
INTERNATIONAL JOURNAL OF c⃝ 2024 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 21, Number 5, Pages 652–673 doi: 10.4208/ijnam2024-1026

DEEP NEURAL NETWORK FOR SOLVING DIFFERENTIAL

EQUATIONS MOTIVATED BY LEGENDRE-GALERKIN

APPROXIMATION

BRYCE CHUDOMELKA, YOUNGJOON HONG∗, JOHN MORGAN, HYUNWOO KIM∗,
AND JINYOUNG PARK

Abstract. In this paper, we propose the Legendre-Galerkin Network (LGNet), a novel machine

learning-based numerical solver for parametric partial differential equations (PDEs) using spectral
methods. Spectral methods leverage orthogonal function expansions, such as Fourier series and
Legendre polynomials, to achieve highly accurate solutions with a reduced number of grid points.
Our framework combines the advantages of spectral methods, including accuracy, efficiency, and

generalization, with the capabilities of deep neural networks. By integrating deep neural networks
into the spectral framework, our approach reduces computational costs that enable real-time pre-
dictions. The mathematical foundation of the LGNet solver is robust and reliable, incorporating a
well-developed loss function derived from the weak formulation. This ensures precise approxima-

tion of solutions while maintaining consistency with boundary conditions. The proposed LGNet
solver offers a compelling solution that harnesses the strengths of both spectral methods and deep
neural networks, providing an effective tool for solving parametric PDEs.

Key words. Deep learning, neural network, spectral element method, Legendre-Galerkin method,
data driven numerical method.

1. Introduction

Partial differential equations (PDEs) serve as fundamental tools for understand-
ing natural phenomena. These mathematical equations describe diverse phenome-
na, ranging from fluid dynamics and electromagnetic fields to quantum mechanics
and population dynamics. However, despite their significance, obtaining exact so-
lutions for PDEs is often a formidable task. The complexity of PDEs necessitates
the use of numerical methods and approximations. These techniques enable us to
approximate solutions by discretizing the PDEs into algebraic systems of equations.
However, traditional numerical methods often suffer from extensive computation-
al costs, especially when generating a large number of numerical solutions as a
database. In recent years, deep learning has emerged as a promising avenue for ad-
dressing the challenges associated with solving PDEs. By harnessing the power of
artificial neural networks, deep learning techniques offer an alternative approach to
tackle the computational inefficiencies encountered in traditional numerical method-
s. Through the integration of advanced machine learning algorithms and large-scale
computational architectures, deep learning enables us to develop efficient numerical
solvers for PDEs. In this study, we present a novel deep neural network (DNN)
approach for solving differential equations using the Legendre-Galerkin approxima-
tion. Our methodology leverages accurate solutions in a supervised learning setting
to find solutions, given a forcing function input, f . We employ the residual of the

Received by the editors on February 27, 2023 and, accepted on August 10, 2023.

2000 Mathematics Subject Classification. 65N35, 68T09, 68T07, 65Y10, 65N22.
∗Corresponding authors.

652

DNN FOR SOLVING PDES BY LEGENDRE-GALERKIN APPROXIMATION 653

weak formulation of the differential equations (DE) as a loss function. To demon-
strate the effectiveness and versatility of our approach, we apply it to various types
of equations, including fluid and wave models. By evaluating the numerical perfor-
mance of the DNNs, we demonstrate their ability to provide accurate and efficient
solutions.

Deep learning is a class of machine learning algorithms that employs multiple
layers to progressively extract higher-level features from the dataset. These net-
works are referred to as deep due to their numerous hidden layers [2, 3, 11]. Neu-
ral networks (NNs) have demonstrated remarkable effectiveness in approximating
continuous functions and achieving state-of-the-art performance in various fields
[4, 9, 13, 17, 11, 38, 49]. Recent studies in computer vision have explored mathe-
matical and numerical approaches of deep neural networks to enhance adversarial
robustness [20, 42]. Our research is loosely connected to these investigations as
we aim to gain a deeper understanding of implementing deep neural networks for
numerical solutions. The central objective of our study is to examine the capabili-
ty of a deep neural network in accurately approximating and predicting numerical
solutions.

Previous works have demonstrated the success of neural architectures when ap-
plied to solutions of differential equations [4, 19, 30, 1, 49, 44, 46, 33, 36, 7]. There
are some popular neural-network-based methods for solving high dimensional par-
tial differential equations such as a Deep Ritz Method (DRM) [44, 48, 34] and the
Deep Galerkin Method (DRM) [36]. The authors in [4, 49] introduce data-driven
discretization, a method for learning optimized approximations to PDEs based on
traditional finite-volume (or difference) schemes. The algorithm uses neural net-
works to estimate spatial derivatives, which are optimized end to end to best satisfy
the equations on a low-resolution grid. Recently, the Physics Informed Neural Net-
works (PINN) introduces a novel methodology for finding solutions to complex
dynamical systems utilizing automatic differentiation; see e.g. [30, 28, 19, 29, 26]
among many other references. In [19, 47], the authors utilize the variational form,
i.e., the weak form to enhance the accuracy of their network. However, PINNs
are designed to predict a single instance for a given set of PDEs. Consequently,
when the input instance changes, the NNs need to be retrained in order to adapt to
the new input data. More recently, an alternative approach is introduced learning
the solution operator of a family of PDEs, which is defined by the map from the
inputCinitial conditions and boundary conditions, to the output solution functions
[25, 24, 43]. Our research differs from the previous work by exploring different neu-
ral network architectures to obtain an accurate solution to the parametric PDEs.
We use a deep convolutional neural network (CNN) to achieve sufficiently accurate
solutions by predicting coefficients of spectral approximation based on Legendre-
Galerkin methods [12, 35]. This approach is partially related to the data-driven
discretization in [4, 49], but their neural networks predict coefficients of numerical
derivatives such as finite difference methods. In addition, they make use of stan-
dard finite volume schemes to compute numerical fluxes. Hence, the accuracy of
numerical solutions generated by the finite volume method is limited even if high
resolution methods are implemented.

While both our research and the DGM share the term “Galerkin”, the method-
ology and results differ significantly. Unlike the DGM, which solely relies on tak-
ing integrals of the differential equations without multiplying test functions, our

654 B. CHUDOMELKA, Y. HONG, J. MORGAN, H. KIM, AND J. PARK

approach aligns more closely with the conventional variational formulation, specif-
ically the weak formulation. In contrast to the DGM, which predicts only a single
instance, the LGNet represents a version of operator learning capable of predicting
solutions for parametric PDEs. In addition, the DGM utilizes Monte Carlo sam-
pling to handle high-dimensional problems during integration and differentiation.
In contrast, the LGNet employs numerical differentiation and integration based
on well-known quadrature rules. This choice enhances the accuracy of the LGNet
compared to the DGM. When fitting the proposed LGNet, we introduce a resid-
ual of numerical integration inherited from a weak formulation of the differential
equations. This choice is natural as the architecture mainly relies on spectral el-
ement methods constructed by the weak formulation of the differential equations.
In addition, performing integration by parts reduces the order of derivatives in the
differential equations. Hence, one can effectively avoid numerical errors introduced
by numerical differentiation. Most importantly, the predicted solution obtained by
the LGNet satisfies the exact boundary condition such as Dirichlet and Neumann
boundary conditions. In most scientific machine learning frameworks, enforcing
specific boundary conditions is often challenging, leading to inaccurate solutions.
However, within the LGNet framework, the situation is different. Since each ba-
sis is created through a linear combination of Legendre polynomials, it inherently
satisfies the exact boundary condition.

A network trained on noisy or corrupt data may suffer in accuracy, especially
when applied to neural networks for PDEs. The SEM can achieve spectral accu-
racy with a relatively small number of collocation points. Hence, our data set will
be as accurate as possible in order for the network to predict the dynamics. It
is noteworthy that the methodology under consideration can incorporate various
choices of polynomial basis functions into the novel neural network architecture.
More precisely, there are many feasible choices of basis functions, such as Fourier
series, Chebyshev polynomials, or Jacobi polynomials. Hence, our architecture is
flexible and extendable to other numerical approximation. In addition, since the
coefficients of the spectral approximation are predicted by the network, the main
structure of the numerical approximation with the polynomial basis is maintained.
In this regard, various existing numerical methods such as enriched space meth-
ods are applicable to the proposed network architecture by adding a proper basis
function; for more details, see e.g. [14, 6].

In the calculations presented here, the model consists of convolutional layer-
s connected with a nonlinear activation function between each layer. CNNs are
widely used in various tasks, including facial recognition, object detection, seman-
tic segmentation, natural language processing, and more recently, time-series data,
to achieve state-of-the-art results [8, 21, 22, 27, 39]. CNNs involve a series of lin-
ear operations, which, in the context of a DNN, can be combined with nonlinear
operations, making them effective universal function approximators [9, 17]. We
train multiple configurations of CNN neural architectures with different nonlin-
ear operations, referred to as activation functions, on accurate data sets generated
with the SEM for supervised learning. Each configuration is then tested using an
out-of-sample set of 1,000 randomly sampled solutions that are not present in the
input data set. This allows us to measure the network’s ability to generalize to
unknown data. In this paper, we develop a version of CNNs incorporated with
the Legendre-Galerkin framework to find a numerical solution of DEs using a deep

DNN FOR SOLVING PDES BY LEGENDRE-GALERKIN APPROXIMATION 655

Neural Network
Coefficients

Reconstruction

Loss

True Solution

Figure 1. The Legendre-Galerkin Deep Neural Network Algorith-
m. This diagram demonstrates the training process for the LGNet.
The network’s input, the forcing function f , and the output, a set
of coefficients {α̂i}, that are used to reconstruct the predicted so-
lution, û. The next step in the training loop is to measure the loss,
L, between the ground truth solution u and the predicted solution.
The weak form loss is computed by minimizing the weak form for
the differential equation. The iterative process then repeats until
finished.

neural network. The networks predict coefficients, αi, of a spectral approximation

consisting of Legendre polynomial basis functions φi, such that u ≃
∑N

i=0 αiφi,
where u represents a solution of the DE or PDE. Additionally, for accurate and
reliable training, we utilize the residual of the weak formulation as a loss function.
We implement different types of equations, including two-dimensional models, to
demonstrate the effectiveness of our approach.

The article is organized as follows: In Section 2 we address the nonlinear func-
tion approximation of DNNs, and introduce a novel architecture of the DNNs
based on numerical approximation. In Sections 3 and 4, linear and nonlinear
models equipped with different boundary conditions are implemented including
two-dimensional problems. A sequence of numerical experiments are presented to
demonstrate the numerical performance of the proposed method. We conclude the
paper with a summary section 5.

2. Data-Driven Numerical Methods

Consider a set of differential equations:

F(u, ux, uxx) = f(x), x ∈ [−1, 1],

B(u, ux) = g(x), at x = −1, 1,
(1)

where F is a linear or nonlinear operator and B is a boundary operator. Our
objective is to construct a neural network that can learn a suitably accurate solution
to the given differential equation by considering the forcing function.

One of the key benefits of the LGSEM is its ability to achieve spectral accuracy
using a minimal number of nodal points [35, 12]. In other words, even with a
relatively small set of polynomial basis functions, specifically a Legendre basis in
this paper, the numerical errors are at the level of machine precision (10−14 ∼
10−16). Given that the proposed framework relies on the LGSEM, we can obtain
an accurate solution to (1) when compared to other scientific machine learning
models.

656 B. CHUDOMELKA, Y. HONG, J. MORGAN, H. KIM, AND J. PARK

Spectral methods depend on a global discretization approach. The conventional
approach to implementing them involves approximating the numerical solution as
a sum of global basis functions:

(2) u(x) ≃
N−1∑
k=0

αkϕk(x),

where N is the number of the global basis function. There exist numerous viable
options for basis functions, including Fourier series, Chebyshev polynomials, and
Legendre polynomials. In this paper, we specifically utilize the Legendre polynomi-
als. One advantage of utilizing Legendre polynomials is their mutual orthogonality
in the standard L2 inner product, which simplifies computations. Consequent-
ly, the discrete variational formulations employing Legendre polynomials result in
sparse matrices. Therefore, when deriving the loss function based on the weak for-
mulation, our implementation becomes efficient. Furthermore, it is important to
highlight that the LGSEM employs a linear combination of Legendre polynomial
basis functions, which satisfy exact boundary conditions. By utilizing the same
basis functions in our model, the numerical solution predicted by our model nat-
urally conforms to exact boundary conditions, encompassing Dirichlet, Neumann,
and Robin boundary conditions.

Let us define the Legendre polynomial, Lk(x), on the Gauss-Lobatto quadrature,
which plays an important role on numerical differentiation and integration. We set
the global basis functions

(3) ϕk(x) := Lk(x) + akLk+1 + bkLk+2(x), x ∈ [−1, 1],

where ak and bk are determined by the boundary conditions of the underlying
differential equations. Applying the SEM, we can obtain an accurate numerical
solution given by (2); for more details on the LGSEM, see e.g. [35]. The set of
numerical solutions generated by the SEM is used for the training data set in our
neural network.

For any given f , we propose a Legendre-Galerkin Deep Neural Network (LGNet)
algorithm to find the coefficients, {α̂k}, from which we can reconstruct the corre-
sponding predicted numerical solution, û, to the known numerical solution u(x). If
our random input data is given by

(4) f(x) = m1 sin(πw1x) +m2 cos(πw2x),

where parameters, m1,m2, w1, w2, follow normal or uniform distributions, then the
corresponding output will be

(5) {α̂k} =⇒ û =
N−1∑
k=0

α̂kϕk,

where {α̂i} describes the set of learned coefficients that are used to reconstruct
the predicted numerical solution, ûN . A detailed description is provided in Figure
1, illustrating the network’s input (the forcing function f) and output (a set of
coefficients α̂i) utilized to reconstruct the predicted solution û as shown in equation
(5). The subsequent step in the training loop involves measuring the solution loss,
denoted as Lu, which directly uses the ground truth solution u and the predicted
solution. The ground truth solution u is obtained using a standard spectral element
method. Additionally, the weak form loss Lwf is computed by minimizing the

DNN FOR SOLVING PDES BY LEGENDRE-GALERKIN APPROXIMATION 657

residual of the weak form for the given differential equation. This iterative process
continues until completion.

We can generate data sets with an arbitrary number of solutions using the SEM.
These solutions are then fed through the LGNet algorithm, reconstructed, and then
the difference between the predicted solution and the actual solution are measured
as the primary metric of performance. This can be done using either the mean
absolute error defined as,

(6) MAE{h, ĥ} :=
1

M

M∑
i=0

∣∣∣hi − ĥi

∣∣∣ ,
or using the mean squared error defined as,

(7) MSE{h, ĥ} :=
1

M

M∑
i=0

(
hi − ĥi

)2

,

for M arbitrary functions, and its predicted function ĥi. Other loss metrics can be
used, such as the root mean square error or relative ℓ2 error, but we found (6) and
(7) to outperform others. It was observed that the mean square error provides a
better metric for generalization of a neural network with regards to the accuracy
of the predicted solution. The predicted coefficients for the global basis vectors,
{α̂i}, were more accurate for (7) than (6). We found this to be a consequence of
the sensitivity of reconstructing accurate solutions to the learned coefficients when
using the SEM. Although the coefficients are not used in the loss metric, we did
have access to them for reference indicating that the choice of basis is arbitrary and
can be generalized to improve scalability.

Remark 2.1. Other polynomials such as Chebyshev or Jacobi polynomials can be
combined with the proposed DNN architecture since Chebyshev spectral Galerkin
methods or Jacobi spectral Galerkin method have been well developed by those poly-
nomial basis functions.

We now construct the deep neural network based on convolutional neural net-
works. In [4], the authors introduced a CNN based on finite volume discretization.
However, their method is limited to periodic boundary conditions and the accuracy
is expected to be similar to or smaller than their training sets, which are generated
using 2nd or 3rd order numerical methods. In contrast, our algorithm is easily ex-
tendable to various boundary conditions, including Dirichlet, Neumann, and Robin
boundary conditions, as long as we choose the appropriate set of Legendre poly-
nomials. It is important to note that the choice of ak and bk for the Legendre
basis function in (3) ensures an exact boundary condition. After predicting the
coefficients αk, the numerical solution obtained from reconstruction satisfies the
exact boundary condition. As a result, numerical errors arising from the boundary
conditions become negligible.

3. Paradigm problem: one-dimensional linear models

We aim to observe the effectiveness of using a neural network (NN) to gener-
alize and find solutions to differential equations. To validate the efficacy of this
approach, it is appropriate to start with an example that is non-trivial yet not
overly difficult. We refer to this example as our paradigm problem, as its equation

658 B. CHUDOMELKA, Y. HONG, J. MORGAN, H. KIM, AND J. PARK

Input

Output

1D Conv

FC

(a) Linear Architecture

1D Conv

FC

ReLU

Output

Input

1D Conv

(b) NetA Architecture

Figure 2. The NetA neural network architecture is comprised of
multiple blocks, B, that add depth to the network. This diagram
depicts a NetA architecture with just 1 block that is comprised
of a 1D-convolutional operation with F filters followed by a ReLU

operation. The final convolution in the network does not have
the ReLU operation and is then flattened into a fully connected
network. The output of this network is a set of coefficients, {α̂i}
that are then used to reconstruct the solution.

structure can be generalized to many other interesting problems, such as Burgers’
equations (see Section 4). All of our experiments were conducted on an Intel Core
i9-10900K processor with an NVIDIA GeForce RTX 2080 SUPER GPU.

3.1. Convection Diffusion Equation (CDE). To deliver our idea, we start
with a paradigm problem:

(8)

{
−εuxx − ux = f,

u(−1) = u(1) = 0,

where ε = O(1) is a diffusion parameter. The paradigm problem poses an inter-
esting challenge for a neural network. Once the paradigm problem is solved, our
algorithm can naturally be generalized to nonlinear, time-dependent, or 2D prob-
lems. Notice that homogeneous Dirichlet boundary conditions are used but, as
we will come to see, the choice of boundary conditions do not have an effect on
performance.

We look for basis functions as a compact combination of Legendre polynomials,

(9) ϕk(x) = Lk(x) + akLk+1 + bkLk+2(x),

where Lk is the k-th Legendre polynomial and the parameters ak, bk are chosen to
satisfy the boundary conditions of the differential equations; see e.g. [35] for more
details. Such basis functions are referred to as modal basis functions. Hence, for
the homogeneous Dirichlet boundary conditions we have ak = 0 and bk = −1 in (3)

DNN FOR SOLVING PDES BY LEGENDRE-GALERKIN APPROXIMATION 659

which yields

(10) ϕk(x) = Lk(x)− Lk+2(x).

The set of global basis functions, {ϕj}, are then used as test functions in the weak
formulation of the derivative. Noting that we have the zero boundary conditions
at x = ±1, we multiply the DE in (8) by ϕj , and integrate from −1 to 1:

(11) −ε

∫ 1

−1

uxxϕj −
∫ 1

−1

uxϕj ≃
∫ 1

−1

fϕj .

By integration by parts, we find that

(12) ε

∫ 1

−1

ux(ϕj)x −
∫ 1

−1

uxϕj ≃
∫ 1

−1

fϕj .

In this way, we can avoid the 2nd order derivative. Hence, we set the residual

LHS :=
m∑
j=0

(
ε

∫ 1

−1

ûx(ϕj)x −
∫ 1

−1

ûxϕj

)
, RHS :=

m∑
j=0

(∫ 1

−1

fϕj

)
,

Jwf := LHS −RHS,

(13)

where û is a numerical approximation of u, then minimize Jwf together with the
other errors. Here, m represents the number of test functions in the weak formula-
tion, which are utilized in the construction of the loss function. This loss function
serves as a regularization factor [5, 40]. For numerical derivatives and integration,
we employ spectral differentiations and Gauss-type integration formulas, which
offer an exponential convergence rate. The Gauss-type quadrature formulas are
powerful tools not only for evaluating integrals but also for performing spectral dif-
ferentiations [32, 10]. Additionally, by precomputing the first-order differentiation
matrix, the differentiation in physical space can be efficiently performed through
matrix-matrix and matrix-vector multiplications. A similar approach was previous-
ly introduced by the authors in [30]; however, they solely employed the weak form
for the loss function with automatic differentiation. In our method, we predict the
coefficients of the spectral approximation. During the generation of the training
dataset, these coefficients can be obtained from Galerkin methods that rely on the
weak formulation.

We measure the accuracy of our predicted solution, û, against the ground truth
solution, u, using a loss function, L, defined by

(14) L := Lu + Lwf ,

where the loss corresponding to the numerical solution and weak form are Lu and
Lwf , respectively, and defined by

Lu := MSE {u, û} ,
Lwf := MSE{LHS,RHS},

(15)

660 B. CHUDOMELKA, Y. HONG, J. MORGAN, H. KIM, AND J. PARK

20000 40000 60000 80000 100000
Epoch

10 10

10 8

10 6

10 4

10 2

100

102
Lo

g
Lo

ss
Log Loss vs. Epoch, Model: Linear

u
Weak Form

(a) Individual Losses

20000 40000 60000 80000 100000
Epoch

10 6

10 4

10 2

100

102

Lo
g

Lo
ss

Log Loss vs. Epoch, Model: Linear, Best Loss: 4e-08
Train
Test

(b) Training Loss

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

u(
x)

Out of Sample, Model: Linear, MAE Error: 5e-07
Rel. 2 Error: 1.95e-05, Error: 1.8e-06

u
u

(c) Predicted Solution û

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Po
in

t-W
ise

 E
rro

r

1e 6 u Point-Wise Error: 5.44e-07
Error

(d) Point-wise Error

Figure 3. We trained a linear model (8) with ε = 10−1 using
a dataset with 10,000 solutions and 32 collocation points. The
individual losses for Lu and Lwf are plotted on a semi-log plot
over 100,000 epochs. The overall losses for the training and test
sets can be seen on a semi-log plot beginning to separate as the
number of epochs increases. An example of a predicted solution on
out-of-sample data is observed with a mean relative ℓ2 error on the
order of 10−5. The point-wise error plot shows a mean absolute
error on the order of 10−7.

3.1.1. Experimental Results. The paradigm equations, (8), can be solved with
a linear model. The NN architecture can be seen in Figure 2a. Our architecture can
achieve an average relative ℓ2 error on the order of 10−5 on out-of-sample solutions
with an extremely small dataset. Refer to Figure 3 for reference. For instance, by
using a training dataset with 10,000 randomly sampled solutions, our architecture
effectively predicts sufficiently accurate solutions to Equation (8).

For a linear model with 32 convolutional filters with a kernel size of 5, we were
able to obtain an average relative ℓ2 error over an out-of-sample data set with 1,000
solutions on the order of 10−6. An example of an out-of-sample predicted solution
can be seen in Figure 3c. Our model generalizes well to out-of-sample data and
is reflected in a log-loss vs. epoch training loss plot in Figure 3b. The individual
losses were tracked in Figure 3a as a function of epoch and the loss associated with
û is a couple of orders of magnitude greater than the loss associated with the weak
form. The out-of-sample generalization is improved by increasing the size of input
training set but the improvements are marginal at best.

DNN FOR SOLVING PDES BY LEGENDRE-GALERKIN APPROXIMATION 661

3.1.2. Discussion. When a sufficient number of training data sets is provided
(e.g., 1, 000), the best performing models were on the order of 10−5 or 10−6. While
varying the architectural parameters might lead to marginal performance improve-
ments, theoretical considerations should also be addressed. Introducing a pooling
operation could enhance overall accuracy, but it has not been implemented here.
Increasing the size of the training set could also improve performance; however,
there is a trade-off due to GPU memory limitations for training neural networks,
which might necessitate switching from L-BFGS to a stochastic gradient method.

To offer contrast, we did compare the performance of linear models to nonlinear
models. Linear models converge rather quickly due to the L-BFGS optimization
method but nonlinear models did not. Perhaps given enough time the models would
converge but linear models outperformed nonlinear models, i.e., models with non-
linear activation functions do not perform well on linear DEs. All nonlinear models
that we trained and evaluated drastically under-performed linear models [23].

3.2. Helmholtz Equation. Next, we will utilize our algorithm to find solutions to
the Helmholtz equation with Neumann boundary conditions. This equation exhibits
wave phenomena, as it is a form of the wave equation with significant applications
in the field of optics [37]. Moreover, the utilization of different boundary conditions
expands the notion of the general applicability of our algorithm. Consider the
Helmholtz differential equation given as

(16)

{
uxx + kuu = f(x),

u′(−1) = u′(1) = 0,

where f is defined as in (4). We remark that the governing equation, (16), describes
essential aspects of the scattering of linear waves by periodic multiply layered grat-
ings. In fact, by considering the quasiperiodicity of solutions, the transverse electric
and magnetic waves can be reduced to one-dimensional inhomogeneous Helmholtz
equations through generalized Fourier (Floquet) series expansions. These equa-
tions can be solved using numerical approaches, as demonstrated in works such as
[15, 16].

The global basis function, which is a linear combination of Legendre polynomials,
satisfies the homogeneous Neumann boundary conditions. For this, in (9), we set

ak = 0, and bk = − k(k + 1)

(k + 2)(k + 3)

in (3) which yields

(17) ϕk(x) = Lk(x)−
k(k + 1)

(k + 2)(k + 3)
Lk+2(x),

where 0 ≤ k ≤ N − 2; for more details, see e.g. [35]. The set of global basis
functions, {ϕk}, are then used as test functions in the weak formulation,

(18) −
∫ 1

−1

ux(ϕk)xdx+ ku

∫ 1

−1

uϕkdx =

∫ 1

−1

fϕkdx.

662 B. CHUDOMELKA, Y. HONG, J. MORGAN, H. KIM, AND J. PARK

10000 20000 30000 40000 50000 60000 70000
Epoch

10 7

10 5

10 3

10 1

101

103
Lo

g
Lo

ss
Log Loss vs. Epoch, Model: Linear

u
Weak Form

(a) Individual Losses

10000 20000 30000 40000 50000 60000 70000
Epoch

10 5

10 3

10 1

101

103

Lo
g

Lo
ss

Log Loss vs. Epoch, Model: Linear, Best Loss: 9e-09
Train
Test

(b) Training Loss

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.10

0.05

0.00

0.05

0.10

u(
x)

Out of Sample, Model: Linear, MAE Error: 4.5e-06
Rel. 2 Error: 7.12e-05, Error: 1.31e-05

u
u

(c) Predicted solution û

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Po
in

t-W
ise

 E
rro

r

1e 5 u Point-Wise Error: 4.478e-06
Error

(d) Point-wise Error

Figure 4. Numerical simulations of a trained model (16) with
ku = 3.5 are presented using 10,000 solutions in the training set
with 32 collocation points. The individual losses for Lu and Lwf

are plotted on a semi-log plot over 100,000 epochs, but this model
converged after approximately 65,000 epochs. The overall losses
for the training and test sets can be seen on a semi-log plot, where
we observe the test loss is less than the training loss. An out-
of-sample predicted solution is plotted along with the known true
solution with a mean relative ℓ2 error on the order of 10−5. A plot
of the point-wise error is observed where the mean absolute error
is on the order of 10−5.

Hence, we define

LHS :=
m∑
j=0

(
−
∫ 1

−1

ûx(ϕj)x +

∫ 1

−1

kuûϕj

)
, RHS :=

m∑
j=0

(∫ 1

−1

fϕj

)
,

Jwf := LHS −RHS,

(19)

then minimize Jwf together with the other errors. Here m stands for the number
of test functions of the weak formulation, which will be used in the loss function.
The loss function, L, for our optimal model was

(20) L = Lu + Lwf ,

where Lu and Lwf as defined in (7).

3.2.1. Experimental Results. The Helmholtz equation is a linear wave equa-
tion, and we have found that the optimal neural architecture for solving it is also

DNN FOR SOLVING PDES BY LEGENDRE-GALERKIN APPROXIMATION 663

entirely linear. We employ the same architecture as depicted in Figure 2a to achieve
results similar to those obtained using the CDE. Surprisingly, a purely linear neural
architecture, without any nonlinear activation functions, demonstrates the ability
to generalize well from a small training set to a larger test set. To achieve this, we
train the model for a considerable number of epochs, continuing until the model
converges or until resources are required for other projects. In this context, we de-
fine a ’converged’ model as one where the loss function L has reached convergence,
meaning that the loss at a given epoch remains the same in subsequent epochs,
persisting indefinitely.

A linear model, consisting of 10,000 in-sample solutions and trained using 64
collocation points, was trained for 100,000 epochs. The results are depicted in
Figure 4. Throughout the training process, the loss values for the predicted solution
û and its associated weak form were recorded at each epoch, as shown in Figure 4a,
illustrating their convergence. To evaluate the model’s performance, testing was
conducted using a separate 1,000 out-of-sample data set, as depicted in Figure 4b.
Notably, both the training and test sets exhibit a smooth convergence, indicating
that our model generalizes well to out-of-sample data despite having a small input
training set. Figure 4c presents a comparison between the predicted solution û
and the true solution generated using the SEM (Spectral Element Method). The
relative ℓ2-error between them is measured to be 7.12×10−5, indicating a relatively
accurate prediction.

3.2.2. Discussion. Linear equations can be effectively solved using linear archi-
tectures. Employing linear architectures offers several benefits, including reduced
computational complexity and the ability to generalize from a small training data
set to a larger out-of-distribution data set. All linear models, depicted in Figure
2a, were constructed with a kernel size of 5, stride of 1, padding of 2, and 32 filters
per channel. The LGNet algorithm provides accurate solutions to Equations (8)
and (16) with various types of boundary conditions. Specifically, we use homoge-
neous Dirichlet boundary conditions for Equation (8) and homogeneous Neumann
boundary conditions for Equation (16). Notably, the performance of each model
remains relatively consistent regardless of the boundary conditions employed.

4. Non-linear and two-dimensional model

The performance of our neural network when applied to linear differential equa-
tions is accurate, especially when compared to other scientific machine learning
models. However, in this section, we shift our focus to nonlinear models. Solving
nonlinear differential equations poses significant challenges, and it would not be
sufficient to use a linear neural network. Our neural architecture should reflect
the nature of the differential equation itself. In other words, we aim to employ
an architecture with nonlinear operations to effectively represent the solution of a
nonlinear equation. In this section, we will introduce nonlinear neural architectures
with various activation functions to explore the accuracy of trained models. Addi-
tionally, we will extend our analysis to two-dimensional problems, which naturally
expand upon the foundation established by the one-dimensional model.

4.1. Burgers Equation. This problem can be further investigated by applying
our algorithm to the canonical problem known as Burgers equation; a differential

664 B. CHUDOMELKA, Y. HONG, J. MORGAN, H. KIM, AND J. PARK

equation known for its nonlinear shockwave characteristics. We define Burgers
equation as

(21)

{
−εuxx + uux = f,

g(±1) = 0,

where ε is a diffusion coefficient. We utilize a uniform distribution when we generate
random coefficients on the external forcing function f , that is our input data:

(22) f = (3 + υ1) sin[(1 + υ2)πx] + (3 + υ3) cos[(1 + υ4)πx],

with υi ∈ Uniform[0, 2] for 1 ≤ i ≤ 4. To address the issue of poor performance
resulting from a training data set with a large variance, we have implemented a
normalization step. Specifically, we normalize our input training set to have a
mean of 0 and a standard deviation of 1. This approach, similar to the data pre-
processing technique utilized in [4], helps enhance the performance of our network.
Data pre-processing is a commonly employed technique in machine learning to
improve network performance. For further information on data pre-processing, you
can refer to sources such as [5] or [41].

Since homogeneous Dirichlet boundary conditions are used, the global basis func-
tions for (21) are the same as in (10). We remark that the proposed algorithm can
compute other boundary conditions, such as Neumann or Robin boundary condi-
tions, since the Legendre basis provides an exact representation of the boundary
conditions. By multiplying each side of Equation (21) by a test function, ϕk, and
integrating from -1 to 1, we can derive the weak form, as explained earlier:

− ε

∫ 1

−1

u(ϕk)xx dx+
1

2

∫ 1

−1

(u2)x(ϕk) dx =

∫ 1

−1

fϕk dx

⇒ ε

∫ 1

−1

ux(ϕk)x dx− 1

2

∫ 1

−1

u2(ϕk)x dx =

∫ 1

−1

fϕk dx.

(23)

We again set the residual as

LHS :=
m∑
j=0

(
ε

∫ 1

−1

ux(ϕj)x dx− 1

2

∫ 1

−1

u2(ϕj)x dx

)
, RHS :=

m∑
j=0

(∫ 1

−1

fϕj dx

)
,

Jwf := LHS −RHS.

(24)

Burgers’ equation, being nonlinear, presents an intriguing challenge when utilizing
neural networks to solve differential equations. To create a training data set, we
employed the Picard iteration method with a tolerance level of 10−9. Unlike linear
data sets, nonlinear data sets have less stringent requirements in terms of training
set data. Nevertheless, it is important to note that even the best linear models
could not achieve the same level of accuracy. Hence, the chosen tolerance level of
10−9 is appropriate for training set purposes.

4.2. Two-dimensional convection-diffusion equations. We conducted a nu-
merical simulation on the partial differential equations, which is the two-dimensional
convection-diffusion equations (2D CDEs):

−ϵ∆u+ v · ∇u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(25)

DNN FOR SOLVING PDES BY LEGENDRE-GALERKIN APPROXIMATION 665

where Ω = (−1, 1)×(−1, 1) and v ∈ R2 is a constant coefficient. We shall extend the
one-dimensional Legendre-Galerkin results demonstrated in Section 3. By using the
tensor product of one-dimensional basis functions, we propose multi-dimensional
basis functions. In other words, let {ϕk}N−1

k=0 be a set of basis functions as in (3),
we construct the two-dimensional numerical solution by approximating the function
as a sum of basis functions:

(26) u(x, y) ≃
N−1∑
i,j=0

αi,jϕi(x)ϕj(y).

Since the homogeneous Dirichlet boundary conditions are imposed in (25), we have
ak = 0 and bk = −1 in (3). For given f , we develop our LGNet algorithm to find
the coefficient {α̂i,j} from which we can reconstruct the corresponding predicted
numerical solution. If the random input dataset is given by

(27) f(x, y) = m1 cos(πw1x+ πw2y) +m2 sin(πw3x+ πw4y),

where ml and ws for 1 ≤ l ≤ 2 and for 1 ≤ s ≤ 4 and follow normal distribution,
then the corresponding output becomes

(28) {α̂i,j} =⇒ û(x, y) =
N−1∑
i,j=0

α̂i,jϕi(x)ϕj(y).

The set of global basis functions, ϕi,j = ϕi(x)ϕj(y), are then used as test functions
in the weak formulation such that

(29) −ϵ

∫
Ω

∇û∇ϕi,j +

∫
Ω

v · ∇ûϕi,j =

∫
Ω

fϕi,j .

Hence, we set the residual

LHS :=
m∑

i,j=0

(
−ϵ

∫
Ω

∇û∇ϕi,j +

∫
Ω

(v · ∇û)ϕi,j

)
,

RHS :=
m∑

i,j=0

(∫
Ω

fϕi,j

)
,

Jwf := LHS −RHS,

(30)

then minimize Jwf together with Ju as before. Here m stands for the number of
test functions of the weak formulation.

4.3. Experimental Results. Initially, we employ a neural architecture similar
to the one found in [4, 49], as shown in Figure 2b and referred to as NetA. While
current state-of-the-art neural networks, such as deep residual networks (ResNet),
tend to perform better with increased network depth, we found that ResNet did not
yield satisfactory results when using either Group Norm or Batch Norm [13, 18, 45].
However, we observed that the NetA architecture style was optimal for the LGNet.
Each convolutional layer in this architecture has 32 filters, learned with a kernel
size of 5, a stride of 1, and a padding of 2. To increase the depth of the network,
we add additional blocks denoted as B.

As a point of reference, we also implemented the sigmoid activation function as
a drop-in replacement for ReLU for comparison purposes. This alternative neural
architecture is denoted as NetB, and its activation function can be seen in Figure

666 B. CHUDOMELKA, Y. HONG, J. MORGAN, H. KIM, AND J. PARK

0.00 0.02 0.04 0.06
0

25

50

75

100

125

Co
un

ts

0.00 0.02 0.04 0.06
Mean Rel. 2-norm Error

100

101

102

0.00 0.02 0.04 0.06
0

25

50

75

100

125

150

Histograms

Figure 5. We investigate the effect that different activation func-
tions have on the performance of LGNet. (Top) The activation
function for each network is plotted. (Bottom) The relative ℓ2-
norm error histogram for each sample in the test dataset is recorded
and a histogram plot is shown below its activation function. Each
model is trained with an input training set of 15,000 solutions, 64
collocation points, 32 filters, 5 kernels, and 5 convolutional block-
s. Models trained with the Swish activation function consistently
outperform models using ReLU or sigmoid.

5. However, we found that ReLU consistently outperformed sigmoid by an order
of magnitude. Saturation effects associated with sigmoid have been discussed in
the literature, but in our case, we simply observed poor performance compared to
ReLU.

Recent work has demonstrated the effectiveness of the ‘Swish’ activation func-
tion; see Figure 5 [31]. This activation function has shown consistent improvement
over the ReLU activation function in the application of CNNs to many different
data sets which reflected in Figure 6. We use this as a drop-in replacement in our
NetA architecture, for comparison, and refer to this network as NetC. The Swish
activation function is given by

(31) g(x) := x · sigmoid(x) =
x

1 + e−x
.

The swish function, defined by Equation (31), is a non-monotonic one-sided un-
bounded smooth function. Unlike the sigmoid activation function used in NetB, the
swish function does not experience saturation, which is a drawback of the sigmoid
function. Additionally, the swish activation function provides both negative and
positive activation values, which is a characteristic that ReLU does not possess.

An example of a trained NetC model can be observed in Figure 7. Our best
model was configured with 32 filters, a kernel size of 5, and 10 blocks. To validate

DNN FOR SOLVING PDES BY LEGENDRE-GALERKIN APPROXIMATION 667

0 10000 20000 30000 40000 50000
Epoch

10 3

10 2

10 1

100

101

Er
ro

r

Mean Relative 2-norm Error vs. Epoch
ReLU
Sigmoid
Swish

Figure 6. A comparison of different activation
functions can be seen in the mean relative ℓ2-norm
error vs. epoch plot above; each model has the
same parameters as Figure 5. The error is com-
puted on the test data set and recorded at each
epoch. The Swish activation function function
consistently outperforms both sigmoid and ReLU.
Both ReLU and Swish are an order of magnitude
better than sigmoid, on average. The performance
of each model is a reflection of the histograms in
Figure 5.

the model’s performance, we conducted cross-validation by comparing it with out-
of-sample data at each epoch, as depicted in Figure 7b. We employed the weak
form for regularization, and the corresponding loss values are presented in Figure
7a. For an out-of-sample forcing function, f̃ , the predicted solution, û, exhibited
a relative ℓ2-norm error of approximately 7.1× 10−4, while the average point-wise
error for this solution was around 2×10−4, as shown in Figure 7d. Furthermore, the
mean relative ℓ2-norm error on an out-of-sample dataset comprising 1,000 solutions
was found to be 8.8× 10−4.

As a natural extension, we have implemented the two-dimensional equations.
In Figure 8, we present the numerical solution and exact solution of (25). The
numerical solution is generated using the 2D LGNet introduced in Section 4.2. For
the experiment, we used 32 filters and a kernel size of 5. The model was trained
for 50,000 epochs with 10,000 in-sample solutions and a 16 × 16 collocation point
grid. Figure 8 illustrates a predicted solution, û, compared to the true solution,
u, obtained using the SEM. The relative l2-error between the predicted and true
solutions is approximately 4× 10−4.

We tabulated the numerical results for each equation in Table 1. For CDE
we used a linear model and let the model train for 100,000 epochs. The model
achieved a mean relative ℓ2-norm error on the order of 10−6. Similarly, we used
a linear architecture for the Helmholtz equation and achieved a mean relative ℓ2-
norm error on the order of 10−5. The nonlinear model for Burgers’ equation utilized
the NetC architecture with 25,000 epochs. This model was able to achieve a mean

668 B. CHUDOMELKA, Y. HONG, J. MORGAN, H. KIM, AND J. PARK

5000 10000 15000 20000 25000
Epoch

10 6

10 5

10 4

10 3

10 2

10 1

100

101
Lo

g
Lo

ss
Log Loss vs. Epoch, Model: NetC

u
Weak Form

(a) Individual Losses

5000 10000 15000 20000 25000
Epoch

10 5

10 4

10 3

10 2

10 1

100

101

Lo
g

Lo
ss

Log Loss vs. Epoch, Model: NetC, Best Loss: 2.569e-06
Train
Test

(b) Training loss

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.8

0.6

0.4

0.2

0.0

u(
x)

Out of Sample, Model: NetC, MAE Error: 0.0001978
Rel. 2 Error: 0.0007103, Error: 0.0004869

u
u

(c) Predicted solution û

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Po
in

t-W
ise

 E
rro

r

u Point-Wise Error: 0.000197834
Error

(d) Point-wise Error

Figure 7. Numerical examples of the model (21) with ε = 0.5 are
displayed using 10,000 solutions in the training set with 32 collo-
cation points. The individual losses for Lu and Lwf are plotted
on a semi-log plot and the overall losses for the training and test
sets can be seen on a semi-log plot. An out-of-sample predicted
solution is plotted along with the known true solution with a mean
relative ℓ2 error on the order of 10−4. A plot of the point-wise
error is observed where the average mean absolute error is on the
order of 10−4.

Table 1. The accuracy of trained models is presented here. For
each equation, the parameters used in training are tabulated for
clarity. Each model can achieve a mean relative ℓ2-norm error of
O(10−5) when using the L-BFGS optimizer. Data augmentation is
used on nonlinear input data to realize comparable mean relative
ℓ2-norm error. Thus, effectively gaining comparable performance
on nonlinear equations as linear equations.

Equation Model Epochs blocks filters ks Mean Rel. ℓ2 Error

CDE Linear 100,000 - 32 5 1.26×10−6

Helmholtz Linear 100,000 - 32 5 4.57×10−5

Burgers NetC 25,000 4 32 5 8.81×10−4

2D CDE NetC 50,000 1 32 5 4.37×10−4

DNN FOR SOLVING PDES BY LEGENDRE-GALERKIN APPROXIMATION 669

x

−1.0
−0.5

0.0
0.5

1.0

y

−1.0
−0.5

0.0
0.5

1.0

u(
x,
y)

0.00
0.05
0.10
0.15

û

x

−1.0
−0.5

0.0
0.5

1.0

y

−1.0
−0.5

0.0
0.5

1.0

u(
x,
y)

0.00
0.05
0.10
0.15

u

Model: Net2D,
Rel. L2 Error: 0.0004376,

Figure 8. Comparison of the numerical solution û of (25) im-
plemented by the two-dimensional LGNet (left panel) after 25,000
epochs and the exact solution u of (25) (right panel).

relative ℓ2-norm error on the order of 10−4. Lastly, the 2D CDE model achieved a
mean relative ℓ2-norm error on the order of 10−4.

4.4. Discussion. The statistical nature of the neural architectural model intro-
duces more room for error when training NNs, if the variance of the input data set
is too large, but still yields sufficiently accurate results. The L-BFGS algorithm
has its benefits during full-batch gradient descent, but when the size of the data set
exceeds the memory limitations of the GPU, mini-batch L-BFGS gradient descen-
t can diverge. Also, introducing a pooling operation into the neural architecture
could greatly improve upon local invariance, but we have not measured the effects
here.

The performance of a DNN to predict solutions of Equation (21) can yield com-
parable results to Equations (8) or (16), but only with data augmentation. If the
input forcing function, f , in Equation (22) is normalized prior to training then
nonlinear equations can enjoy an accuracy comparable to that of linear equations.
We also notice that the (linear) two-dimensional equations demonstrate comparable
results to the one-dimensional (linear) equations.

Remark 4.1. The current architecture can be extended to time dependent problems,
a PDE model. For instance, we consider a time dependent Burgers’ equations,

ut − uxx + uux = f, x ∈ (−1, 1),

u(±1) = 0.
(32)

Applying the backward Euler method in time, the equation (32)1 becomes

(33)
un+1 − un

∆t
− un+1

xx + un+1un+1
x = fn+1.

670 B. CHUDOMELKA, Y. HONG, J. MORGAN, H. KIM, AND J. PARK

Hence, by setting v := un+1 we deduce that

(34) −vxx + (v2)x +
1

∆t
v = fn+1 +

1

∆t
un.

However, the structure of (34) is very similar to that in Section 4, and a similar
approach/architecture of Section 4 can be used. It is noteworthy to mention that
we need to build only one network for all time steps. Indeed, the only difference
in different time steps is un in (34), which is our input data. Hence, one neural
network is enough to solve the time-dependent model. Further discussion will be
provided in the forthcoming article.

5. Conclusion

We develop deep neural networks to learn the coefficients associated with global
basis functions, enabling accurate reconstruction of the numerical solution. By
imposing the weak form of the governing equations, we improve the accuracy
of the predicted solutions. This methodology can be further extended to time-
dependent partial differential equations by performing time discretization or to
higher-dimensional problems by employing higher-dimensional convolutional ker-
nels. Moreover, with a simple modification of the LGNet framework, it is possible
to utilize different orthogonal polynomial basis functions. The versatility of LGNet
allows for the prediction of a wide range of solutions to various PDEs with different
boundary conditions.

Another intriguing application for the LGNet is the study of stiff partial d-
ifferential equations. Convection-dominated singularly perturbed problems pose
significant challenges due to the presence of sharp transitions within thin layers
caused by the small diffusive parameter ϵ. In a previous work [6], the authors ex-
plored an enriched spectral method for solving such singularly perturbed models.
This approach involved augmenting the Legendre basis functions with analytically-
determined boundary layer elements called correctors to capture the complex be-
havior near the boundary. With our architecture’s flexibility, we can introduce an
additional basis function with a learning parameter, resulting in an approximation

of the form u(x) ≈
∑N−1

k=0 αkϕk(x) + αNϕN (x), where ϕk (for 0 ≤ k ≤ N − 1)
represents the standard Legendre basis and ϕN corresponds to the enriched basis
generated by the corrector function. This example highlights the adaptability of
our LGNet algorithm, which will be further discussed in an upcoming article.

Statements and Declarations

The authors declare that they have no competing interests.

Acknowledgements

The work of Youngjoon Hong was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (NRF-2021R1A2C1093579) and Korean Government (M-
SIT) (2022R1A4A3033571).

References

[1] Keith Rudd, Silvia Ferrari. A constrained integration (CINT) approach to solving partial
differential equations using artificial neural networks. Neurocomputing, 155:277 – 285, 2015.

DNN FOR SOLVING PDES BY LEGENDRE-GALERKIN APPROXIMATION 671

[2] David M. Allen. The relationship between variable selection and data agumentation and a
method for prediction. Technometrics, 16(1):125–127, 1974.

[3] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep
neural networks with rectified linear units, 2016.

[4] Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P. Brenner. Learning data-driven
discretizations for partial differential equations. Proceedings of the National Academy of

Sciences, 116(31):15344C15349, Jul 2019.
[5] Christopher M. Bishop. Pattern recognition and machine learning. Springer, 2006.
[6] Mickael D. Chekroun, Youngjoon Hong, and Roger M. Temam. Enriched numerical scheme

for singularly perturbed barotropic quasi-geostrophic equations. Journal of Computational

Physics, 416:109493, 2020.
[7] Zhen Chen and Dongbin Xiu. On generalized residual network for deep learning of unknown

dynamical systems. Journal of Computational Physics, 438:110362, 2021.
[8] Zhicheng Cui, Wenlin Chen, and Yixin Chen. Multi-scale convolutional neural networks for

time series classification, 2016.
[9] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of

Control, Signals and Systems, 2:303–314, 1989.

[10] Philip J. Davis and Philip Rabinowitz. Methods of numerical integration. Dover Publications,
Inc., Mineola, NY, 2007. Corrected reprint of the second (1984) edition.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
[12] David Gottlieb and Steven A. Orszag. Numerical Analysis of Spectral Methods. Society for

Industrial and Applied Mathematics, 1977.
[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition, 2015.
[14] Youngjoon Hong, Chang-Yeol Jung, and Roger Temam. On the numerical approximations of

stiff convection-diffusion equations in a circle. Numer. Math., 127(2):291–313, 2014.
[15] Youngjoon Hong and David P. Nicholls. A high-order perturbation of surfaces method for

scattering of linear waves by periodic multiply layered gratings in two and three dimensions.
J. Comput. Phys., 345:162–188, 2017.

[16] Youngjoon Hong and David P. Nicholls. A high-order perturbation of surfaces method for
vector electromagnetic scattering by doubly layered periodic crossed gratings. J. Comput.
Phys., 372:748–772, 2018.

[17] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are

universal approximators. Neural Networks, 2(5):359 – 366, 1989.
[18] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In Francis Bach and David Blei, editors, Proceedings

of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.

[19] E. Kharazmi, Z. Zhang, and G. E. Karniadakis. Variational physics-informed neural networks
for solving partial differential equations, 2019.

[20] Byungjoo Kim, Bryce Chedomelka, Jinyoung Park, Jaewoo Kang, Youngjoon Hong, and
Hyunwoo J Kim. Robust neural networks inspired by strong stability preserving runge-kutta
methods. In ECCV, 2020.

[21] Yoon Kim. Convolutional neural networks for sentence classification, 2014.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 25, pages 1097–1105.
Curran Associates, Inc., 2012.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278C2324, 1998.

[24] Zongyi Li, Hongkai Zheng, Nikola Borislavov Kovachki, David Jin, Haoxuan Chen, Burigede

Liu, Andrew Stuart, Kamyar Azizzadenesheli, and Anima Anandkumar. Physics-informed
neural operator for learning partial differential equations, 2022.

[25] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learn-
ing nonlinear operators via DeepONet based on the universal approximation theorem of

operators. Nature Machine Intelligence, 3(3):218–229, 2021.

672 B. CHUDOMELKA, Y. HONG, J. MORGAN, H. KIM, AND J. PARK

[26] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning
library for solving differential equations. SIAM Review, 63(1):208–228, 2021.

[27] Olalekan Ogunmolu, Xuejun Gu, Steve Jiang, and Nicholas Gans. Nonlinear systems identi-
fication using deep dynamic neural networks, 2016.

[28] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial dif-

ferential equations. Journal of Computational Physics, 378:686 – 707, 2019.
[29] Maziar Raissi and George Em Karniadakis. Hidden physics models: machine learning of

nonlinear partial differential equations. J. Comput. Phys., 357:125–141, 2018.
[30] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learn-

ing velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.
[31] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions, 2017.
[32] S. C. Reddy and J. A. C. Weideman. The accuracy of the Chebyshev differencing method for

analytic functions. SIAM J. Numer. Anal., 42(5):2176–2187, 2005.

[33] Viktor Reshniak and Clayton G. Webster. Robust learning with implicit residual networks.
Machine Learning and Knowledge Extraction, 3(1):34–55, 2021.

[34] Jon A. Rivera, Jamie M. Taylor, ngel J. Omella, and David Pardo. On quadrature rules for

solving partial differential equations using neural networks. Computer Methods in Applied
Mechanics and Engineering, 393:114710, 2022.

[35] Jie Shen, Tao Tang, and Li-Lian Wang. Spectral methods, volume 41 of Springer Series in
Computational Mathematics. Springer, Heidelberg, 2011. Algorithms, analysis and applica-

tions.
[36] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving

partial differential equations. Journal of Computational Physics, 375:1339–1364, 2018.
[37] E.G. Steward. Fourier Optics: An Introduction (Second Edition). Dover Books on Physics.

Dover Publications, 2004.
[38] Stinchcombe and White. Universal approximation using feedforward networks with non-

sigmoid hidden layer activation functions. In International 1989 Joint Conference on Neural
Networks, pages 613–617 vol.1, 1989.

[39] Wensi Tang, Guodong Long, Lu Liu, Tianyi Zhou, Jing Jiang, and Michael Blumenstein.
Rethinking 1d-cnn for time series classification: A stronger baseline, 2020.

[40] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

[41] Vladimir Naumovich. Vapnik. The nature of statistical learning theory. Springer, 2000.
[42] Bao Wang, Binjie Yuan, Zuoqiang Shi, and Stanley J. Osher. Enresnet: Resnets ensem-

ble via the feynman–kac formalism for adversarial defense and beyond. SIAM Journal on

Mathematics of Data Science, 2(3):559–582, 2020.
[43] Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of para-

metric partial differential equations with physics-informed deeponets. Science Advances,
7(40):eabi8605, 2021.

[44] E. Weinan and Bing Yu. The deep ritz method: A deep learning-based numerical algorithm
for solving variational problems. Communications in Mathematics and Statistics, 6:1–12,
2017.

[45] Yuxin Wu and Kaiming He. Group normalization, 2018.

[46] Xuping Xie, Clayton Webster, and Traian Iliescu. Closure learning for nonlinear model re-
duction using deep residual neural network. Fluids, 5(1), 2020.

[47] Rui Xu, Dongxiao Zhang, Miao Rong, and Nanzhe Wang. Weak form theory-guided neural
network (tgnn-wf) for deep learning of subsurface single- and two-phase flow. Journal of

Computational Physics, 436:110318, 2021.
[48] Yulei, Liao, , 14603, , Yulei Liao, Pingbing, Ming, , 10035, , and Pingbing Ming. Deep

nitsche method: Deep ritz method with essential boundary conditions. Communications in

Computational Physics, 29(5):1365–1384, 2021.
[49] Jiawei Zhuang, Dmitrii Kochkov, Yohai Bar-Sinai, Michael P. Brenner, and Stephan Hoyer.

Learned discretizations for passive scalar advection in a 2-d turbulent flow, 2020.

DNN FOR SOLVING PDES BY LEGENDRE-GALERKIN APPROXIMATION 673

Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA
E-mail : brycechudomelka@gmail.com

Department of Mathematical Sciences, KAIST, Daejeon, Korea
E-mail : hongyj@kaist.ac.kr

Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA
E-mail : jmorgan4844@sdsu.edu

Department of Computer Science, Korea University, Seoul, Korea
E-mail : hyunwoojkim@korea.ac.kr and lpmn678@korea.ac.kr

