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AUTOMATED DETECTION AND CHARACTERIZATION OF

SINGULARITIES IN FUNCTIONS USING NEURAL

NETWORKS-FROM FFT SIGNALS

ZHENG CHEN∗, SEULIP LEE, AND LIN MU

Abstract. Singularities, distinctive features signifying abrupt changes in function behavior, hold

pivotal importance across numerous scientific disciplines. Accurate detection and characterization

of these singularities are essential for understanding complex systems and performing data analysis.
In this manuscript, we introduce a novel approach that employs neural networks and machine

learning for the automated detection and characterization of singularities based on spectral data

obtained through fast Fourier transform (FFT). Our methodology uses neural networks trained
on known singular functions, along with the corresponding singularity information, to efficiently

identify the location and characterize the nature of singularities within FFT data from arbitrary
functions. Several tests have been provided to demonstrate the performance of our approach,

including singularity detection for functions with single singularities and multiple singularities.
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1. Introduction

Singularities, characterized by abrupt changes or discontinuities in functions,
are fundamental features encountered in various scientific and engineering domain-
s. Accurate identification and characterization of singularities play a crucial role in
understanding the behavior and properties of functions. The potential applications
of detecting singularities in Fourier signals are diverse and extend across various
fields where signal processing and analysis are essential, such as image process-
ing, biomedical signal processing, environmental monitoring, and financial signal
processing. Fourier analysis is widely used in image processing for compression, fil-
tering, and feature extraction tasks. Detecting singularities in Fourier-transformed
images can help in identifying salient features, discontinuities, or edges in the image
domain. These features reinforce object detection, image segmentation, or image
enhancement. Fourier analysis is often employed for electroencephalography and
electrocardiography signal analysis in biomedical signal processing. Detecting singu-
larities in Fourier-based biomedical signals can help recognize abnormal patterns or
events, which leads to more accurate diagnosis and effective monitoring of medical
conditions. Through Fourier analysis, environmental monitoring includes analyzing
seismic, oceanographic, or atmospheric data signals. Detecting singularities in such
data signals can help predict anomalous events such as earthquakes, tsunamis, or
atmospheric disturbances. This identification contributes to early warning systems
and disaster management efforts. In addition, Fourier analysis enables time series
analysis, volatility modeling, and frequency domain analysis in finance. Detecting
singularities in financial signal processing can help indicate significant events or
anomalies in the data, which can be valuable for risk management, trading strate-
gies, and economic forecasting.
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Despite their importance and wide applications, identifying and characterizing
singularities have been challenging, especially in cases with multiple singularities.
Fourier analysis suffers from the Gibbs phenomenon, which leads to spurious oscil-
lations around jumps and singularities in discrete Fourier series. These nonphysical
oscillations make it challenging to visually identify the characteristics of the jump-
s and singularities. Various data reconstruction techniques, such as Gegenbauer
reconstructions, have been proposed to recover spectral accuracy up to the jumps
[28, 24, 27, 25, 26, 1, 30] and singularities [11, 12, 35]. These techniques have found
widespread applications in post-processing numerical simulations [42, 23, 29, 34]
and image reconstructions [2, 3, 4, 8]. However, such reconstruction techniques
still require accurate information on the location and type of trouble points. Var-
ious edge detection methods have been devised for Gegenbauer reconstructions on
discontinuous functions [21, 22, 18] based on truncated spectral expansions or col-
location point values. These methods have proved successful across diverse input
data types, including spectral partial sums and discontinuous Galerkin solutions
[8, 7, 5, 45, 6, 19, 43, 41, 46, 14, 39, 20, 16, 17]. However, these methods focus on
detecting discontinuities (not general singularities). A local singularity detection
algorithm [37] has been developed to obtain high-order evaluations of singularity
characteristics, such as location and exponent, through locally supported quasi-
interpolation of univariate nonsmooth functions. Moreover, wavelet transforms
have been employed effectively to identify Lipschitz regularity and characterize
singularities in irregular signals, which leads to successful applications in signal
denoising [38, 9, 44]. These techniques have been applied to various domains, in-
cluding sinogram imaging [33], seismic imaging [32], and cone beam CT breast
imaging [49]. Nevertheless, identifying various types of singularities and detecting
multiple singularities in a function still need to be studied.

Neural network techniques have shown remarkable success in many fields, in-
cluding computer vision [31], pattern recognition [40], natural language processing
[15], and other tasks related to artificial intelligence. With the success of feature
extraction in various research areas [13], neural network techniques have attract-
ed significant attention for data-related applications. Machine learning techniques
have recently been used to detect singularities in data, e.g., topological data and
patterns [36, 47, 48]. Therefore, this paper proposes a neural network-based ap-
proach to automating the detection and characterization of singularities in func-
tions. Our methodology uses a training dataset of randomly generated functions
with known singularity locations and exponents. Fourier coefficients are computed
for these functions, capturing their frequency domain characteristics. These co-
efficients, along with the corresponding singularity information, are used to train
a neural network model detecting the underlying patterns and relationships. The
neural network architecture is designed to handle the detection of one or multi-
ple singularities, taking the Fourier coefficients as inputs and predicting both the
singularity locations and exponents. Using neural network structures, we present
three singularity detection models:

(1) Single singularity detector : This detector approximates the singularity lo-
cations and exponents for functions with single singularities.

(2) Multiple singularities detector : This detector extends the above detector
to capture the locations and exponents of multiple singularities in singular
functions.

(3) Multiple singularities detector with splitting strategy : This detector en-
hances the above detector by employing the splitting strategy in detecting
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location and exponents separately. The location detector approximates the
locations of multiple singularities first, and the exponent detector detects
the exponents using input Fourier data and the detected locations. With
this splitting strategy, we propose a parallel learning process to speed up
the serial detector.

Through experimental results, we discuss how to generate datasets and set up
detection models, including the number of Fourier coefficients, the number of gen-
erated singular functions, and the number of hidden layers. Performance metrics
such as mean squared errors are used to quantify the accuracy of the predictions
from the models. To maximize the performance of our models, we use optimization
algorithms with adaptive learning rates and batch processing and apply validation
sets to decrease learning rates and stop learning iterations. Moreover, we test our
detection models while applying artificial noise to Fourier data, mimicking real data
processing. The experimental results show that our detectors effectively identify
the singularity’s location and exponent from Fourier data with noise.

Detailed discussions regarding dataset generation, detection model training, and
validation are given in our test. These tests show the accuracy, effectivity, efficiency,
and robustness of singularity detection. Moreover, for the noisy data, our model is
able to predict the singularity with high fidelity. The predicted singularity locations
and exponents provide valuable insights into the nature of the singularities in the
functions. This automated approach has the potential to greatly simplify the anal-
ysis of functions with multiple singularities, enabling researchers and practitioners
to gain a deeper understanding of complex systems and phenomena.

The remaining sections of this paper are organized as follows: Several essential
and fundamental aspects are introduced in Section 2, including Fourier data, dis-
crete Fourier transform, and details for datasets. In Section 3, we present singularity
detection models for single and multiple singularities based on neural network ap-
proach. Section 4 presents the experimental setup and results, demonstrating stable
and reliable performances of our detection models through extensive validation. We
summarize our findings and contributions in this paper and discuss related future
research in Section 5.

2. Preliminaries

In this section, we embark on elucidating the process of dataset preparation es-
sential for training our neural network singularity detectors. A foundational aspect
in the pursuit of effective training lies in the meticulous curation of a comprehen-
sive dataset, comprising Fourier data extracted from various singular functions,
alongside detailed information on the locations and exponents of the underlying
singularities.

The Fourier data to train and test our detection models is generated by applying
the fast Fourier transform (FFT) to a set of predetermined functions that exhibit
specific locations and exponents of singularities. These functions are carefully se-
lected to encompass a diverse range of singular behaviors, ensuring the robustness
and generalizability of our approach. By transforming these functions into the fre-
quency domain using FFT, we obtain discrete Fourier coefficients that capture the
spectral characteristics associated with each singularity’s exponent and location.

Subsection 2.1 provides an insightful review of the behavior of Fourier partial
sums in approximating functions. Meanwhile, Subsection 2.2 delves into the Fourier
data generation process using Discrete Fourier Transform. Lastly, Subsection 2.3
outlines the methodology employed in preparing our dataset for training.



632 Z. CHEN, S. LEE, AND L. MU

2.1. Fourier data. For function f(x) on the interval [−L,L], the Fourier partial
sum using the first 2N + 1 modes is

fN (x) =
∑
|ω|≤N

f̃ωe
iω πLx

with Fourier coefficients f̃ω defined by

f̃ω =
1

2L

∫ L

−L
f(x)e−iω

π
Lx dx,

where i is the imaginary unit.
It is widely acknowledged that the Fourier partial sum provides an excellent ap-

proximation to a function with spectral accuracy when the function is periodic and
analytic on the interval. However, when dealing with functions containing jumps or
singularities, the Fourier series exhibits large oscillations near these discontinuities,
a characteristic that remains unchanged even as the number of terms in the par-
tial sum increases. Furthermore, in smooth regions away from the discontinuities,
convergence is only of first order, leading to a lack of convergence in the maximum
norm. This phenomenon is commonly referred to as the Gibbs phenomenon.

2.2. Discrete Fourier transform (DFT). Without loss of generosity, in our
test, we assume the singular functions are defined over Ω = [0, 1], and we apply
the fast Fourier transform (FFT) algorithm for computing the discrete Fourier
transform (DFT) of the singular functions, which requires the function values at a
set of equally spaced points within this interval.

Mathematically, we let f(x) be a singular function defined on the interval [0, 1].
We determine a positive integer N and choose evenly-spaced sample points at which
the function values are known, such as xn = n/N for n = 0, 1, . . . , N −1. The DFT
uses the function values f(xn) at the sample points xn and produces N discrete
Fourier coefficients. These coefficients represent the amplitudes and phases of the
sinusoidal components that make up the function f(x) over the interval [0, 1].

To elaborate further, if we let Fω denote the discrete Fourier coefficients corre-
sponding to the frequency ω, the coefficients are computed as follows:

(1) Fω :=
1

N

N−1∑
n=0

f(xn)e−2πiωxn , ω = −
⌊
N

2

⌋
, . . . ,−1, 0, 1 . . . ,

⌊
N − 1

2

⌋
.

For example, if N = 5, we obtain discrete Fourier coefficients F−2, F−1, F0, F1, F2.
If N = 6, the coefficients are F−3, F−2, F−1, F0, F1, F2, with one more coefficient in
order of decreasingly negative frequency.

In summary, the FFT algorithm takes as input the function values at equally
spaced sample points within the interval [0, 1], and it computes the discrete Fourier
coefficients that characterize the frequency content of the function over this interval.
These coefficients provide valuable insights into the sinusoidal components that
comprise the function and are crucial for various applications in signal processing,
spectral analysis, and numerical computation.

2.3. Datasets. We assume that a singular function f : [0, 1]→ R has a singularity
whose location is cf ∈ (0, 1) and exponent is sf ∈ (0, 2); the singular function f(x)
is expressed by

(2) f(x) = a(x) (|x− cf |sf ) + b(x),

where a(x) is a smooth function, and b(x) is a periodic smooth function. We ran-
domly generate such singular functions with singularity locations and exponents
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and then use the one-dimensional equally-spaced N -point discrete Fourier trans-
form (DFT) with the fast Fourier transform (FFT) algorithm. According to the
discrete Poisson summation formula [10], the DFT data Fω is getting closer to
the Fourier coefficient of frequency ω in a Fourier series as N is larger. Thus, we
choose a sufficiently large N = 1000 for the FFT algorithm to obtain relatively
accurate discrete Fourier coefficients. After getting the 1,000 DFT data Fω for
−500 ≤ ω ≤ 499, we choose dominant discrete Fourier coefficients by considering
their frequencies because low-frequency and zero-frequency coefficients are typi-
cally larger than high-frequency ones. Therefore, we define a positive integer M

(M � N = 1000) to indicate how many discrete Fourier coefficients are used as
inputs, so the inputs and outputs corresponding to each singular function f are as
follows:

(3) Inputs :

{
Fω : −

⌊
M− 1

2

⌋
≤ ω ≤

⌊
M

2

⌋}
→ Outputs : cf and sf .

For example, if we choose M = 5, the inputs are determined as

{Fω : −2 ≤ ω ≤ 2} = {F−2, F−1, F0, F1, F2} .
If M = 6, the inputs are determined as

{Fω : −2 ≤ ω ≤ 3} = {F−2, F−1, F0, F1, F2, F3} .
With a chosen integer M > 0 in (3), we generate a training dataset to train

our model, denoted as Ftrain, which collects singular functions’ discrete Fourier
coefficients Fω as inputs and singularity’s location cf and exponent sf as outputs.
For testing our trained model, we generate a test dataset, denoted as Ftest, which
contains singular functions independently of the training dataset. In addition, we
define | · | as the number of samples in a dataset, so |Ftrain| and |Ftest| denote the
number of sample functions in the training and test datasets, respectively.

We also consider one-dimensional singular functions g : [0, 1] → R with two
singularities whose locations are c1g ∈ (0, 0.5) and c2g ∈ (0.5, 1), and exponents are

s1
g, s

2
g ∈ (0, 2). The general form of such a function is

(4) g(x) = a1(x)
(∣∣x− c1g∣∣s1g)+ a2(x)

(∣∣x− c2g∣∣s2g)+ b(x),

where a1(x) and a2(x) are smooth functions, and b(x) is a periodic smooth function.
Using the FFT algorithm and a selected integer M, we generate datasets with two
singularities in the following form,

(5) Inputs :

{
Gω : −

⌊
M− 1

2

⌋
≤ ω ≤

⌊
M

2

⌋}
→ Outputs : c1g, c

2
g, s

1
g, and s2

g,

where Gω ∈ C is a discrete Fourier coefficient for g(x) with the frequency ω. In
addition, the corresponding training and test datasets, denoted by Gtrain and Gtest,
are generated similarly.

3. Deep neural network singularity detectors

We present our singularity detection models using deep neural network (DNN)
structures. A DNN structure consists of the input layer, multiple hidden layers,
and the output layer, while each layer includes numerous neurons. In this section,
we propose the following singularity detectors for singular functions in (2) and (4):

3.1. A DNN detector for single singularity : We consider singular functions in
(2) with different locations cf , exponents sf , and smooth functions a(x)
and b(x). Using the discrete Fourier coefficients Fω, we propose a DNN
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detection model to find the location and exponent of the singularity (see
the input and output relation in (3)).

3.2. DNN detectors for multiple singularities: We try to detect multiple sin-
gularities of singular functions in (4), requiring high computational costs.
With the discrete Fourier coefficients Gω, we present two different DNN
detection models for multiple singularities:

3.2.1. A simple generalization of the single singularity detector : This mod-
el is a straightforward generalization of the DNN detector for single
singularity. We use the discrete Fourier coefficients Gω as inputs and
increase the number of outputs so the detection model detects loca-
tions c1g, c

2
g, and exponents s1

g, s
2
g simultaneously.

3.2.2. Splitting strategy for detecting multiple singularities: The splitting s-
trategy presents a separate location detector and another detector for
exponents. We first detect locations c1g, c

2
g using the location detector

with the discrete Fourier coefficients Gω and then lead the detected lo-
cations to help the exponent detector find the corresponding exponents
s1
g, s

2
g.

3.1. A DNN detector for single singularity. In our detection model, we use
the function’s discrete Fourier coefficients chosen by frequencies,

Fω ∈ C for −
⌊
M− 1

2

⌋
≤ ω ≤

⌊
M

2

⌋
,

where M indicates the number of coefficients in light of Section 2.3. Hence, the
neurons on the input layer are represented as the Fourier data

Re (Fω) and Im (Fω) ,

and the output layer consists of the singularity’s location cf and exponent sf (see
Figure 1). If we let L denote the number of layers in our DNN detector and n`
denote the number of neurons on the `-th layer for 1 ≤ ` ≤ L, it is clear that
n1 = 2M and nL = 2. Moreover, the neurons on two adjacent layers are connected

Figure 1. An example of the DNN detection model for a single
singularity zf ≈ D1(Xf ).

by a linear transformation defined as T` : Rn` → Rn`+1 for 1 ≤ ` ≤ L− 1,

T`(x`) = W`x` + b`, ∀x` ∈ Rn` ,



NEURAL NETWORKS FOR SINGULARITY DETECTION 635

where W` ∈ Rn`+1×n` is a parameter matrix, and b` ∈ Rn`+1 is a parameter
vector. The DNN detector is a composition of such linear transformations and
activation functions such as sigmoid, hyperbolic tangent (tanh), and rectified linear
unit (ReLU). Therefore, for the DNN detector, a function D1 : R2M → R2 is defined
as

(6) D1 = TL−1 ◦ σL−2 ◦TL−2︸ ︷︷ ︸
LL−2

◦ · · · ◦ σ2 ◦T2︸ ︷︷ ︸
L2

◦σ1 ◦T1︸ ︷︷ ︸
L1

,

where σ` : Rn` → Rn` is a vector function whose each component is σ : R → R
the nonlinear ReLU function, and L` expresses sending signals from `-th layer to
(`+ 1)-th layer and processing them on the receiving layer. If we let
(7)

Xf :=
〈
Re
(
F−b M−1

2 c
)
, . . . ,Re

(
Fb M

2c
)
, Im

(
F−b M−1

2 c
)
, . . . , Im

(
Fb M

2c
)〉
∈ R2M

and zf = 〈cf , sf 〉 ∈ R2, the DNN detector D1(·) approximates zf using the input
data Xf , that is,

zf ≈ D1(Xf ).

In conclusion, if we define W(D1) = {W`, b` : 1 ≤ ` ≤ L − 1}, then we solve a
least-squares problem to obtain a trained DNN detector D1(·),

min
W(D1)

1

|Ftrain|
∑

f∈Ftrain

‖zf −D1(Xf )‖22,

where Ftrain is a training dataset introduced in Section 2.3.

3.2. DNN detectors for multiple singularities. We recall singular functions
with two singularities introduced in (4),

g(x) = a1(x)
(∣∣x− c1g∣∣s1g)+ a2(x)

(∣∣x− c2g∣∣s2g)+ b(x).

Their discrete Fourier data Gω is a given data, and our models’ goal is to detect the
singularities’ locations c1g, c

2
g and exponents s1

g, s
2
g employing the Fourier data.

3.2.1. A simple generalization of the single singularity detector. The gen-
eralized DNN detection model uses the Fourier data,

Xg :=
〈
Re
(
G−b M−1

2 c
)
, . . . ,Re

(
Gb M

2c
)
, Im

(
G−b M−1

2 c
)
, . . . , Im

(
Gb M

2c
)〉
∈ R2M,

as inputs and zg = 〈c1g, c2g, s1
g, s

2
g〉 as outputs. With the DNN structure in (6) (or

described in Figure 1), a trained DNN detection model for multiple singularities
D2(·) can be obtained by solving a similar least-squares problem,

min
W(D2)

1

|Gtrain|
∑

g∈Gtrain

‖zg −D2(Xg)‖22,

whereW(D2) is the collection of all parameter matrices and vectors involved in D2.
Therefore, D2(Xg) approximates zg, which means that the generalized detection
model D2(·) detects locations and exponents simultaneously.

However, this model that detects all locations and exponents together requires
too many training sample functions and hidden layers to achieve a reliable error
level (we will show related experimental results in Section 4.3). Hence, we propose
a splitting strategy to overcome this computational difficulty.
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3.2.2. Splitting strategy for detecting multiple singularities. From a prac-
tical viewpoint, detecting singularity locations seems easier than exponents. Thus,
we first construct a DNN model to detect the locations using the Fourier data and
then apply the detected (or approximate) locations to find the corresponding expo-
nents. Let us define a location vector cg := 〈c1g, c2g〉 and a function Dc

2 : R2M → R2

based on the DNN structure (6). As shown in Figure 2, the inputs of Dc
2 are the

Figure 2. An example of the DNN location detection model for
multiple singularities cg ≈ Dc

2(Xg).

Fourier data Xg, while its outputs are the locations cg. Then, the trained DNN
location detector Dc

2(·) approximates cg using the Fourier data Xg,

cg ≈ Dc
2(Xg),

and the corresponding least-squares problem is

min
W(Dc

2)

1

|Gtrain|
∑

g∈Gtrain

‖cg −Dc
2(Xg)‖22,

where W(Dc
2) is the collection of all parameter matrices and vectors involved in

Dc
2, and Gtrain is a training dataset presented in Section 2.3.
Furthermore, we construct a separate DNN detection model providing singularity

exponents using the Fourier data Xg and location information cg (or Dc
2(Xg))

as input data. As shown in Figure 3, we define a function Ds
2 : R2M+2 → R2

based on the structure (6) and apply it to approximate the exponent information
sg = 〈s1

g, s
2
g〉. We propose two techniques to train the exponent detector Ds

2(·, ·):
serial and parallel learning processes (see Figure 4). The serial learning means we
first train the location detector Dc

2(·) using the Fourier data Xg to approximate
cg. Then, we obtain detected locations Dc

2(Xg) and use them as training data for
the exponent detector Ds

2(·, ·). Therefore, we train the exponent detector Ds
2(·, ·)

using the Fourier data Xg and detected locations Dc
2(Xg). In other words, the

trained exponent detector Ds
2(·, ·) minimizes the least-squares problem in the serial

learning process,

min
W(Ds

2)

∑
g∈Gtrain

‖sg −Ds
2(Xg,D

c
2(Xg))‖22,

where W(Ds
2) is the parameter set, and Gtrain is the training dataset.

On the other hand, as shown in Figure 4, the parallel learning means training the
location and exponent detectors in parallel processing. While we train the location
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Figure 3. An example of the exponent detection model using the
Fourier data and location information.

detector Dc
2(·) using the Fourier data Xg, we train the exponent detector Ds

2(·, ·)
with the Fourier data Xg and the exact locations cg. Thus, the corresponding
least-squares problem for the parallel learning is

min
W(Ds

2)

∑
g∈Gtrain

‖sg −Ds
2(Xg, cg)‖22.

We note that we use the exact locations cg to train the exponent detector Ds
2(·, ·),

but we input the detected locations Dc
2(Xg) for the test dataset. For this reason,

the parallel learning enhances efficiency in learning time but may result in larger
errors of singularity exponents in test datasets (a related experimental result will be
provided in Section 4.3). Finally, we emphasize that the exponent detector Ds

2(·, ·)
approximates sg only using the Fourier data Xg in both serial and parallel learning
processes,

sg ≈ Ds
2(Xg,D

c
2(Xg)).

4. Experimental results

This section presents the experimental results of our DNN detection models for
singular functions with single or multiple singularities. This section consists of three
subsections:

4.1. Detection of single singularity: We construct and train a DNN detection
model for a single singularity lead by |x− c|s.

4.2. Detecting singularity from Fourier data with noise: We assume that the
input Fourier data may contain some noise. Thus, we added artificial noise
to the Fourier data and checked the performance of our DNN detector for
a single singularity.

4.3. Detection of multiple singularities and a splitting strategy: We mainly con-
sider singular functions with two singularities. To overcome the compu-
tational difficulty, we developed DNN detection models with a splitting
strategy and compared them with the model detecting everything togeth-
er.
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Figure 4. Flow charts of the serial and parallel learning processes
in splitting strategy.

4.1. Detection of single singularity. We begin by letting our DNN detection
model detect a singularity of a singular function in a fractional power form |x− c|s.
We discuss experimental details for our detector’s satisfactory performance, such
as the number of discrete Fourier coefficients, the size of datasets, hidden layers,
activation functions, and training methods. Based on the experimental results,
we enhance our detector to capture singularities hidden by smooth functions (e.g.,
a(x)(|x−c|s) and a(x)(|x−c|s)+b(x), where a(x) and b(x) are smooth functions) by
using more sample functions in datasets, discrete Fourier coefficients, and hidden
layers.

Example 4.1 (A singular function in a fractional power form). We consider one-
dimensional singular functions, including single fractional power singularity with
its location cf ∈ [0.1, 0.9] and exponent (or type) sf ∈ [0.1, 2.0):

(8) f(x) = |x− cf |sf , x ∈ [0, 1].

We note that a singular function in Example 4.1 may include a jump discontinuity
at the boundaries because the function is not periodic in [0, 1]. Such a jump dis-
continuity may confuse and complicate our detection models when the singularity
location cf is close to the boundaries. Hence, we consider the singularity location cf
on [0.1, 0.9] to distinguish such an internal singularity from the jump discontinuity
at the boundaries.

We generate datasets by randomly choosing such singular functions (with cf
and sf ) and using the one-dimensional equally-spaced N -point FFT algorithm with
N = 1000 (see Section 2.3 for details). As explained in Section 3.1, we construct
and train a DNN singularity detection model with
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• Inputs: discrete Fourier coefficients chosen by frequencies,

Fω ∈ C for −
⌊
M− 1

2

⌋
≤ ω ≤

⌊
M

2

⌋
,

where M means the number of coefficients. The coefficients form a vector
Xf ∈ R2M introduced in (7);
• Outputs: singularity’s location cf and exponent sf ;
• Hidden layers and number of neurons: two hidden layers with 128× 64;
• Activation functions: ReLU.

To maximize the accuracy of our trained detection model, we use the optimization
algorithm Adam with adaptive learning rates and batch processing. We also hold
10% of the singular functions in a training dataset as a validation set and check
the mean squared error (MSE) on the validation set to change learning rates and
stop learning iterations. If the MSE on the validation set does not decrease with
the tolerance 10−6 in 200 iterations, the learning rate is reduced by a factor of
10, and the learning process stops when the learning rate reaches less than 10−6.
Figure 5 shows how the MSEs (or losses) decrease during the learning process with
different learning rates. We first test how we generate a dataset, addressing the

Figure 5. An example of the MSEs (or losses) on the training
and validation sets during the learning process in Example 4.1
with M = 5.

number of discrete Fourier coefficients (M) and the number of singular functions in
a training dataset (|Ftrain|). Figure 6 shows the final losses on the training and
validation sets with different dataset sizes after finishing the learning process. We
change the number of Fourier coefficients from 1 to 10 of 3,000 singular functions in
a training dataset, i.e., |Ftrain| = 3000 and 1 ≤ M ≤ 10. As shown in Figure 6, the
training and validation losses with five coefficients are less than 2×10−5. When the
number of coefficients increases, the losses fluctuate in a similar range. Therefore,
we discover that our detection model with five discrete Fourier coefficients (M = 5
and the chosen frequencies are ω = −2,−1, 0, 1, 2) reliably detects singularities in
Example 4.1.

Moreover, we change the number of singular functions in a training dataset
from 200 to 5,000 while using their five discrete Fourier coefficients, that is, 200 ≤
|Ftrain| ≤ 5000 and M = 5. The training and validation losses decrease as more
singular functions are in a training dataset from 200 to 3,000, but they fluctuate
when a dataset includes more than 3,000 functions. Therefore, for the satisfactory
performance of our model, we set a training dataset including 3,000 singular func-
tions and their five discrete Fourier coefficients (|Ftrain| = 3000, and M = 5). To
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Figure 6. Training and validation losses with different numbers of
discrete Fourier coefficients chosen by frequencies (left) and those
of singular functions in a training dataset (right) in Example 4.1.

check the performance of our trained detection model D1(·), we randomly gener-
ate 200 singular functions in the fractional form in Example 4.1 for a test dataset
and compare their exact singularity locations and exponents zf = 〈cf , sf 〉 with
the ones detected by our detector D1(Xf ). In Figure 7, a blue dot indicates each
singular function’s detected location and exponent compared to the exact, and red
lines mean the detected location and exponent are the same as the exact. Thus,
if our detector correctly detects singularities’ locations and exponents, blue dots
are supposed to be densely clustered on the red lines. As shown in Figure 7, our
trained detection model detects the singularity locations and exponents in the test
dataset very well while providing small MSEs on the test dataset.

Figure 7. Comparisons of detected locations and exponents (or
types) with the exact ones of 200 test functions in Example 4.1.

Example 4.2 (Singular function multiplied by a smooth function). We consider a
more complicated case, a singular function multiplied by a smooth function with
its location cf ∈ [0.1, 0.9] and exponent sf ∈ [0.1, 2.0):

(9) f(x) = a(x) (|x− cf |sf ) ,

where a(x) is a smooth function. We choose different smooth functions, such as
a(x) = 1, cos(2πx), sin(2πx), arctan(πx), and ex. The location cf is chosen on
[0.1, 0.9] due to a possible jump discontinuity at the boundaries. The choice a(x) =
1 implies that a dataset will contain the fractional power form in Example 4.1.

In Example 4.2, it may be challenging to confirm the singularity’s location and
exponent visually (see Figure 9 for an example). We apply the same DNN structure
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Figure 8. Losses on the training and validation sets depending
on the number of Fourier coefficients (left) and during the learning
process with different learning rates and M = 11 (right) in Exam-
ple 4.2.

D1(·) as in Section 3.1, having the same inputs (Fourier data Xf ), outputs (location
cf & exponent sf ), hidden layers (128 × 64), and activation functions (ReLU).
We check how many discrete Fourier coefficients are enough for the satisfactory
performance of our trained model. Based on the previous result of the number of
singular functions, we generate 15,000 singular functions combined with smooth
functions to set up a training dataset. Figure 8 shows the losses on the training
and validation sets depending on the number of Fourier coefficients and during the
learning process with different learning rates. The losses decrease from two to ten
coefficients and fluctuate after ten, implying that our detection model with ten or
more Fourier coefficients (M ≥ 10) performs well in Example 4.2.

Figure 9. Comparison of example functions, detected function-
s, and their discrete Fourier series in Example 4.2 (a(x) =
arctan(πx)).

With fixed M = 11, Figure 9 compares example singular functions, detected func-
tions from D1(Xf ), and their discrete Fourier series. When the example function
has a cusp, we can see that capturing the singularity using the discrete Fourier
series is tricky due to an oscillatory behavior (the Gibbs phenomenon) caused by a
jump discontinuity at the boundaries. However, a function detected by our trained
detector comparatively shows the accurate location and exponent of cusp. More-
over, as displayed in Figure 9, our trained detector effectively detects the hidden
singularity with cf = 0.6 and sf = 1.8 that may not be visually detected.
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Example 4.3 (Singular function hidden by multiplication and addition). We treat
a combination of a singular function and smooth functions with its location cf ∈
[0.1, 0.9] and exponent sf ∈ [0.1, 2.0):

(10) f(x) = a(x) (|x− cf |sf ) + b(x),

where a(x) is a smooth function, and b(x) is a periodic smooth function such as
sin(2πx) + 1 and cos(2πx) + 1.

Figure 10. A singular function |x − 0.6|1.6 and different com-
binations with smooth functions a(x) = arctan(πx) and b(x) =
cos(2πx) + 1 (top row), and their discrete Fourier coefficients with
M = 11 (bottom row).

This combination’s singularity is more elusive than a singular function in Ex-
ample 4.1 or Example 4.2. For example, Figure 10 displays a singular func-
tion |x − 0.6|1.6 in Example 4.1 and different combinations with smooth functions
a(x) = arctan(πx) and b(x) = cos(2πx) + 1. As shown in Figure 10, the singularity
of a function in Example 4.3 looks completely hidden. Furthermore, comparing the
singular functions’ Fourier data, we can see that adding a periodic smooth func-
tion to a singular function causes the amplification of discrete Fourier coefficients of
frequencies between −1 and 1 due to the linearity of the Fourier transform. This al-
teration in the Fourier coefficients makes the other coefficients relatively negligible,
so detecting such hidden singularities may be more challenging.

In Example 4.3, our detection model D1(·) follows the DNN structure in Sec-
tion 3.1, having the same inputs (Fourier data Xf with M = 11), outputs (location
cf & exponent sf ), and activation functions (ReLU). We also generate 30,000 sin-
gular functions for a training dataset based on the result of Example 4.1. However,
due to the challenge in detecting singularities in Example 4.3, our detection model
requires more hidden layers for stable and satisfactory performance, even though
we generate enough functions and discrete Fourier coefficients for training datasets.
Figure 11 shows that the losses on the training and validation decrease as more
hidden layers are used, and the losses fluctuate after six layers are applied. Based
on this experimental result, we decide to apply six hidden layers with the number
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Figure 11. Training and validation losses with different numbers
of hidden layers in Example 4.3.

of neurons 256 × 128 × 128 × 128 × 128 × 64 for satisfactory performance of our
trained model D1(·) for the complex case in Example 4.3.

Figure 12. Comparisons of detected locations and exponents (or
types) with the exact ones of 200 test functions in Example 4.3.

Figure 12 compares the detected locations and exponents D1(Xf ) with the exact
ones zf in a test dataset, including 200 randomly chosen functions in Example 4.3.
As shown in Figure 12, the MSEs for locations and exponents are relatively small,
and the blue dots are very close to the red lines. These results imply that our DNN
detection model D1(·) effectively and accurately detects the singularity’s location
and exponent in Example 4.3.

4.2. Detecting singularity from Fourier data with noise. This subsection
deals with cases closer to application issues. While we consider singular functions
in Example 4.3,

f(x) = a(x) (|x− cf |sf ) + b(x),

we agree its Fourier data Xf ∈ R2M may contain noises, that is,

Xf + ε :=
〈
Re
(
F−b M−1

2 c
)

+ eR−b M−1
2 c, . . . ,Re

(
Fb M

2c
)

+ eRb M
2c,

Im
(
F−b M−1

2 c
)

+ eI−b M−1
2 c, . . . , Im

(
Fb M

2c
)

+ eIb M
2c
〉
.

In our experiments, the noise ε ∈ R2M is a standard normal random vector scaled
by the median of the components of Xf . More precisely, if we define

MR := median
(∣∣∣Re(F−b M−1

2 c
)∣∣∣ , . . . , ∣∣∣Re(Fb M

2c
)∣∣∣) ,

MI := median
(∣∣∣Im(F−b M−1

2 c
)∣∣∣ , . . . , ∣∣∣Im(Fb M

2c
)∣∣∣) ,
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Figure 13. Comparisons of detected locations and exponents (or
types) with the exact ones of 200 test functions in Example 4.3
using Fourier data with noise.

then eRω ∼ N (0, (MR)2) and eIω ∼ N (0, (MI)2) independent and identically dis-
tributed (i.i.d.) for each ω, respectively.

We test the DNN detection model D1(·) constructed and trained in Example 4.3.
Thus, when zf = 〈cf , sf 〉 denotes the exact location and exponent in a test dataset,
D1(Xf ) approximates zf , and D1(Xf + ε) means the detected location and expo-
nent from the Fourier data with noise. Figure 13 compares the detected locations
and exponents D1(Xf+ε) with the exact ones zf in a test dataset with 200 singular
functions. Even though noises disrupt our model’s ability to detect the singularity’s
location and exponent, our detector still provides small MSEs and detects relatively
accurate locations and exponents.

In addition, we pick several locations and exponents as examples from the test
dataset: (a) zf = 〈0.3, 0.5〉 and (b) zf = 〈0.8, 1.7〉. Table 1 displays discrete
Fourier coefficients, the Fourier data with noise, and detected locations and expo-
nents. The noise levels (relative differences) are also shown in bold in Table 1. It is
clear that noises alter the Fourier coefficients; the coefficients with the noises are no
longer symmetric, and the coefficients that were originally zero are no longer zero.
Such noises depend on the magnitude of the coefficients, and their noise levels vary
in frequencies. Dominant coefficients have relatively lower noise levels, while the
others have higher ones. Despite many coefficients exhibiting noise levels exceeding
1 percent, our detector detects the locations and exponents with an accuracy of
around 1 percent or less. Therefore, we can conclude that our detector effectively
identifies the singularity’s location and exponent from Fourier data with noise.

4.3. Detection of multiple singularities and a splitting strategy. We pro-
pose DNN detection models to find singularities of singular functions in the form

g(x) = a1(x)
(∣∣x− c1g∣∣s1g)+ a2(x)

(∣∣x− c2g∣∣s2g)+ b(x),

where

• c1g ∈ (0.1, 0.5); c2g ∈ (0.5, 0.9); s1
g, s

2
g ∈ [0.1, 2.0);

• a1(x), a2(x) are smooth functions chosen in Example 4.2;
• b(x) is a periodic smooth function chosen in Example 4.3.
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In light of Section 2.3, we generate datasets by randomly choosing singular func-
tions, including output data zg = 〈c1g, c2g, s1

g, s
2
g〉, and applying the FFT algorithm,

Xg :=
〈
Re
(
G−b M−1

2 c
)
, . . . ,Re

(
Gb M

2c
)
, Im

(
G−b M−1

2 c
)
, . . . , Im

(
Gb M

2c
)〉
∈ R2M,

Based on Section 3.2, we test a generalized DNN detection model D2(·) approx-
imating locations and exponents simultaneously, zg ≈ D2(Xg). We also present
the splitting strategy for detecting multiple singularities, including two separate
detectors Dc

2(·) and Ds
2(·, ·) for cg = 〈c1g, c2g〉 and sg = 〈s1

g, s
2
g〉, respectively. We

summarize the proposed models as follows (see also Figure 1-4):

• Detecting together: D2(·) is trained to minimize ‖zg−D2(Xg)‖2. D2(Xg)
is an approximation of zg.
• Splitting strategy (serial learning): Dc

2(·) is trained to minimize ‖cg −
Dc

2(Xg)‖2. Then, with obtained Dc
2(Xg), Ds

2(·, ·) is trained to minimize
‖sg −Ds

2(Xg,D
c
2(Xg))‖2. For testing, Dc

2(Xg) is an approximation of cg,
and Ds

2(Xg,D
c
2(Xg)) is an approximation of sg.

• Splitting strategy (parallel learning): Ds
2(·, ·) is trained to minimize

‖sg − Ds
2(Xg, cg)‖2, while Dc

2(·) is trained to minimize ‖cg − Dc
2(Xg)‖2.

For testing, Dc
2(Xg) is an approximation of cg, and Ds

2(Xg,D
c
2(Xg)) is an

approximation of sg.

Table 2 compares the details of the model D2(·) detecting together and
splitting strategy (serial and parallel) using Dc

2(·) and Ds
2(·, ·). For a fair com-

parison, we apply the same number of neurons (1,148 neurons) to all the models
and use the same training set and algorithm.

Table 2. Details of detecting together using D2(·) and
splitting strategy using Dc

2(·) and Ds
2(·, ·) for multiple singu-

larities.

Detecting together Splitting (serial) Splitting (parallel)
D2(Xg) Dc

2(Xg) Ds
2(Xg,D

c
2(Xg)) Dc

2(Xg) Ds
2(Xg, cg)

Hidden layers 8 layers 4 layers 4 layers 4 layers 4 layers
Training time 129.9 min 68.1 min 86.4 min 75.3 min (parallel)
Training loss 1.296e-3 (cg & sg) 1.776e-4 (cg) 4.179e-3 (sg) 1.776e-4 (cg) 2.526e-3 (sg)
Validation loss 4.484e-3 (cg & sg) 3.740e-4 (cg) 8.030e-3 (sg) 3.740e-4 (cg) 6.201e-3 (sg)
Training set 40,000 singular functions & 15 discrete Fourier coefficients

In Table 2, the training and validation losses of trained D2(·) include the er-
rors for locations and exponents. At the same time, the losses of trained Dc

2(·)
(or Ds

2(·, ·)) mean the errors only for locations (or exponents), so the losses of
detecting together are between those of location and exponent detectors in the
splitting strategy. Nevertheless, the trained location detectors Dc

2(·) in the
splitting strategy have much less training and validation losses, which lead-
s us to expect more accurate detected locations from the splitting strategy.
Moreover, as shown in Table 2, the parallel process shows efficiency in training the
models compared to the other training ways. The parallel process also produces
fewer losses than the serial process because the parallel uses the exact locations as
training data (while the serial process uses the approximate locations).

Figure 14 shows detected locations and exponents in a test dataset of 200 sin-
gular functions chosen independently of the training dataset, comparing the model
detecting together D2(·) and splitting strategy Dc

2(·) → Ds
2(·, ·) with se-

rial and parallel processes. As shown in Figure 14, the detected locations using
the splitting strategy are closer to the red line than detecting locations and
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Detecting together Splitting (serial) Splitting (parallel)

Figure 14. Comparisons of detected locations and exponents (or
types) with the exact ones of 200 test functions with multiple sin-
gularities.

exponents together, which confirms that the splitting strategy provides more
accurate locations. Also, such an accuracy comparison can be verified by the MSEs
for locations.

While testing the splitting strategy with serial and parallel processes, we
first detect locations Dc

2(Xg) and then use the detected locations to find exponents
with Ds

2(Xg,D
c
2(Xg)). For the parallel process, the results of the exponent detector

Ds
2(·, ·) are more accurate if the exact locations cg are applied, that is, Ds

2(Xg, cg)
is more accurate than Ds

2(Xg,D
c
2(Xg)). However, it is natural that we do not

know the exact locations, and we get approximate locations from our location
detector Dc

2(·) using the Fourier data Xg. Therefore, contrary to the training and
validation losses in Table 2, the serial process gives fewer test MSEs on exponents
than the parallel process (see Figure 14) because the exponent detector in the serial
process is trained with detected locations and more suitable for them. Nonetheless,
the exponent detector through the parallel process still performs better than the
model detecting together, providing efficiency in training time. Therefore, we
conclude that the detection models with the splitting strategy detect multiple
singularities more effectively and accurately, and the parallel learning process makes
the training procedure in the splitting strategy efficient.

5. Conclusion

Our work presents a novel application of neural networks for the automated
detection and characterization of singularities in functions. Through extensive nu-
merical experiments, we validate the accuracy and robustness of our approach in
identifying both single and multiple singularities, encompassing their locations and
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exponents. By harnessing the capabilities of machine learning, we offer a valu-
able tool for researchers and practitioners across diverse fields, facilitating efficient
analysis and interpretation of functions exhibiting multiple singularities.

However, detecting multiple singularities still presents a significant challenge in
our research. While our current methodology focuses on functions with two sin-
gularities for testing purposes, addressing functions with an arbitrary number of
singularities requires the development of a novel neural network (NN) detector.
A potential approach involves refining the splitting strategy, where the first NN
detects potential singularity locations across the entire domain. Subsequently, a
second NN zooms in on specific intervals, such as [a, b], surrounding potential sin-
gularities to pinpoint their accurate locations and types. However, implementing
this strategy poses challenges, particularly in incorporating additional information
into the input data. Specifically, for accurate detection, we need to augment the
input discrete Fourier transform (DFT) data, originally generated from the interval
[0, 1], with crucial points such as {0, 1, a, b}. This augmentation ensures that our
NN detector receives comprehensive input data necessary for precise singularity
detection across various intervals.

In future work, we will explore more efficient methods for utilizing training
datasets within the splitting strategy, specifically focusing on how the location and
exponent detectors can better communicate and share detected information to en-
hance each minimization process. This would involve transitioning from the current
one-directional splitting approach, Dc

2(·)→ Ds
2(·, ·), to an alternating update pat-

tern, Dc
2(·, ·)→ Ds

2(·, ·)→ Dc
2(·, ·)→ · · · . We anticipate that this iterative pattern

will help the detectors more effectively identify the correlation between location-
s and exponents. Additionally, we plan to extend our analysis to functions with
different types of singularities and apply our methodology to real-world datasets,
thereby enhancing the applicability and robustness of our approach.
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