the sigmoid function. From the definition, we
know that 0 < ϕ(x) ≤ 1. It is symmetric and tends to a ‘spike’ as K increases, see
Figure 9.

We then define a function a(x), which is

(40) a(x) = σ(Lx),
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Figure 9. (a) Graphs of ϕ(x) when K = 20; (b) Graphs of ϕ(x)
when K = 200.
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Figure 10. Graphs of a((ϕ(x) − b)/(1 − b)) when K = 200. (a)
L = 150, b = 0.1; (b) L = 150, b = 0.9.

where L > 0. If we plug in a function h(x) as a(h(x)), then for a large enough
L, a(·) truncates the negative part of h(x) and makes the positive part close to
1. Take ϕ(x) as an example, let K = 200, we have Figure 10. From Figures
10(a) to 10(b), we observe that the “compact support” of the truncated function
a((ϕ(x)− b)/(1− b)) shrinks as b → 1.

Similarly, we consider a fully connected neural network with 2+M hidden layers
and one output neuron that uses a linear activation function. The width of the first
hidden layer is H1, the width of the second hidden layer is H2, and the width of
the (2+k)th hidden layer is H2+k, where 1 ≤ k ≤ M. Here, M is a positive integer.

5.1. One-Dimensional Function Approximation. Suppose d = 1. To approx-
imate g(x) on [0, 1] by the neural network, we define the training set {xi, yi}Ni=1,
where yi = g(xi).

Proposition 5.1.1. If H1 ≥ 2N , H2 ≥ N , and H2+k ≥ 1, 1 ≤ k ≤ M, there
exist weights and biases such that for any ϵ > 0, the loss function is less than ϵ.
Meanwhile, if dis(x, {xi}Ni=1) > ϵ, then |f2+M(x)| ≤ ϵ, indicating if g(x) ̸= 0, the
approximation is poor.

Proof. First, we prove the result for the network with two hidden layers. For any
xi ∈ [0, 1], we denote

(41) ϕi(x) = ϕ(x− xi),

where ϕ(x) is defined in (39). For the first hidden layer, we employ 2N neurons.
Each pair of the neurons has inputs K(x−xi)+ 1 and K(x−xi)− 1, where K > 0
and i = 1, 2, · · · , N . Then using the output of the first hidden layer, we can build
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Figure 11. Graphs of f2(x) in (42) (blue) and sin(πx) (yellow)
when K = 50, L = 150. (a) b = 0.2; (b) b = 0.8; (c) b = 0.95; (d)
b = 0.995.

basis functions ϕi(x), i = 1, 2, · · · , N . Then we use N neurons in second hidden
layer and the output is:

f2(x) :=

N∑
i=1

yi a

(
ϕi(x)− b

1− b

)
,

where b ∈ [0, 1). L in a(·) is large enough. So as b → 1 or K → ∞, the approxima-
tion will fail even though the loss function can be made as small as possible. Then,
we can add M extra hidden layers. By Theorem 2.1 and equations (3), (4), and
(5), we can get f2+M(x) → f2(x) by adjusting the parameters in equation (3). �

Next, we present examples to illustrate Proposition 5.1.1.

Example 5.1. Let g(x) = sin(πx), where x ∈ [0, 1]. The training set is:{
xi, yi

}9

i=1
where xi =

i− 1

8
, yi = sin(πxi).

So that we can construct the solution for a network with two hidden layers:
(42)

f2(x) =

9∑
i=1

sin(πxi)σ

(
L
σ(K(x− xi) + 1)− σ(K(x− xi)− 1)− b(σ(1)− σ(−1))

(σ(1)− σ(−1))(1− b)

)
,

where σ(x) = 1/(1 + e−x).

In equation (42), for fixed K and L, let b vary from 0.2 to 0.995, this results in
Figure 11. For fixed L and b, let K vary from 100 to 1000, we have Figure 12. So
that as b → 1 orK → ∞, the approximation gets worse. The extreme case is that we
only have good approximations near the points {xi}9i=1. For any ϵ > 0, if b is close
to 1 or K is large enough, meanwhile L is large enough, then |f2(xi)− sin(πxi)| <
ϵ, i = 1, 2, · · · , 9, and the approximation is poor if dis(x, {xi}9i=1) > ϵ.
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Figure 12. Graphs of (42) (blue) and sin(πx) (yellow) when L =
150, b = 0.2. (a) K = 100; (b) K = 1000.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(a)

0.2 0.4 0.6 0.8 1.0

-0.005

-0.004

-0.003

-0.002

-0.001

(b)

0.2 0.4 0.6 0.8 1.0

-0.00005

-0.00004

-0.00003

-0.00002

-0.00001

(c)

0.2 0.4 0.6 0.8 1.0

-5×10
-7

-4×10
-7

-3×10
-7

-2×10
-7

-1×10
-7

(d)

Figure 13. (a) Graphs of f8(x) (blue) and f2(x) (yellow) when
ϵ = 0.1; (b) Graph of f8(x) − f2(x) when ϵ = 0.1; (c) Graph of
f8(x) − f2(x) when ϵ = 0.01; (d) Graph of f8(x) − f2(x) when
ϵ = 0.001.

Example 5.2. Based on Example 5.1, we can add M extra hidden layers to the
network and construct f2+M(x), which is close to f2(x). Let c = 0 and a(·) be σ(x)
in (3)-(5), we have f2+M(x) as follows:

p1 = ϵf2(x),(43)

pn = 4σ(pn−1)− 2, n ≥ 2,(44)

f2+M(x) =
4

ϵ
σ(pM)−

2

ϵ
,(45)

where ϵ > 0 and σ(x) = 1/(1 + e−x).

Let M be 6, so we have six more hidden layers. The graphs of f8(x) and f2(x)
are given in Figure 13(a), which are very close to each other. From Figure 13(b)
to Figure 13(d), we can see that as ϵ in (43)-(45) decreases from 0.1 to 0.001, the
error between f8(x) and f2(x) decreases. This example also verifies Theorem 2.1.
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5.2. High-Dimensional Function Approximation. We employ the same set-
tings and notations as in Section 3.3 for function approximation; however, the
network uses sigmoid activation functions.

Proposition 5.2.1. If H1 ≥ 2dN , H2 ≥ Nd, and H2+k ≥ 1, 1 ≤ k ≤ M, there
exist weights and biases such that for any ϵ > 0, the loss function is less than
ϵ. Meanwhile, if dis(x,Ξx) > ϵ, then |f2+M(x)| ≤ ϵ, indicating if g(x) ̸= 0, the
approximation is poor.

Proof. We define ϕi,ij same as (21), but with ϕ(x) in (39), and the “basis function”:
Φi1,i2,··· ,id(x) same as (28). We need 2dN neurons in the first hidden layer. In the
jth dimension, j = 1, 2, · · · , d, we use 2N neurons, with each pair used to construct
ϕj,ij (xj), where xj is the variable, ij = 1, 2, · · · , N . We need Nd neurons in the
second hidden layer. The output of the second hidden layer is:

f2(x) :=
N∑

i1,i2,··· ,id=1

yi1,i2,··· ,id a

(
Φi1,i2,··· ,id(x)− b

d− b

)
,

where a(·) is defined in (40), L in a(·) should be large enough,

yi1,i2,··· ,id = g(x1,i1 , x2,i2 , · · · , xd,id),

and b ∈ [d − 1, d). Then follow equations (43)-(45), we can get f2+M(x). So as
b → d or K → ∞, the approximation will fail, even though it is close to the global
optimal solution. �
6. Conclusions

We proposed a simple remedy to extend the universal approximation of shallow
neural networks to any depth. The technique also works for vector-valued function
approximation. However, if the dimension of the vector-valued function is V (where
V is a positive integer), then for additional hidden layers, each layer should have
at least V neurons. The examples in Section 3 to Section 5 serve as extremely
overfitting cases for fully connected deep neural networks. They are not practically
useful but can help us understand the overfitting phenomenon and global optima
theoretically. The example in Section 3.3.2 contradicts the common observation
that to overfit, the number of parameters must significantly exceed the training
data size. Binary classification examples can also be constructed for networks with
sigmoid functions. Although at points not close to the training data, the output
values of the network are not strictly zero, they are so small that they are not
significant enough to be classified. We will extend the analysis in this paper to
Recurrent Neural Networks and Convolutional Neural Networks.
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