
INTERNATIONAL JOURNAL OF c⃝ 2024 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 21, Number 5, Pages 609–628 doi: 10.4208/ijnam2024-1024

LEAST-SQUARES NEURAL NETWORK (LSNN) METHOD FOR

LINEAR ADVECTION-REACTION EQUATION:

NON-CONSTANT JUMPS

ZHIQIANG CAI, JUNPYO CHOI*, AND MIN LIU

Abstract. The least-squares ReLU neural network (LSNN) method was introduced and studied
for solving linear advection-reaction equation with discontinuous solution in [4, 5]. The method
is based on an equivalent least-squares formulation and [5] employs ReLU neural network (NN)
functions with ⌈log2(d+ 1)⌉+ 1-layer representations for approximating solutions. In this paper,

we show theoretically that the method is also capable of accurately approximating non-constant
jumps along discontinuous interfaces that are not necessarily straight lines. Theoretical results
are confirmed through multiple numerical examples with d = 2, 3 and various non-constant jumps
and interface shapes, showing that the LSNN method with ⌈log2(d+ 1)⌉+ 1 layers approximates

solutions accurately with degrees of freedom less than that of mesh-based methods and without
the common Gibbs phenomena along discontinuous interfaces having non-constant jumps.

Key words. Least-squares method, ReLU neural network, linear advection-reaction equation,
discontinuous solution.

1. Introduction

For decades, extensive research has been conducted on numerical methods for lin-
ear advection-reaction equations to develop precise and efficient numerical schemes.
A major challenge in numerical simulation is that the solution of the equation is
discontinuous along an interface because of a discontinuous inflow boundary con-
dition, where the discontinuous interface can be the streamline from the inflow
boundary. Traditional mesh-based numerical methods often exhibit oscillations n-
ear the discontinuity (called the Gibbs phenomena), which are not suitable for many
applications and may not be extended to nonlinear hyperbolic conservation laws.

Recently, the application of neural networks (NNs) for solving partial differen-
tial equations have achieved significant accomplishments. For the linear advection-
reaction problem, the least-squares ReLU neural network (LSNN) method was in-
troduced and studied in [4, 5]. The method is based on an equivalent least-squares
formulation studied in [2, 6] and [5] employs ReLU neural network (NN) functions
with ⌈log2(d+1)⌉+1-layer representations for approximating the solution. The L-
SNN method is capable of automatically approximating the discontinuous solution
accurately since the free hyperplanes of ReLU NN functions adapt to the solution
(see [3, 4, 5]). Moreover, for problems with unknown locations of discontinuity
interfaces, it is quite easy to see that the LSNN method uses much fewer number
of degrees of freedom than the mesh-based methods (see, e.g., [3, 4]).

Approximation properties of ReLU NN functions to step functions were exam-
ined and employed in [4, 5]. In particular, it was shown theoretically that two-
or ⌈log2(d + 1)⌉ + 1-layer ReLU NN functions are necessary and sufficient to ap-
proximate a step function with any given accuracy ε > 0 when the discontinuous
interface is a hyperplane or general hyper-surface, respectively. This approximation

Received by the editors on May 30, 2023 and, accepted on December 15, 2023.

2000 Mathematics Subject Classification. 65N15, 65N99.
*Corresponding author.

609

610 Z. CAI, J. CHOI, AND M. LIU

property was used to establish a priori error estimates of the LSNN method for the
linear advection-reaction problem.

The jump of the discontinuous solution of the problem, however, is generally
non-constant when the reaction coefficient is non-zero. The main purpose of this
paper is to establish a priori error estimates (see Theorem 3.2) for the LSNN
method without making the assumption that the jump is constant as in [5]. To
this end, we decompose the solution as the sum of discontinuous and continuous
parts (see (10)), so that the discontinuous part of the solution can be described as
a cylindrical surface on one subdomain and zero otherwise. Then we construct a
continuous piecewise linear (CPWL) function with a sharp transition layer along
the discontinuous interface to approximate the discontinuous piecewise cylindrical
surface accurately. From [10, 11, 1, 5], we know that the CPWL function is a ReLU
NN function Rd → R with a ⌈log2(d + 1)⌉ + 1-layer representation, from which it
follows that the discontinuous part of the solution can be approximated by this
class of functions for any prescribed accuracy. Then Theorem 3.2 follows.

The rest of the paper is organized as follows. In Section 2, we introduce the lin-
ear advection-reaction problem, and briefly review and discuss properties of ReLU
NN functions and the LSNN method in [5]. Then theoretical convergence analy-
sis is conducted in Section 3, showing that discretization error of the method for
the problem mainly depends on the continuous part of the solution. Finally, to
demonstrate the effectiveness of the method, we provide numerical results for test
problems with various non-constant jumps in Section 4. Section 5 summarizes the
work.

2. Problem formulation and the LSNN method

Let Ω be a bounded domain in Rd (d ≥ 2) with Lipschitz boundary ∂Ω, and
denote the advective velocity field by β(x) = (β1, · · · , βd)

T ∈ C0(Ω̄)d. Define the
inflow part of the boundary Γ = ∂Ω by

(1) Γ− = {x ∈ Γ : β(x) · n(x) < 0}

where n(x) is the unit outward normal vector to Γ at x ∈ Γ. Consider the linear
advection-reaction equation

(2)

{
uβ + γ u = f, in Ω,

u = g, on Γ−,

where uβ denotes the directional derivative of u along β. Assume that γ ∈ C0(Ω̄),
f ∈ L2(Ω), and g ∈ L2(Γ−) are given scalar-valued functions.

For the convenience of the reader, this section briefly reviews properties of ReLU
neural network (NN) functions and the least-squares ReLU neural network (LSNN)
method in [5]. A function N : Rd → Rc is called a ReLU neural network (NN)
function if it can be expressed as a composition of functions

(3) N (L) ◦ · · · ◦N (2) ◦N (1) with L > 1,

where N (l) : Rnl−1 → Rnl (n0 = d, nL = c) is affine linear when l = L, and
affine linear with the rectified linear unit (ReLU) activation function σ applied to
each component when 1 ≤ l ≤ L − 1. Each affine linear function takes the form
ω(l)x − b(l) for x ∈ Rnl−1 where ω(l) ∈ Rnl×nl−1 , b(l) ∈ Rnl are weight and bias
matrices, respectively. For n ∈ N, denote the collection of all ReLU NN functions
from Rd to R with depth L and the number of hidden neurons n(= n1+ · · ·+nL−1)

LEAST-SQUARES NEURAL NETWORK METHOD 611

by M(d, 1, L, n) (1 being the output dimension), and the collection of all ReLU NN
functions from Rd to R with depth L by M(d, 1, L). Then we have

(4) M(d, 1, L) =
∪
n∈N

M(d, 1, L, n).

The following proposition justifies our use of ⌈log2(d + 1)⌉ + 1-layer ReLU NN
functions.

Proposition 2.1 (see [1, 5]). The collection of all continuous piecewise linear
(CPWL) functions on Rd is equal to M(d, 1, ⌈log2(d+1)⌉+1), i.e., the collection of
all ReLU NN functions from Rd to R that have representations with depth ⌈log2(d+
1)⌉+ 1.

Proposition 2.2. M(d, 1, L, n) ⊆ M(d, 1, L, n+ 1).

Proposition 2.2 implies that as we increase n,M(d, 1, L, n) approachesM(d, 1, L)
and the approximation class gets larger.

As in [5], breaking hyperplanes are depicted in Figures 2 to 7 to better under-
stand the graphs of ReLU NN function approximations using domain partitions (on
each element in a given partition, the ReLU NN function is affine linear; see [5]).
More specifically, the lth- (hidden) layer breaking hyperplanes of a given ReLU NN
function (with output dimension 1) representation as in (3) are defined as the zero

sets of the layer without the activation function: when l = 1, w
(1)
i x− b

(1)
i = 0, and

when 2 ≤ l < L,

w
(l)
i

(
N (l−1) ◦ · · · ◦N (2) ◦N (1)(x)

)
− b

(l)
i = 0,

where

ω(l) = (w
(l)
1 , . . . ,w(l)

nl
)T ∈ Rnl×nl−1 , and b(l) = (b

(l)
1 , . . . , b(l)nl

)T .

Define the least-squares (LS) functional

(5) L(v; f) = ∥vβ + γ v − f∥20,Ω + ∥v − g∥2−β,

where f = (f, g) and ∥ · ∥−β is given by

∥v∥−β = ⟨v, v⟩1/2−β =

(∫
Γ−

|β ·n| v2 ds

)1/2

.

The LS formulation of problem (2) is to seek u ∈ Vβ such that

(6) L(u; f) = min
v∈Vβ

L(v; f),

where Vβ = {v ∈ L2(Ω) : vβ ∈ L2(Ω)} is a Hilbert space that is equipped with the
norm

|||v|||β =
(
∥v∥20,Ω + ∥vβ∥20,Ω

)1/2
.

Then the corresponding LS and discrete LS approximations are, respectively, to
find u

N
∈ M(d, 1, L, n) such that

(7) L
(
uN ; f

)
= min

v∈M(d,1,L,n)
L
(
v; f
)
,

and to find uN
T
∈ M(d, 1, L, n) such that

(8) LT

(
uN

T
; f
)
= min

v∈M(d,1,L,n)
LT

(
v; f
)
,

where LT

(
v; f
)
is the discrete LS functional (see [4, 5]).

612 Z. CAI, J. CHOI, AND M. LIU

3. Error estimates

In this section, we establish error estimates of the LSNN method for the lin-
ear advection-reaction equation with a non-constant jump along a discontinuous
interface. For simplicity, we will restrict our attention to two dimensions.

To this end, assume the advection velocity field β is piecewise constant. That
is, there exists a partition of the domain Ω such that β has the same direction but
possibly a different magnitude at each interior point of each subdomain. Without
loss of generality, assume that there are only two sub-domains: Ω = Υ1 ∪ Υ2 and
that the inflow boundary data g(x) is discontinuous at only one point x0 ∈ Γ− with
g(x−

0) = α1 and g(x+
0) = α2 from different sides. (Figure 1(a) depicts Υ1 and Υ2

as the left-upper and the right-lower triangles, respectively.)
Let I be the streamline emanating from x0; then the discontinuous interface

I divides the domain Ω into two sub-domains: Ω = Ω1 ∪ Ω2, where Ω1 and Ω2

are the left-lower and the right-upper subdomains separated by the discontinuous
interface I, respectively (see Figure 1(a)). The corresponding solution u of (2)
is discontinuous across the interface I and is piecewise smooth with respect to
the partition {Ω1,Ω2}. For a given ε2 > 0, take an ε2 neighborhood around the
interface I in the direction of β as in Figure 1(b).

..Ω1

.

Ω2

.

I

.

Υ1

.

Υ2

.
x0

(a) Subdomains Υ1, Υ2 with respect to
β

..

ε2

.Ω1

.

Ω2

.

I

.

Υ1

.

Υ2

(b) An ε2 neighborhood around the in-
terface I in the direction of β

..Υi

.

I

.

Ω1i

.

Ω2i

.

ε2

.
(x0, 0)

(c) A subdomain Υi

Figure 1. A domain decomposition for the case that β is piece-
wise constant.

LEAST-SQUARES NEURAL NETWORK METHOD 613

Next, we estimate the error in the sub-domain Υi, say, Υ2. To further simplify
the error estimate, we assume that

Υi = (0, 1)× (0, 1), β(x) = (0, v2(x))
T , and x0 = (x0, 0) for x0 ∈ (0, 1).

These assumptions imply that the restriction of the interface I to Υi is a vertical
line segment

I = {(x0, y) ∈ Υi : y ∈ (0, 1)},

and that Υi is partitioned into two sub-domains

Ω1i = {x = (x, y) ∈ Υi : x < x0} and Ω2i = {x = (x, y) ∈ Υi : x > x0}

(see Figure 1(c)).
In Υi = Ω1i∪Ω2i∪I, let u1 and u2 be the solutions of (2) defined only on Ω1i with

the constant inflow boundary conditions g = α1 and α2 on {(x, 0) : x ∈ [0, x0]},
respectively. (When Υi is different from Υ2, the discontinuous point is not x0 but an
interior point of the domain Ω, and the values of the solution u at that discontinuous
point from different sides are taken as the constant inflow boundary conditions.)
We set a(x) = u1(x)− u2(x) and let χ(x) be the piecewise discontinuous function
defined by

(9) χ(x) =

{
a(x), x ∈ Ω1i,

0, x ∈ Ω2i;

then the solution u of (2) has the following decomposition (see [5])

(10) u(x) = û(x) + χ(x) in Υi.

Here, û(x) = u(x)− χ(x) is clearly piecewise smooth; moreover, it is also continuous
in Υi since û

∣∣
I
= u2

∣∣
I
from both sides. Then we have the following error estimate

and postpone its proof to Appendix.

Theorem 3.1. For any ε2 > 0 and ε3 > 0, on Υi, there exists a CPWL function
pi(x) such that

(11) |||χ− pi|||β ≤ D1
√
ε2 +D2

√
ε3.

Remark 3.1. We now construct the CPWL function p(x) on Ω defined by

p(x) = pi(x), x ∈ Υi,

such that pi(x) = pi+1(x) on the intersection of Υi and Υi+1. Using the triangle
inequality, Theorem 3.1 can be extended to the case that β is piecewise constant to
establish the error estimate on the whole domain Ω.

Theorem 3.2. Let u and u
N

be the solutions of problems (6) and (7), respectively.
If the depth of ReLU NN functions in (7) is at least ⌈log2(d + 1)⌉ + 1, then for a
sufficiently large integer n, there exists an integer n̂ ≤ n such that

(12) |||u− u
N
|||β ≤ C

(
√
ε2 +

√
ε3 + inf

v∈M(d,n−n̂)
|||û− v|||β

)
,

where M(d, n− n̂) = M(d, 1, ⌈log2(d+ 1)⌉+ 1, n− n̂).

Proof. The proof is similar to that of Theorem 4.5 in [5]. �

614 Z. CAI, J. CHOI, AND M. LIU

Lemma 3.1. Let u, u
N
, and uN

T
be the solutions of problems (6), (7), and (8),

respectively. Then there exist positive constants C1 and C2 such that∣∣∣∣∣∣u− uN

T

∣∣∣∣∣∣
β
≤ C1

(∣∣(L − LT)(uN
− uN

T
,0)
∣∣+ ∣∣(L − LT)(u− u

N
,0)
∣∣)1/2

+ C2

(
√
ε2 +

√
ε3 + inf

v∈M(d,n−n̂)
|||û− v|||β

)
.

(13)

Proof. The proof is similar to that of Lemma 4.9 in [5]. �

4. Numerical experiments

In this section, we demonstrate the performance of the LSNN method across
different settings, incorporating various non-constant jumps. The discrete LS func-
tional was minimized by the Adam optimization algorithm [7] on a uniform mesh
with mesh size h = 10−2. As in [5], the directional derivative vβ was approximated
by the backward finite difference quotient multiplied by |β|

(14) vβ(xK) ≈ |β|
v(xK)− v

(
xK − ρβ̄(xK)

)
ρ

,

where β̄ = β
|β| and ρ = h/4 (except for the fifth test problem, which used ρ = h/15).

The LSNN method was implemented with an adaptive learning rate that started
with 0.004 and was reduced by half for every 50000 iterations (except for the fourth
test problem, which reduced for every 100000 iterations). For each experiment, to
avoid local minima, 10 ReLU NN functions were trained for 5000 iterations each,
and then the experiment began with one of the pretrained network functions that
gave the minimum loss.

Tables 1 and 6 report numerical errors in the relative L2, Vβ, and the LS func-
tional with parameters being the total number of weights and biases. Since the
input dimensions d = 2, 3 and the depth ⌈log2(d + 1)⌉ + 1 = 3 for d = 2, 3, we
employed ReLU NN functions with 2–n1–n2–1 or 3–n1–n2–1 representations or
structures, which means that the representations have two-hidden-layers with n1,
n2 neurons, respectively (here 2,3 mean the input dimensions and 1 is the output
dimension.) In the fourth test problem for which the discontinuous interface is
not a straight line, we also have the approximation of the 2-layer NN known as a
universal approximator (see, e.g., [8, 9]) to show how the depth of a neural network
impacts the approximation (see [5] for more examples).

All the test problems are defined on the domain Ω = (0, 1)2 or (0, 1)3 with γ = 1
(f = 1 for the first three and the last test problems, and f = 0 for the remaining
test problems).

4.1. A problem with a constant advection velocity field. The first test
problem has the constant advective velocity field β(x, y) = (0, 1), (x, y) ∈ Ω, and
the inflow boundary of the problem is Γ− = {(x, 0) : x ∈ (0, 1)}. The inflow
boundary condition is given by

g(x, y) =

{
1, (x, y) ∈ Γ1

− ≡ {(x, 0) : x ∈ (0, 1/2)},

2, (x, y) ∈ Γ2
− = Γ− \ Γ1

−.

The exact solution of this test problem is

u(x, y) =

{
1, (x, y) ∈ Ω1 = {(x, y) ∈ Ω : x < 1/2},

1 + e−y, (x, y) ∈ Ω \ Ω1.

LEAST-SQUARES NEURAL NETWORK METHOD 615

The LSNN method was implemented with 50000 iterations for 2–20–20–1 ReLU
NN functions. We report the numerical results in Figure 2 and Table 1. The traces
(Figure 2(b)) of the exact and numerical solutions on the plane y = 0.5 show no d-
ifference or oscillation. The exact solution (Figure 2(c)), which has a non-constant
jump along the vertical interface (Figure 2(a)) is accurately approximated by a
3-layer ReLU NN function (Figure 2(d) and Table 1). We note that the solution
of this test problem takes the same form as χ(x) in (9), which was approximat-
ed by a CPWL function constructed by partitioning the domain into rectangles
stacking on top of each other. It appears from Figure 2(e) that the 3-layer ReLU
NN function approximation has a similar partition, and the second-layer breaking
hyperplanes were generated for approximating the jump along the discontinuous
interface and the non-constant part of the solution, which is consistent with our
theoretical analysis on the convergence of the method.

Table 1. Relative errors of the problem in Subsection 4.1.

Network structure
∥u−uN

T
∥0

∥u∥0

|||u−uN
T |||

β

|||u|||β

L1/2(uN
T
,f)

L1/2(uN
T ,0)

Parameters

2–20–20–1 0.037881 0.007044 0.005391 501

4.2. A problem with a piecewise smooth solution. This example is a modi-
fication of Subsection 4.1 by changing the inflow boundary condition to

g(x, y) =

{
0, (x, y) ∈ Γ1

− ≡ {(x, 0) : x ∈ (0, 1/2)},

2, (x, y) ∈ Γ2
− = Γ− \ Γ1

−.

The exact solution of this test problem is

(15) u(x, y) =

{
1− e−y, (x, y) ∈ Ω1,

1 + e−y, (x, y) ∈ Ω2.

The LSNN method was implemented with 50000 iterations for 2–20–20–1 ReLU
NN functions. We report the numerical results in Figure 3 and Table 2. Unlike
the previous test problem, the exact solution (Figure 3(c)) consists of two non-
constant smooth parts. The LSNN method is capable of approximating the solution
accurately without oscillation (Figures 3(b) to 3(d) and Table 2). The 3-layer
ReLU NN function approximation has a partition (Figure 3(e)) similar to that
in Subsection 4.1 with the second-layer breaking hyperplanes on both sides for
approximating the two non-constant smooth parts of the solution.

Table 2. Relative errors of the problem in Subsection 4.2.

Network structure
∥u−uN

T
∥0

∥u∥0

|||u−uN
T |||

β

|||u|||β

L1/2(uN
T
,f)

L1/2(uN
T ,0)

Parameters

2–20–20–1 0.078036 0.013157 0.010386 501

4.3. A problem with a piecewise smooth inflow boundary. This example is
again a modification of Subsection 4.1 by changing the inflow boundary condition
to

g(x, y) =

{
1− sin(2πx), (x, y) ∈ Γ1

− ≡ {(x, 0) : x ∈ (0, 1/2)},

5/2− x, (x, y) ∈ Γ2
− = Γ− \ Γ1

−.

616 Z. CAI, J. CHOI, AND M. LIU

(a) The interface (b) The trace of Figure 2(d) on y = 0.5

(c) The exact solution (d) A 2–20–20–1 ReLU NN function ap-

proximation

(e) The breaking hyperplanes of the ap-
proximation in Figure 2(d)

Figure 2. Approximation results of the problem in Subsection 4.1.

The exact solution of this test problem is

(16) u(x, y) =

{
1− sin(2πx)e−y, (x, y) ∈ Ω1,

1 + (3/2− x)e−y, (x, y) ∈ Ω2.

The LSNN method was implemented with 100000 iterations for 2–40–40–1 ReLU
NN functions. We report the numerical results in Figure 4 and Table 3. Since the
solution on the inflow boundary consists of two non-constant smooth curves, we
increased the size of the neural network to obtain a more accurate solution. Figures
4(c) and 4(d) and Table 3 show that the approximation is accurate pointwisely and

LEAST-SQUARES NEURAL NETWORK METHOD 617

(a) The interface (b) The trace of Figure 3(d) on y = 0.5

(c) The exact solution (d) A 2–20–20–1 ReLU NN function ap-

proximation

(e) The breaking hyperplanes of the ap-
proximation in Figure 3(d)

Figure 3. Approximation results of the problem in Subsection 4.2.

in average. The traces (Figure 4(b)) on y = 0.5 exhibit no oscillation and we note
a few corners on the curve, verifying that the ReLU NN function approximation is
a CPWL function. The partition generated by the breaking hyperplanes (Figure
4(e)) of the approximation shows how the exact solution was approximated.

4.4. A problem with a piecewise constant advection velocity field. Let
Ω̄ = Ῡ1 ∪ Ῡ2 and

Υ1 = {(x, y) ∈ Ω : y ≥ x} and Υ2 = Ω \Υ1.

618 Z. CAI, J. CHOI, AND M. LIU

(a) The interface (b) The trace of Figure 4(d) on y = 0.5

(c) The exact solution (d) A 2–40–40–1 ReLU NN function ap-

proximation

(e) The breaking hyperplanes of the ap-
proximation in Figure 4(d)

Figure 4. Approximation results of the problem in Subsection 4.3.

Table 3. Relative errors of the problem in Subsection 4.3.

Network structure
∥u−uN

T
∥0

∥u∥0

|||u−uN
T |||

β

|||u|||β

L1/2(uN
T
,f)

L1/2(uN
T ,0)

Parameters

2–40–40–1 0.041491 0.016480 0.012733 1801

This test problem has a piecewise constant advective velocity field given by

(17) β(x, y) =

{
(−1,

√
2− 1)T , (x, y) ∈ Υ1,

(1−
√
2, 1)T , (x, y) ∈ Υ2,

LEAST-SQUARES NEURAL NETWORK METHOD 619

and the inflow boundary Γ− = {(1, y) : y ∈ (0, 1)} ∪ {(x, 0) : x ∈ (0, 1)}. For the
inflow boundary condition,

g(x, y) =

{
x exp(x/(

√
2− 1)), (x, y) ∈ Γ1

− ≡ {(x, 0) : x ∈ (0, 1)},

(11 + (
√
2− 1)y) exp(1/(

√
2− 1)), (x, y) ∈ Γ2

− = Γ− \ Γ1
−,

the exact solution of this test problem is

(18) u(x, y) =

(y + (
√
2− 1)x) exp(

√
2x+ y), (x, y) ∈ Υ̂11,

(y + (
√
2− 1)x+ 10) exp(

√
2x+ y), (x, y) ∈ Υ̂12,

(x+ (
√
2− 1)y) exp(x/(

√
2− 1)), (x, y) ∈ Υ̂21,

(x+ (
√
2− 1)y + 10) exp(x/(

√
2− 1)), (x, y) ∈ Υ̂22,

where

Υ̂11 = {(x, y) ∈ Υ1 : y < (1−
√
2)x+ 1}, Υ̂12 = Υ1 \ Υ̂11,

Υ̂21 = {(x, y) ∈ Υ2 : y < 1
1−

√
2
(x− 1)}, and Υ̂22 = Υ2 \ Υ̂21.

The LSNN method was implemented with 300000 iterations for 2–450–1 and 2–
40–40–1 ReLU NN functions. We report the numerical results in Figure 5 and Table
4. This example compares the approximation differences with the one-hidden-layer
NN (a universal approximator) with the same number of degrees of freedom. The
exact solution (Figure 5(b)) consists of four non-constant smooth parts and has
a non-constant jump along two connected line segments (Figure 5(a)). The traces
(Figure 5(f)) of the exact and numerical solutions, the approximation (Figure 5(d)),
and Table 4 indicate that the 3-layer ReLU NN function approximation is accurate
pointwisely and in average. Most of the second-layer breaking hyperplanes (Figure
5(h)) are along the discontinuous interface, which correspond to the sharp transition
layer of the approximation for the jump. On the other hand, Figures 5(c), 5(e),
and 5(g) and Table 4 show that the one-hidden-layer NN failed to approximate the
solution, especially around the interface.

Table 4. Relative errors of the problem in Subsection 4.4.

Network structure
∥u−uN

T
∥0

∥u∥0

|||u−uN
T |||

β

|||u|||β

L1/2(uN
T
,f)

L1/2(uN
T ,0)

Parameters

2–40–40–1 0.058884 0.073169 0.038245 1801
2–450–1 0.243956 0.258038 0.225756 1801

4.5. A problem with a variable advection velocity field. This test problem
has the variable advective velocity field β(x, y) = (1, 2x), (x, y) ∈ Ω, and the inflow
boundary of the problem is Γ− = {(0, y) : y ∈ (0, 1)} ∪ {(x, 0) : x ∈ (0, 1)}. The
inflow boundary condition is given by

g(x, y) =

{
y + 2, (x, y) ∈ Γ1

− ≡ {(0, y) : y ∈ [15 , 1)},

(y − x2)e−x, (x, y) ∈ Γ2
− = Γ− \ Γ1

−.

The exact solution of this test problem is

(19) u(x, y) =

{
(y − x2)e−x, (x, y) ∈ Ω1 ≡ {(x, y) ∈ Ω : y < x2 + 1

5},

(y − x2 + 2)e−x, (x, y) ∈ Ω2 = Ω \ Ω1.

620 Z. CAI, J. CHOI, AND M. LIU

(a) The interface (b) The exact solution

(c) A 2–450–1 ReLU NN function
approximation

(d) A 2–40–40–1 ReLU NN function
approximation

(e) The trace of Figure 5(c) on y = x (f) The trace of Figure 5(d) on y =
x

(g) The breaking hyperplanes of the
approximation in Figure 5(c)

(h) The breaking hyperplanes of the
approximation in Figure 5(d)

Figure 5. Approximation results of the problem in Subsection 4.4.

LEAST-SQUARES NEURAL NETWORK METHOD 621

The LSNN method was implemented with 300000 iterations for 2–60–60–1 ReLU
NN functions. We report the numerical results in Figure 6 and Table 5. Since the
advective velocity field is a variable field, we increased the size of the neural network
and ρ = h/15 was used to compute the finite difference quotient in (14) to take
values in one subdomain of the partition. Although theoretical analysis on the
convergence of the method in the case of a smooth interface was not conducted,
Figures 6(b) to 6(d) and Table 5 show that the LSNN method is still capable
of approximating the discontinuous solution with the curved interface accurately
without oscillation. Finally, again, most of the second-layer breaking hyperplanes
are along the interface (Figure 6(e)) to approximate the discontinuous jump.

Table 5. Relative errors of the problem in Subsection 4.5.

Network structure
∥u−uN

T
∥0

∥u∥0

|||u−uN
T |||

β

|||u|||β

L1/2(uN
T
,f)

L1/2(uN
T ,0)

Parameters

2–60–60–1 0.046528 0.049423 0.019995 3901

4.6. A problem with a constant advection velocity field (d = 3). The last
test problem is a three-dimensional problem defined on the domain Ω = (0, 1)3,
and approximation results are depicted on z = 0.505. The advective velocity field
is the constant field β(x, y, z) = (1, 0, 0), (x, y, z) ∈ Ω, and the inflow boundary of
the problem is Γ− = {(0, y, z) : y, z ∈ (0, 1)}. The inflow boundary condition is
given by

g(x, y, z) =

{
1− 4y, (x, y, z) ∈ Γ1

− ≡ {(0, y, z) ∈ Γ− : y < 1
2},

5− 4y, (x, y, z) ∈ Γ2
− = Γ− \ Γ1

−.

The exact solution of this test problem is

(20) u(x, y, z) =

{
1− 4ye−x, (x, y, z) ∈ Ω1 ≡ {(x, y, z) ∈ Ω : y < 1

2},

1 + (4− 4y)e−x, (x, y, z) ∈ Ω2 = Ω \ Ω1.

The LSNN method was implemented with 100000 iterations for 3–30–30–1 ReLU
NN functions. Note that we still employ the two-hidden-layer NN since ⌈log2(d +
1)⌉+1 = 3 for d = 3. We report the numerical results in Figure 7 and Table 6. The
exact solution (Figure 7(c)) is piecewise smooth along the plane segment y = 0.5
(Figure 7(a)) with a non-constant jump, and was approximated accurately by the
3-layer NN (Figures 7(b) and 7(d) and Table 6). The behavior of the breaking
hyperplanes (Figure 7(e)) is similar to those of the previous examples around the
discontinuous interface and on the subdomains.

Table 6. Relative errors of the problem in Subsection 4.6.

Network structure
∥u−uN

T
∥0

∥u∥0

|||u−uN
T |||

β

|||u|||β

L1/2(uN
T
,f)

L1/2(uN
T ,0)

Parameters

3–30–30–1 0.005082 0.027765 0.022519 1081

622 Z. CAI, J. CHOI, AND M. LIU

(a) The interface (b) The trace of Figure 6(d) on y = 1−x

(c) The exact solution (d) A 2–60–60–1 ReLU NN function ap-

proximation

(e) The breaking hyperplanes of the ap-
proximation in Figure 6(d)

Figure 6. Approximation results of the problem in Subsection 4.5.

5. Conclusion

In this paper, we used the least-squares ReLU neural network (LSNN) method
for solving linear advection-reaction equation with discontinuous solution having
non-constant jumps. The method, being mesh-free, requires no mesh to resolve the
interfacial discontinuity. We proved theoretically that ReLU neural network (NN)
functions with ⌈log2(d + 1)⌉ + 1-layer representations are capable of accurately
approximating solutions with non-constant jumps along discontinuous interfaces
that are not necessarily straight lines. Our theoretical findings were validated by

LEAST-SQUARES NEURAL NETWORK METHOD 623

(a) The interface (b) The trace of Figure 7(d) on y = x

(c) The exact solution (d) A 3–30–30–1 ReLU NN function ap-

proximation

(e) The breaking hyperplanes of the ap-

proximation in Figure 7(d)

Figure 7. Approximation results of the problem in Subsection 4.6.

multiple numerical examples with d = 2, 3 and various non-constant jumps and
interface shapes, demonstrating accurate performance of the method.

The approximation of discontinuous functions by NNs is also encountered in
classification tasks, and our results suggest that we can achieve accurate predictions
with properly designed neural network architectures. However, as in [5], in this
paper, we mainly focused on the depth of NNs. The approximation of discontinuous
classification functions by NNs with fixed depth and width will be addressed in a
forthcoming paper.

624 Z. CAI, J. CHOI, AND M. LIU

Acknowledgments

The authors thank the anonymous reviewers for multiple valuable comments
and suggestions that improved the paper. This work was supported in part by the
National Science Foundation under grant DMS-2110571.

References

[1] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural networks with
rectified linear units. International Conference on Learning Representations, 2018.

[2] P. Bochev and J. Choi. Improved least-squares error estimates for scalar hyperbolic problems.

Comput. Methods Appl. Math., 1:115–124, 2001.
[3] Z. Cai, J. Chen, and M. Liu. Least-squares neural network (LSNN) method for scalar non-

linear hyperbolic conservation laws: discrete divergence operator. J. Comput. Appl. Math.,
433:115298, 2023.

[4] Z. Cai, J. Chen, and M. Liu. Least-squares ReLU neural network (LSNN) method for linear
advection-reaction equation. J. Comput. Phys., 443:110514, 2021.

[5] Z. Cai, J. Choi, and M. Liu. Least-squares neural network (LSNN) method for linear
advection-reaction equation: discontinuity interface. SIAM J. Sci. Comput., 46:C448-C478,

2024.
[6] H. De Sterck, T. A. Manteuffel, S. F. McCormick, and L. Olson. Least-squares finite element

methods and algebraic multigrid solvers for linear hyperbolic PDEs. SIAM J. Sci. Comput.,

26:31–54, 2004.
[7] D. P. Kingma and J. Ba. ADAM: A method for stochastic optimization. International Con-

ference on Learning Representations, 2015.
[8] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks with a

nonpolynomial activation function can approximate any function. Neural Networks, 6:861–
867, 1993.

[9] A. Pinkus. Approximation theory of the MLP model in neural networks. Acta Numer.,
8:143–195, 1999.

[10] J. Tarela and M. Martinez. Region configurations for realizability of lattice piecewise-linear
models. Math. Comput. Modelling., 30:17–27, 1999.

[11] S. Wang and X. Sun. Generalization of hinging hyperplanes. IEEE Trans. Inform. Theory.,
51:4425–4431, 2005.

Appendix A. The proof of Theorem 3.1

In this section, we provide a proof of Theorem 3.1 by constructing a CPWL
function to approximate χ(x) in (9). We note that a(x) is generally a cylindrical
surface and that the jump of χ(x) is non-constant with

χ(x, 0) = a(x, 0) = α1 − α2 for x ∈ [0, x0]

(see Figure 8(a)).

For a given ε1 > 0, we take Υ̂ = (0, 1)× (y0, y0 + ε1) (see Figure 8(b)). Without

loss of generality, we let α1 = 1, α2 = 0, and Υ̂ = (0, 1)× (0, ε1).
Hence,

(A.1) χ(x) = χ0(x) + χ1(x) on Υ̂,

where χ0(x) is a step function and χ1(x) vanishes on the inflow boundary given by

χ0(x) =

{
1, x ∈ Ω1i ∩ Υ̂,

0, x ∈ Ω2i ∩ Υ̂,
and χ1(x) =

{
a(x)− 1, x ∈ Ω1i ∩ Υ̂,

0, x ∈ Ω2i ∩ Υ̂.

Lemma A.1. Let

b(x) =

{
b · (x− (x0, 0)), x ∈ Ω1i ∩ Υ̂,

0, x ∈ Ω2i ∩ Υ̂,

LEAST-SQUARES NEURAL NETWORK METHOD 625

..
x

.

y

.

z

. I

(a) A cylindrical surface a(x)

..Υi

.

Υ̂

.

I

.

Ω1i

.

Ω2i

.
(x0, 0)

.

(0, y0)

.

ε2

.

ε1

(b) (0, 1)× (y0, y0 + ε1)

..
x

.

y

.

z

.

b(x)
.

p1(x)

(c) b(x) in purple and p1(x) in pink

Figure 8. An illustration of the convergence analysis on one sub-
domain Υi.

626 Z. CAI, J. CHOI, AND M. LIU

where b = (0, d)T is a constant vector, and let p1(x) be the two-layer neural network

function on Υ̂ defined by

p1(x) = −c σ(w1 · x+ x0) + c σ(w2 · x+ x0)

with the weights and coefficient

w1 =

(
−1
−ε2

)
, w2 =

(
−1
ε2

)
, c =

d

2ε2

(see Figure 8(c)). Then we have on Υ̂,

(A.2) |||b− p1|||β =
(
∥b− p1∥20,Υ̂ + ∥bβ − p1β∥20,Υ̂

)1/2
≤
√

ε31
24

+
B2

4
|d|

√
ε1ε2,

where we assume |v2(x)| ≤ B (β(x) = (0, v2(x))).

Proof. Let us denote

Υ̂ε2 ≡ Υ̂1,ε2∪Υ̂2,ε2 ≡ {x ∈ Ω1i∩Υ̂ : w1 ·x+x0 < 0}∪{x ∈ Ω2i∩Υ̂ : w2 ·x+x0 > 0}.

Then we have

b(x)− p1(x) =

−c(w1 · x+ x0) x ∈ Υ̂1,ε2 ,

−c(w2 · x+ x0) x ∈ Υ̂2,ε2 ,

0, x ∈ Υ̂ \ Υ̂ε2 .

Calculating the double integral,

(A.3) ∥b− p1∥20,Υ̂ = ∥b− p1∥20,Υ̂1,ε2

+ ∥b− p1∥20,Υ̂2,ε2

=
d2

24
ε41ε2,

and using the directional derivative,

(A.4) ∥bβ − p1β∥20,Υ̂ =

∫
Υ̂1,ε2

(cw1 · β)2 dx+

∫
Υ̂2,ε2

(cw2 · β)2 dx ≤ (dB)2

4
ε1ε2.

Now (A.2) follows from (A.3) and (A.4). �

Lemma A.2. Let Υ̂, I, b(x), p1(x), and β(x) be as in Lemma A.1 with d =

χ1(0, ε1)/ε1, and let p0(x) be the two-layer neural network function on Υ̂ defined
by

(A.5) p0(x) =
1

2ε2
(σ(x− x0 + ε2)− σ(x− x0 − ε2)) .

Then we have on Υ̂,

(A.6) |||χ− (p0 + p1)|||β ≤ C1
√
ε1ε2 + C2

√
ε1,

where C2 is given by the square root of

(A.7) sup{(u1(x)− u2(x)− 1− b(x))2 : x ∈ Ω1i ∩ Υ̂}x0

+ sup{2γ(x)2(u2(x)− u1(x))
2 + 2(dB)2 : x ∈ Ω1i ∩ Υ̂}x0.

Proof. From the triangle inequality,

(A.8) |||χ− (p0 + p1)|||β = |||χ0 + χ1 − (p0 + p1)|||β ≤ |||χ0 − p0|||β + |||χ1 − p1|||β.

LEAST-SQUARES NEURAL NETWORK METHOD 627

Since ∥χ0β − p0β∥ = 0, calculating the double integral,

|||χ0 − p0|||β =
(
∥χ0 − p0∥20,Υ̂ + ∥χ0β − p0β∥20,Υ̂

)1/2
= ∥χ0 − p0∥0,Υ̂

=
1√
6

√
ε1ε2.

(A.9)

Next, again, by the triangle inequality,

|||χ1 − p1|||β ≤ |||χ1 − b|||β + |||b− p1|||β.

By Lemma A.1

|||b− p1|||β ≤
√

ε31
24

+
B2

4
|d|

√
ε1ε2.

To bound |||χ1 − b|||β, we recall the definition of the graph norm,

|||χ1 − b|||β =
(
∥χ1 − b∥2

0,Υ̂
+ ∥χ1β − bβ∥20,Υ̂

)1/2
.

First we have

∥χ1 − b∥2
0,Υ̂

= ∥χ1 − b∥2
0,Ω1i∩Υ̂

≤ sup{(χ1(x)− b(x))2 : x ∈ Ω1i ∩ Υ̂}ε1x0

= sup{(u1(x)− u2(x)− 1− b(x))2 : x ∈ Ω1i ∩ Υ̂}ε1x0.

Next, observing bβ = dv2 and from (2),

χ1β = (u1 − u2 − 1)β = (u1 − u2)β = γ(u2 − u1),

we have

∥χ1β − bβ∥20,Υ̂ = ∥χ1β − bβ∥20,Ω1i∩Υ̂

= ∥γ(u2 − u1)− dv2∥20,Ω1i∩Υ̂

≤
∥∥∥√2γ2(u2 − u1)2 + 2(dv2)2

∥∥∥2
0,Ω1i∩Υ̂

≤ sup{2γ(x)2(u2(x)− u1(x))
2 + 2(dB)2 : x ∈ Ω1i ∩ Υ̂}ε1x0.

Now (A.6) follows from combining the above inequalities. �

Given ε3 > 0, let us choose ε1 = 1/m such that

(A.10) sup{(u1(x)− u2(x)− χ(0, j/m)− bj(x))
2 : x ∈ Ω1i ∩ Υ̂j},

sup{2γ(x)2(u2(x)− u1(x))
2 + 2(djB)2 : x ∈ Ω1i ∩ Υ̂j} < ε3,

where Υ̂j = (0, 1)× (j/m, (j + 1)/m) for j = 0, . . . ,m− 1, and bj(x) and dj are as

in Lemma A.2. Then we define on each Υ̂j , p0j(x), p1j(x) as in Lemma A.2, and
construct the CPWL function pi(x) on Υi defined by

pi(x) = p0j(x) + p1j(x), x ∈ Υ̂j .

628 Z. CAI, J. CHOI, AND M. LIU

Proof of Theorem 3.1. By Lemma A.2 and the given condition,

|||χ− pi|||β =

m−1∑
j=0

|||χ− (p0j + p1j)|||2β

1/2

≤

m−1∑
j=0

(D1j
√
ε1ε2 +D2j

√
ε1ε3)

2

1/2

≤
(
m max

0≤j≤m−1
(D1j

√
ε1ε2 +D2j

√
ε1ε3)

2

)1/2

=
√
m max

0≤j≤m−1
(D1j

√
ε1ε2 +D2j

√
ε1ε3)

= max
0≤j≤m−1

(D1j
√
ε2 +D2j

√
ε3) ,

(A.11)

where for the first identity, each norm on the right-hand side is taken over Υ̂j . Now
D1 = D1k and D2 = D2k for some 0 ≤ k ≤ m− 1. �

Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN

47907-2067
E-mail : caiz@purdue.edu and choi508@purdue.edu

School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN
47907-2088

E-mail : liu66@purdue.edu

