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THE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE

DUAL-POROSITY-STOKES MODEL

LIN YANG, WEI MU*, HUI PENG, AND XIULI WANG

Abstract. In this paper, we introduce a weak Galerkin finite element method for the dual-
porosity-Stokes model. The dual-porosity-Stokes model couples the dual-porosity equations with
the Stokes equations through four interface conditions. In this method, we define several weak
Galerkin finite element spaces and weak differential operators. We provide the weak Galerkin

scheme for the model, and establish the well-posedness of the numerical scheme. The optimal
convergence orders of errors in the energy norm are derived. Finally, we verify the effectiveness of
the numerical method with different weak Galerkin elements on different meshes.

Key words. Dual-porosity-Stokes model, weak Galerkin finite element method, discrete weak
gradient, discrete weak divergence.

1. Introduction

In practical production and daily life, the coupling models of porous media flow
and free flow are widely used, such as groundwater system [16], industrial filtra-
tion [13], oil exploitation [8], and biochemical transportation [11], etc. The classic
Stokes-Darcy model is used frequently in the coupling flow problems [3, 5, 6, 12, 20].
However, Darcy’s law is only available for single-pore model and cannot accurate-
ly describe complex porous medium model with multiple porosities, which arises,
such as the hydrology and geothermal systems. Therefore, Hou et al. proposed a
dual-porosity-Stokes model in [17], the authors used the matrix pressure equation
to characterize the flow in the matrix medium and the microfracture pressure e-
quation in the microfractures medium, respectively. The free flow in conduits and
microfractures are governed by Stokes equations. For appropriate coupling, four
physical conditions are imposed on the interface: the no-exchange condition, mass
conservation condition, force balance condition, and the Beavers-Joseph-Saffman
(BJS) condition.

Some efforts have been made to numerically solve the dual-porosity-Stokes mod-
el. In [1], Al Mahbub et al. proposed and analyzed two stabilized mixed finite
element methods for the nonstationary dual-porosity-Stokes model: the coupled
method in traditional formulation and the decoupled method based on the parti-
tion time stepping method. Then, in [2], they developed a stabilized mixed finite
element method for the stationary dual-porosity-Stokes model. This method only
needs to add a mesh-dependent stabilization term to ensure the numerical stability
of the algorithm and does not introduce any Lagrange multiplier. Combining the
IPDG method and mixed finite element method, Wen et al. [37] designed a mono-
lithic scheme with strong mass conservation for the stationary coupled model. Gao
et al. considered the Navier-Stokes equation in the free flow region to couple the
microfracture-matrix system in [14]. Yang et al gave a prior estimate of the discrete
solutions to the stationary dual-porosity Navier-Stokes model by constructing an
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auxiliary problem and proved the existence and uniqueness of the discrete solutions
in [38].

In this paper, we introduce the weak Galerkin (WG) finite element method for
dual-porosity-Stokes model. The WG method was proposed by Wang and Ye in
[31] for solving the second-order elliptic problem. The key idea of this method is
that the solutions are approximated by discontinuous weak functions and the clas-
sical derivative operators in variational formulation are replaced by weakly defined
derivative operators. At present it has many applications including parabolic equa-
tion [21, 40], Darcy equation [24, 25], Stokes equations [28, 33], Brinkman equations
[26, 39], linear elasticity equations [35, 36], and so on.

For the coupled problem, as far as we know, there is some work for Stokes-Darcy
model. In [9], WG finite element discretization was constructed for the Stokes
equations with symmetric stress tensor and the Darcy equation in the mixed for-
mulation. In [22, 23], the Stokes equations coupled with the Darcy equation in the
primal formulation were investigated. The model is discretized by piecewise con-
stants in [23] and high order polynomials in [22], yielding stable numerical schemes
with optimal error estimates. Some methods combining the WG elements with
other finite elements are discussed in [15, 29, 30].

The dual-porosity-Stokes model consists of two second-order elliptic equations in
the dual-porosity domain and Stokes equation in the free flow region. The existing
work has verified the efficiency of the individual Stokes equations and elliptic equa-
tions. Therefore, in this paper, we develop the WG method for the coupled model.
We establish the stability of the WG scheme and prove the existence and unique-
ness of the numerical solutions. Furthermore, the optimal convergence orders for
the errors are obtained. The results of numerical experiments are consistent with
the theoretical analysis.

The rest of the paper is organized as follows. In Section 2, we introduce the
dual-porosity-Stokes model and present its variational form. In Section 3, some
definitions of the weak Galerkin finite element spaces are given and then the WG
numerical scheme for the coupled model is established. In Section 4, we prove
the existence and uniqueness of the WG numerical solutions. In Section 5, the
error equations and the corresponding optimal order error estimates are obtained.
Finally, in Section 6, we present some numerical examples to verify the effectiveness
of the WG method.

2. Preliminaries

In this section, we introduce the dual-porosity-Stokes model and present the
corresponding variational formulation.

2.1. Dual-porosity-Stokes Model. Let Ω be a bounded domain in RN , (N =
2, 3), which is divided into two subdomains, the dual-porosity domain Ωd and the
conduit domain Ωc (see Figure 1). Let Γ = ∂Ωc∩∂Ωd be the interface between two
subdomains. Denote the boundaries of Ωd and Ωc by Γd = ∂Ωd\Γ and Γc = ∂Ωc\Γ,
respectively. In addition, ncd is the unit normal vector on Γ which points from Ωc

into Ωd and τ j , j = 1, 2, ..., N − 1 are unit tangent vectors on Γ.
The flow in the dual-porosity domain Ωd is governed by the traditional dual-

porosity model [18], which consists of matrix equation and microfracture equation.
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Figure 1. A sketch of the dual-porosity-Stokes model.

−∇ ·
(
km
µ

∇pm
)

= −Q,(1)

−∇ ·
(
kf
µ
∇pf

)
= Q+ qp,(2)

where Q = σkm

µ (pm − pf ) is mass exchange term between the matrix and mi-

crofracture, σ is a shape factor, pm and pf are the pressure functions in matrix and
microfracture, respectively. km and kf are the intrinsic permeability in the matrix
and microfracture, respectively. µ is the dynamic viscosity and qp is the source
term.

In the conduit domain Ωc, the flow is described by the Stokes equations,

−∇ · T(u, p) = f ,(3)

∇ · u = 0,(4)

where u is the flow velocity function and p is the pressure function. T(u, p) :=
2νD(u)− 1

ρpI is the stress tensor, where D(u) = 1
2 (∇u+∇Tu) is the deformation

tensor. I is the identity matrix, ρ is the fluid density and ν is the viscosity coefficient
of the fluid. f is the given external force.

On the interface Γ, we consider the following four interface conditions,

−km
µ

∇pm · (−ncd) = 0,(5)

−kf
µ
∇pf · ncd = u · ncd,(6)

−nT
cd (T(u, p)ncd) =

pf
ρ
,(7)

−Pτ (T(u, p)ncd) =
αν

√
N√

trace(Π)
Pτ (u),(8)

where Pτ (u) =
N−1∑
j=1

(u · τ j)τ j represents the projection on the local tangential

plane of Γ and α is a constant parameter. Π = kf I is the intrinsic permeability of
the microfracture. The interface condition (5) represents that there is no exchange
between matrix and microfracture. Eq.(6) describes the mass conservation between
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microfracture and conduits. Eq.(7) represents the balance of two driving forces
[7, 10], and Eq.(8) is the Beavers-Joseph-Saffman interface condition [19].

For simplicity, the Dirichlet boundary conditions are applied to the boundary of
the domain Ω.

pm = pdirm , pf = pdirf on Γd,(9)

u = udir, on Γc.(10)

2.2. Variational Formulation. First, we define the following Sobolev spaces.

H1
0,Γd

(Ωd) = {ψ ∈ H1(Ωd) : ψ = 0 on Γd},

and

[H1
0,Γc

(Ωc)]
N = {v ∈ [H1(Ωc)]

N : v = 0 on Γc}.
Then, we give the variational formulation of the dual-porosity-Stokes model: find
pm ∈ H1 (Ωd), pf ∈ H1 (Ωd), u ∈ [H1 (Ωc)]

N and p ∈ L2 (Ωc) to satisfy pm = pdirm ,
pf = pdirf on Γd, u = udir on Γc and the equations

(
km
µ

∇pm,∇ψm

)
Ωd

+

(
σkm
µ

(pm − pf ), ψm

)
Ωd

+

(
kf
µ
∇pf ,∇ψf

)
Ωd

+

(
σkm
µ

(pf − pm), ψf

)
Ωd

+
⟨pf
ρ
,v · ncd

⟩
Γ
−

⟨
u · ncd, ψf

⟩
Γ

+(2νD(u),D(v))Ωc +
⟨ αν

√
N√

trace(Π)
Pτ (u), Pτ (v)

⟩
Γ
− 1

ρ
(∇ · v, p)Ωc

=(qp, ψf )Ωd
+ (f ,v)Ωc , ∀ψm, ψf ∈ H1

0,Γd
(Ωd) , v ∈ [H1

0,Γc
(Ωc)]

N ,

(11)

−(∇ · u, q)Ωc = 0, ∀ q ∈ L2 (Ωc) .(12)

3. The Weak Galerkin Finite Element Method

In this section, the WG method is applied to the dual-porosity-Stokes model.
To this end, we first give definitions of WG spaces and weak differential operators.
Then the WG scheme for this model is proposed.

Let Th,d and Th,c be the shape regular partitions [33] of the domain Ωd and Ωc,
respectively. The sets of all edges or flat faces in Th,d and Th,c are denoted by Eh,d
and Eh,c, respectively. The set of all edges or flat faces on the interface Γ is denoted
by Eh,I . For T ∈ Th,d ∪ Th,c, define the diameter of T as hT . hd = maxT∈Th,d

hT
and hc = maxT∈Th,c

hT are the mesh sizes in the dual-porosity domain Ωd and
the conduit domain Ωc, respectively. h = maxT∈Th,d∪Th,c

hT is the mesh size. For
simplicity, we use the following notations to represent the inner products:

(v, w)Th,i
=

∑
Ti∈Th,i

(v, w)Ti , ⟨v, w⟩∂Th,i
=

∑
Ti∈Th,i

⟨v, w⟩∂Ti , ⟨v, w⟩Eh,I
=

∑
e∈Eh,I

⟨v, w⟩e.

Next, we define the following WG spaces and weak differential operators.

Vh,d = {p = {p0, pb} : p0|T ∈ Pk(T ), T ∈ Th,d; pb|e ∈ Pk−1(e), e ∈ Eh,d},
V 0
h,d = {p = {p0, pb} ∈ Vh,d : pb|e = 0, e ∈ Eh,d ∩ Γd},
Vh,c = {v = {v0,vb} : v0|T ∈ [Pk(T )]

N , T ∈ Th,c; vb|e ∈ [Pk(e)]
N , e ∈ Eh,c},

V 0
h,c = {v = {v0,vb} ∈ Vh,c : vb|e = 0, e ∈ Eh,c ∩ Γc},

Wh,c = {q : q ∈ L2(Ωc), q|T ∈ Pk−1(T ), T ∈ Th,c},
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where Pk(T ) denotes the space of polynomials on T ∈ Th,d ∪ Th,c with degree no
more than k, and Pk−1(e) represents the space of polynomials on e with degree no
more than k − 1.

Definition 3.1. [33, 34] For any scalar-valued function p ∈ Vh,d and T ∈ Th,d, the
discrete weak gradient ∇wp ∈ [Pk−1(T )]

N satisfies

(13) (∇wp,q)T = −(p0,∇ · q)T + ⟨pb,q · n⟩∂T , ∀q ∈ [Pk−1(T )]
N .

Similarly, the discrete weak gradient and the discrete weak divergence of a vector-
valued function are defined as follows.

Definition 3.2. [33, 34] For any vector-valued function v ∈ Vh,c and T ∈ Th,c, the
discrete weak gradient ∇wv ∈ [Pk−1(T )]

N×N satisfies

(∇wv, ψ)T = −(v0,∇ · ψ)T + ⟨vb, ψn⟩∂T , ∀ψ ∈ [Pk−1(T )]
N×N .(14)

According to the above definition, we give the definition of the discrete weak
deformation tensor:

Dw(v) =
1

2

(
∇wv + (∇wv)

T
)
, ∀v ∈ Vh,c.

Definition 3.3. [33] For any vector-valued function v ∈ Vh,c and T ∈ Th,c, the
discrete weak divergence ∇w · v ∈ Pk−1(T ) satisfies

(∇w · v, φ)T = −(v0,∇φ)T + ⟨vb · n, φ⟩∂T , ∀φ ∈ Pk−1(T ).(15)

To obtain the WG scheme, we define some projection operators. For Td ∈ Td,h
and each edge ed ∈ Ed,h, define

Q0,d : L2(Td) → Pk(Td), Qb,d : L2(ed) → Pk−1(ed).

For Tc ∈ Tc,h and ec ∈ Ec,h, define

Q0,c : [L
2(Tc)]

N → [Pk(Tc)]
N , Qb,c : [L

2(ec)]
N → [Pk(ec)]

N .

Set Qh,d = {Q0,d, Qb,d} and Qh,c = {Q0,c, Qb,c}.
We also need to define some bilinear forms for any phm, phf , ψ

h
m, ψh

f ∈ Vh,d, uh,
vh ∈ Vh,c and qh ∈Wh,c,

as,m(phm, ψ
h
m) =

(
km
µ

∇wp
h
m,∇wψ

h
m

)
Th,d

+ s(phm, ψ
h
m),

as,f (p
h
f , ψ

h
f ) =

(
kf
µ
∇wp

h
f ,∇wψ

h
f

)
Th,d

+ s(phf , ψ
h
f ),

as,c(uh,vh) = (2νDw(uh),Dw(vh))Th,c
+ sc(uh,vh)

+
⟨ αν

√
N√

trace(Π)
Pτ (ub), Pτ (vb)

⟩
Eh,I

,

ad(p
h
m, p

h
f , ψ

h
m, ψ

h
f ) =

(
σkm
µ

(p0m − p0f ), ψ
0
m

)
Th,d

+

(
σkm
µ

(p0f − p0m), ψ0
f

)
Th,d

,

aΓ⟨uh, p
h
f ,vh, ψ

h
f ⟩ =

⟨1
ρ
pbf ,vb · ncd

⟩
Eh,I

−
⟨
ψb
f ,ub · ncd

⟩
Eh,I

,

bc(vh, qh) =
1

ρ
(∇w · vh, qh)Th,c

,
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where

s(phi , ψ
h
i ) =

∑
Td∈Th,d

h−1
Td

⟨Qb,dp
0
i − pbi , Qb,dψ

0
i − ψb

i ⟩∂Td
, i = m, f,

sc(uh,vh) =
∑

Tc∈Th,c

h−1
Tc

⟨u0 − ub,v0 − vb⟩∂Tc .

According to the above definitions and the variational formulation (11)-(12), we
give the WG scheme of the dual-porosity-Stokes coupling problems (1)-(10).

Algorithm 1 Weak Galerkin Scheme

Find phm = {p0m, pbm}, phf = {p0f , pbf} ∈ Vh,d, uh = {u0,ub} ∈ Vh,c and ph ∈Wh,c

such that pbm = Qb,dp
dir
m , pbf = Qb,dp

dir
f on Γd, ub = Qb,cu

dir on Γc, and

as,m(phm, ψ
h
m) + as,f (p

h
f , ψ

h
f ) + as,c (uh,vh) + ad(p

h
m, p

h
f , ψ

h
m, ψ

h
f )

+ aΓ⟨uh, p
h
f ,vh, ψ

h
f ⟩ − bc(vh, ph) = (qp, ψ

0
f )Th,d

+ (f ,v0)Th,c
,

(16)

bc(uh, qh) = 0,(17)

for any ψh
m, ψh

f ∈ V 0
h,d, vh ∈ V 0

h,c and qh ∈Wh,c.

4. Existence and Uniqueness

In this section, we discuss the well-posedness of the WG scheme (16)-(17). Define
the following semi-norms in Vh,d and Vh,c

Definition 4.1. For any ψh ∈ Vh,d, we define the semi-norms,

|||ψh|||2i = as,i(ψh, ψh), i = m, f,

where

as,i(ψh, ψh) =
∥∥∥(ki
µ
)

1
2∇wψh

∥∥∥2
Th,d

+
∑

Td∈Th,d

h−1
Td

∥∥∥Qb,dψ0 − ψb

∥∥∥2
∂Td

.

Definition 4.2. For any vh ∈ Vh,c, we define the semi-norm,

|||vh|||2 =as,c(vh,vh)

=∥(2ν) 1
2Dw(vh)∥2Th,c

+

N−1∑
j=1

∥∥∥( αν
√
N√

trace(Π)

) 1
2

vb · τ j

∥∥∥2
Eh,I

+
∑

Tc∈Th,c

h−1
Tc

∥v0 − vb∥2∂Tc
.

Lemma 4.1. [27] ||| · |||i(i = m, f) are the norms in the V 0
h,d.

Lemma 4.2. ||| · ||| is a norm in V 0
h,c.

Proof. It’s obvious to get |||vh||| = 0 with vh = 0. Let |||vh||| = 0 for some vh ∈ Vh,c.
Using the definition, we have

∥(2ν) 1
2Dw(vh)∥2Th,c

+
∑

Tc∈Th,c

h−1
Tc

∥v0 − vb∥2∂Tc
+
N−1∑
j=1

∥∥∥( αν
√
N√

trace(Π)

) 1
2

vb · τ j

∥∥∥2
Eh,I

= 0.

Hence we have Dw(vh) = 0 in Tc ∈ Th,c, v0 = vb on e ∈ Eh,c ∪ Eh,I , and vb · τ j = 0
on e ∈ Eh,I . From [29, Lemma 4.1], we know that ∇v0 = 0 in Tc ∈ Th,c. Combining
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with v0 = vb on e ∈ Eh,c ∪ Eh,I and vb = 0 on Γc, we get vh = 0. Hence, ||| · ||| is a
norm in V 0

h,c. �

Besides the projection operators defined earlier, we define some other projection
operators. Let Qh,d be the projection operator from [L2(Td)]

N onto [Pk−1(Td)]
N ,

Td ∈ Th,d, Qh,c be the projection operator from [L2(Tc)]
N×N onto [Pk−1(Tc)]

N×N

and Qh,c be the projection operator from L2(Tc) onto Pk−1(Tc), Tc ∈ Th,c.

Lemma 4.3. The projection operators Qh,d,Qh,d, Qh,c,Qh,c and Qh,c satisfy the
following properties.

∇w(Qh,dϕ) = Qh,d(∇ϕ), ∀ϕ ∈ H1(Ωd),(18)

∇w(Qh,cκ) = Qh,c(∇κ), ∀κ ∈ [H1(Ωc)]
N ,(19)

∇w · (Qh,cφ) = Qh,c(∇ ·φ), ∀φ ∈ [H(div,Ωc)]
N .(20)

Proof. For any Td ∈ Th,d and q ∈ [Pk−1(Td)]
N , according to the definition of

discrete weak gradient operator, the property of the L2 projection operator and
integration by parts, we have

(∇w(Qh,dϕ), q)Td
= −(Q0,dϕ,∇ · q)Td

+ ⟨Qb,dϕ, q · n⟩∂Td

= −(ϕ,∇ · q)Td
+ ⟨ϕ, q · n⟩∂Td

= (∇ϕ, q)Td

= (Qh,d(∇ϕ), q)Td
.

By taking q = ∇w(Qh,dϕ) −Qh,d(∇ϕ) in the above equation, Eq.(18) holds true.
The proof of Eqs.(19)-(20) is similar. �

With these preparations, we prove the well-posedness of the WG scheme.

Lemma 4.4. (Inf-Sup Condition) There is a positive constant β independent of hc
such that

sup
vh∈V 0

h,c

bc(vh, ρ̃h)

|||vh|||
≥ β∥ρ̃h∥Th,c

,(21)

for any ρ̃h ∈Wh,c ∩ L2
0(Ωc).

Proof. From [4], we know that for any ρ̃h ∈ Wh,c ∩ L2
0(Ωc), there exists a w ∈

[H1
0 (Ωc)]

N such that ∇ ·w = ρ̃h and the following inequality holds true

∥w∥1,Ωc ≤ C∥ρ̃h∥Ωc .

Taking vh = Qh,cw ∈ V 0
h,c and using Eq.(20), we have

(∇w · vh, ρ̃h)Th,c
= (∇w ·Qh,cw, ρ̃h)Th,c

=(Qh,c(∇ ·w), ρ̃h)Th,c
= (∇ ·w, ρ̃h)Th,c

= ∥ρ̃h∥2Th,c
.

Next, we shall estimate the three terms of ||| · |||. For the first term, by Eq.(19), we
have

∥Dw(vh)∥Th,c
≤ ∥∇wvh∥Th,c

= ∥∇w(Qh,cw)∥Th,c
= ∥Qh,c(∇w)∥Th,c

≤ ∥∇w∥Ωc .

For the second term, by the trace inequality and Poincaré inequality, we get

N−1∑
j=1

∥∥∥( αν
√
N√

trace(Π)

) 1
2

vb · τ j

∥∥∥2
Eh,I

≤ C∥Qb,cw∥2Eh,I
≤ C∥w∥2Γ ≤ C∥∇w∥2Ωc

.



594 L. YANG, W. MU, H. PENG, AND X. WANG

Finally, it follows from the triangle inequality, trace inequality and projection in-
equality (A.3) that∑

Tc∈Th,c

h
− 1

2

Tc
∥v0 − vb∥∂Tc =

∑
Tc∈Th,c

h
− 1

2

Tc
∥Q0,cw −Qb,cw∥∂Tc

≤
∑

Tc∈Th,c

h
− 1

2

Tc
(∥Q0,cw −w∥∂Tc + ∥w −Qb,cw∥∂Tc)

≤ C
∑

Tc∈Th,c

h
− 1

2

Tc
∥Q0,cw −w∥∂Tc

≤ C∥∇w∥Ωc .

Combining all these inequalities yields |||vh||| ≤ C∥∇w∥Ωc . Therefore, we get

sup
vh∈V 0

h,c

bc(vh, ρ̃h)

|||vh|||
≥

(∇w · vh, ρ̃h)Th,c

|||vh|||
≥ C

∥ρ̃h∥2Th,c

∥∇w∥Ωc

≥ β∥ρ̃h∥Th,c
.

The proof of the lemma is complete. �

Lemma 4.5. The WG scheme (16)-(17) has a unique solution.

Proof. Since (16)-(17) are finite-dimensional square linear equations, the existence
is equivalent to the uniqueness. Consider the homogeneous case, i.e. qp = 0 and
f = 0.

Taking ψh
m = 1

ρp
h
m, ψh

f = 1
ρp

h
f , vh = uh and qh = ph in Eqs.(16)-(17). And

summing them together yields

0 =
1

ρ
as,m(phm, p

h
m) + as,f (p

h
f , p

h
f ) +

1

ρ
as,c(uh,uh) +

1

ρ
ad(p

h
m, p

h
f , p

h
m, p

h
f )

≥1

ρ
|||phm|||2m +

1

ρ
|||phf |||

2
f + |||uh|||2.

Hence, we have uh = 0, phm = 0 and phf = 0. Moreover, we get bc(vh, ph) = 0 for

any vh ∈ V 0
h,c.

Let ph = ph + p̃h with ph =
´
Ωc

phdx

|Ωc| and p̃h = Wh,c ∩ L2
0(Ωc). There is a

ṽ ∈ [H1
0 (Ωc)]

N such that ∇ · ṽ = p̃h. By Eq.(20) and taking vh = Qh,cṽ, we have

0 = bc(vh, ph) =
1

ρ
(∇w ·Qh,cṽ, ph)Th,c

+
1

ρ
(∇w ·Qh,cṽ, p̃h)Th,c

=
1

ρ
(Qh,c(∇ · ṽ), ph)Th,c

+
1

ρ
(Qh,c(∇ · ṽ), p̃h)Th,c

=
1

ρ
∥p̃h∥2Th,c

,

which implies that p̃h = 0. Thus, bc(vh, ph) = bc(vh, ph + p̃h) = bc(vh, ph) = 0.
Taking any vh to make

´
Ωc

∇w · vhdx ̸= 0, we obtain ph = 0. To sum up, it yields

ph = 0. The proof of the lemma is complete. �

5. Error Analysis

In this section, we are going to derive the error equations and give the corre-
sponding error estimates.
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5.1. Error Equations. Assume that pm ∈ H1(Ωd), pf ∈ H1(Ωd), u ∈ [H1(Ωc)]
N

and p ∈ L2(Ωc) are the solutions of the model (1)-(10), phm ∈ Vh,d, p
h
f ∈ Vh,d, uh ∈

Vh,c and ph ∈ Wh,c are the numerical solutions of the WG scheme (16)-(17). We
define the following errors.

eh,m = Qh,dpm − phm, eh,f = Qh,dpf − phf ,

eh,c = Qh,cu− uh, εh,c = Qh,cp− ph.

Then the following lemma holds true.

Lemma 5.1. For any ϕ ∈ H1(Ωd), ψh ∈ Vh,d, w ∈ [H1(Ωc)]
N , ρ ∈ H1(Ωc) and

vh ∈ Vh,c, we have

(∇w(Qh,dϕ),∇wψh)Th,d
= (∇ϕ,∇ψ0)Th,d

− ⟨ψ0 − ψb, (Qh,d(∇ϕ)) · n⟩∂Th,d
,(22)

(∇w(Qh,cw),∇wvh)Th,c
= (∇w,∇v0)Th,c

− ⟨v0 − vb, (Qh,c(∇w))n⟩∂Th,c
,(23)

(∇w · vh,Qh,cρ)Th,c
= (∇ · v0, ρ)Th,c

− ⟨v0 − vb, (Qh,cρ)n⟩∂Th,c
.(24)

The above properties can be derived from the definition of the weak differential
operators, integration by parts and Lemma 4.3. Based on the above lemma, we
establish the following error equations.

Lemma 5.2. (Error Equations) Let pm, pf ∈ H1(Ωd), u ∈ [H1(Ωc)]
2, and p ∈

L2(Ωc) be sufficiently smooth, for any ψh
m ∈ V 0

h,d, ψ
h
f ∈ V 0

h,d, vh ∈ V 0
h,c, qh ∈Wh,c,

we have

as,m(eh,m, ψ
h
m) + ad(eh,m, eh,f , ψ

h
m, ψ

h
f ) + aΓ⟨eh,c, eh,f ,vh, ψ

h
f ⟩

+as,f (eh,f , ψ
h
f ) + as,c(eh,c,vh)− bc(vh, εh,c) = φpm,pf ,u,p(ψ

h
m, ψ

h
f ,vh),

(25)

bc(eh,c, qh) = 0,(26)

where

φpm,pf ,u,p(ψ
h
m, ψ

h
f ,vh) =ℓ1(pm, ψ

h
m) + ℓ2(pf , ψ

h
f ) + ℓ3(u,v) + ℓ4(p,v)

+ s(Qh,dpm, ψ
h
m) + s(Qh,dpf , ψ

h
f ) + sc(Qh,cu,vh),

with

ℓ1(pm, ψ
h
m) =

km
µ

⟨(∇pm −Qh,d(∇pm)) · n, ψ0
m − ψb

m⟩∂Th,d
,

ℓ2(pf , ψ
h
f ) =

kf
µ
⟨(∇pf −Qh,d(∇pf )) · n, ψ0

f − ψb
f ⟩∂Th,d

,

ℓ3(u,v) = 2ν⟨(D(u)−Qh,cD(u))n,v0 − vb⟩∂Th,c
,

ℓ4(p,v) =
1

ρ
⟨(p−Qh,cp)n,v0 − vb⟩∂Th,c

.

Proof. First, we consider the dual-porosity equations. According to integration by
parts and the definition of Q, we have

(qp, ψ
0
f )Th,d

=(
km
µ

∇pm,∇ψ0
m)Th,d

− ⟨km
µ

∇pm · n, ψ0
m⟩∂Th,d

+ (
kf
µ
∇pf ,∇ψ0

f )Th,d

− ⟨kf
µ
∇pf · n, ψ0

f ⟩∂Th,d
+ (

σkm
µ

(pm − pf ), ψ
0
m − ψ0

f )Th,d
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=
km
µ

(∇pm,∇ψ0
m)Th,d

− km
µ

⟨∇pm · n, ψ0
m − ψb

m⟩∂Th,d

− km
µ

⟨∇pm · n, ψb
m⟩∂Th,d

+
kf
µ
(∇pf ,∇ψ0

f )Th,d

− kf
µ
⟨∇pf · n, ψ0

f − ψb
f ⟩∂Th,d

− kf
µ
⟨∇pf · n, ψb

f ⟩∂Th,d

+
σkm
µ

(pm − pf , ψ
0
m − ψ0

f )Th,d
.

(27)

By Eq.(22), we obtain

km
µ

(∇pm,∇ψ0
m)Th,d

− km
µ

⟨∇pm · n, ψ0
m − ψb

m⟩∂Th,d

=
km
µ

(∇w(Qh,dpm),∇wψ
h
m)Th,d

− km
µ

⟨(∇pm −Qh,d(∇pm)) · n, ψ0
m − ψb

m⟩∂Th,d
.

(28)

Similarly,

− kf
µ
⟨∇pf · n, ψ0

f − ψb
f ⟩∂Th,d

+
kf
µ
(∇pf ,∇ψ0

f )Th,d

=
kf
µ
(∇w(Qh,dpf ),∇wψ

h
f )Th,d

− kf
µ
⟨(∇pf −Qh,d(∇pf )) · n, ψ0

f − ψb
f ⟩∂Th,d

.

(29)

Using the interface conditions (5)-(6), we get

− km
µ

⟨∇pm · n, ψb
m⟩∂Th,d

− kf
µ
⟨∇pf · n, ψb

f ⟩∂Th,d

=− km
µ

⟨∇pm · (−ncd), ψ
b
m⟩Eh,I

− kf
µ
⟨∇pf · (−ncd), ψ

b
f ⟩Eh,I

=− ⟨Qb,cu · ncd, ψ
b
f ⟩Eh,I

.

(30)

By the property of the L2 projection operator, we have

σkm
µ

(pm − pf , ψ
0
m − ψ0

f )Th,d

=
σkm
µ

(Qh,0pm −Qh,0pf , ψ
0
m)Th,d

+
σkm
µ

(Qh,0pf −Qh,0pm, ψ
0
f )Th,d

.

(31)

Substituting (28)-(31) into (27) leads to

(qp, ψ
0
f )Th,d

=
km
µ

(∇w(Qh,dpm),∇wψ
h
m)Th,d

+
kf
µ
(∇w(Qh,dpf ),∇wψ

h
f )Th,d

− km
µ

⟨(∇pm −Qh,d(∇pm)) · n, ψ0
m − ψb

m⟩∂Th,d

− kf
µ
⟨(∇pf −Qh,d(∇pf )) · n, ψ0

f − ψb
f ⟩∂Th,d

− ⟨Qb,cu · ncd, ψ
b
f ⟩Eh,I

+
σkm
µ

(Qh,0pm −Qh,0pf , ψ
0
m)Th,d

+
σkm
µ

(Qh,0pf −Qh,0pm, ψ
0
f )Th,d

.

(32)
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Now, we consider the Stokes equations. According to integration by parts and the
definition of T(u, p), we obtain

(f ,v0)Th,c
=(2νD(u)− 1

ρ
pI,∇v0)Th,c

− ⟨(2νD(u)− 1

ρ
pI)n,v0⟩∂Th,c

=2ν(D(u),∇v0)Th,c
− 1

ρ
(∇ · v0, p)Th,c

− 2ν
∑

Tc∈Th,c

⟨D(u)n,v0 − vb⟩∂Th,c
− 2ν⟨D(u)n,vb⟩∂Th,c

+
1

ρ
⟨pn,v0 − vb⟩∂Th,c

+
1

ρ
⟨pn,vb⟩∂Th,c

.

(33)

Using Eq.(23) yields

− 2ν⟨D(u)n,v0 − vb⟩∂Th,c
+ 2ν(D(u),∇v0)Th,c

=− 2ν⟨(Qh,cD(u))n,v0 − vb⟩∂Th,c
+ 2ν(D(u),D(v0))Th,c

− 2ν⟨(D(u)−Qh,cD(u))n,v0 − vb⟩∂Th,c

=− 2ν⟨(D(u)−Qh,cD(u))n,v0 − vb⟩∂Th,c

+ 2ν(Dw(Qh,cu),Dw(vh))Th,c
.

(34)

Similarly,

1

ρ
⟨pn,v0 − vb⟩∂Th,c

− 1

ρ
(∇ · v0, p)Tc

=− 1

ρ
(∇w · vh,Qh,cp)Th,c

+
1

ρ
⟨(p−Qh,cp)n,v0 − vb⟩∂Th,c

.

(35)

By the interface conditions (7)-(8) and the property of the L2 projection operator,
we get

− 2ν⟨D(u)n,vb⟩∂Th,c
+

1

ρ
⟨pn,vb⟩∂Th,c

=− 2ν⟨D(u)ncd,vb⟩Eh,I
+

1

ρ
⟨pncd,vb⟩Eh,I

=− ⟨T(u, p)ncd · ncd,vb · ncd⟩Eh,I
− ⟨T(u, p)ncd · τ ,vb · τ ⟩Eh,I

=
1

ρ
⟨Qb,dpf ,vb · ncd⟩Eh,I

+
αν

√
N√

trace(Π)
⟨u · τ ,vb · τ ⟩Eh,I

.

(36)

Substituting (34)-(36) into (33), we obtain

(f ,v0)Th,c
=2ν(Dw(Qh,cu),Dw(vh))Th,c

− 2ν⟨(D(u)−Qh,cD(u))n,v0 − vb⟩∂Th,c

− (∇w · vh,Qh,cp)Th,c
+

1

ρ
⟨Qb,dpf ,vb · ncd⟩Eh,I

+
1

ρ
⟨(p−Qh,cp)n,v0 − vb⟩∂Th,c

+
αν

√
N√

trace(Π)
⟨u · τ ,vb · τ ⟩Eh,I

.

(37)
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Adding (37) to (32) leads to

(qp, ψ
0
f )Th,d

+ (f ,v0)Th,c

=as,m(Qh,dpm, ψ
h
m) + as,f (Qh,dpf , ψ

h
f ) + as,c(Qh,cu,vh)

+ ad(Qh,dpm, Qh,dpf , ψ
h
m, ψ

h
f ) + aΓ⟨Qh,cu, Qh,dpf ,vh, ψ

h
f ⟩

− bc(vh,Qh,cp)− φpm,pf ,u,p(ψ
h
m, ψ

h
f ,vh).

(38)

Subtracting (38) from the WG scheme (16), the proof of Eq.(25) is complete.
For any qh ∈Wh,c, using Eq.(4), we have

1

ρ
(∇w ·Qh,cu, qh)Th,c

=
1

ρ
(Qh,c(∇ · u), qh)Th,c

=
1

ρ
(∇ · u, qh)Th,c

= 0.(39)

Subtracting (39) from (17), Eq.(26) holds true. �

5.2. Error Estimates. In this subsection, we give the error estimates in the en-
ergy norm.

Theorem 5.1. Let pm ∈ Hk+1(Ωd), pf ∈ Hk+1(Ωd), u ∈ [Hk+1(Ωc)]
N and p ∈

Hk(Ωc) be the exact solutions of the model (1)-(10). Let phm ∈ Vh,d, p
h
f ∈ Vh,d, uh ∈

Vh,c and ph ∈ Wh,c be the numerical solutions of the WG scheme (16)-(17), then
we have

|||eh,m|||m + |||eh,f |||f + |||eh,c|||+ ∥εh,c∥Th,c

≤Chk
(
∥pm∥k+1,Ωd

+ ∥pf∥k+1,Ωd
+ ∥u∥k+1,Ωc + ∥p∥k,Ωc

)
,

(40)

where C is independent of h.

Proof. For simplicity, we use δm, δf and δc to represent h
k∥pm∥k+1,Ωd

, hk∥pf∥k+1,Ωd

and hk(∥u∥k+1,Ωc + ∥p∥k,Ωc), respectively.
Taking ψh

m = eh,m, ψh
f = eh,f , and vh = eh,c in Eq.(25) and qh = εh,c in Eq.(26),

we have

|||eh,m|||2m + |||eh,f |||2f + |||eh,c|||2

=φpm,pf ,u,p(eh,m, eh,f , eh,c)− ad(eh,m, eh,f , eh,m, eh,f )

− aΓ⟨eh,c, eh,f , eh,c, eh,f ⟩.
(41)

By the definition of the ad(eh,m, eh,f , eh,m, eh,f ), we get

|||eh,m|||2m + |||eh,f |||2f + |||eh,c|||2 +
σkm
µ

∥eh,m − eh,f∥2Th,d
= φpm,pf ,u,p(eh,m, eh,f , eh,c).

Thus,

|||eh,m|||2m + |||eh,f |||2f + |||eh,c|||2 ≤ φpm,pf ,u,p(eh,m, eh,f , eh,c).(42)

According to Lemma A.5 , we obtain

φpm,pf ,u,p(eh,m, eh,f , eh,c) ≤ C(δm|||eh,m|||m + δf |||eh,f |||f + δc|||eh,c|||).(43)

Substituting (43) into (42) and using the Young inequality, we have

|||eh,m|||m + |||eh,f |||f + |||eh,c||| ≤ C(δm + δf + δc).(44)

Next let εh,c = εh,c + ε̃h,c, where εh,c =
´
Ωc

εh,cdx

|Ωc| and ε̃h,c ∈ L2
0(Ωc).
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First, we estimate ε̃h,c. From error equation (25), we get

bc(vh, εh,c) =as,m(eh,m, ψ
h
m) + as,f (eh,f , ψ

h
f ) + as,c(eh,c,vh)

+ ad(eh,m, eh,f , ψ
h
m, ψ

h
f ) + aΓ⟨eh,c, eh,f ,vh, ψ

h
f ⟩

− φpm,pf ,u,p(ψ
h
m, ψ

h
f ,vh).

From [4], we know that for ε̃h,c ∈Wh,c∩L2
0(Ωc), there exists a ṽ ∈ [H1

0 (Ωc)]
N such

that ∇ · ṽ = ε̃h,c. Choosing vh = Qh,cṽ and ψh
m = ψh

f = 0 in the error equation

(25), it follows from the inequality (42), Eq.(20) and Cauchy-Schwarz inequality,
we have

|bc(vh, ε̃h,c)| =
∣∣∣∣1ρ (Qh,c(∇ · ṽ), ε̃h,c)Th,c

∣∣∣∣
=

∣∣∣∣1ρ (∇ · ṽ, εh,c)Th,c

∣∣∣∣
=|bc(vh, εh,c)|
=as,c(eh,c,vh)− φpm,pf ,u,p(0, 0,vh)

≤|||eh,c||| |||vh|||+ |φpm,pf ,u,p(0, 0,vh)|
≤C(δm + δf + δc)|||vh|||.

(45)

By the inf-sup condition (21), we have

β∥εh,c∥ ≤ sup
vh∈V 0

h

bc(vh, εh,c)

|||vh|||
.(46)

Combining Eq.(45) with Eq.(46), we have

∥ε̃h,c∥Th,c
≤ C(δm + δf + δc).

Next we consider the estimate of εh,c. Taking the smooth function ζ ∈ [C2
0 (Ωc)]

N

to satisfy the following equation,ˆ
Ωc

∇ · ζdx = 1.

Choosing γ = ∥ζ∥1,Ωc and vh = Qh,cζ, and using Lemma 4.3, we haveˆ
Ωc

∇w · vhdx =

ˆ
Ωc

Qh,c(∇ · ζ)dx =

ˆ
Ωc

∇ · ζdx = 1,

and

|||vh|||+ ∥∇w · vh∥Th,c
= |||Qh,cζ|||+ ∥∇w · vh∥Th,c

≤ C0∥ζ∥1,Ωc + ∥Qh,c∇ · ζ∥Th,c
≤ (C0 + 1)γ.

By the error equation (25), we get

|εh,c| =
bc(vh, εh,c)´
Ωc

∇w · vhdx

=ac(eh,c,vh)− φpm,pf ,u,p(0, 0,vh)− bc(vh, ε̃h,c)

≤|||eh,c||| |||vh|||+ |φpm,pf ,u,p(0, 0,vh)|+ ∥ε̃h,c∥Th,c
∥∇w · vh∥Th,c

≤C1δm + C2δf + C3δc.

Thus, we obtain

∥εh,c∥Ωc = ∥εh,c + ε̃h,c∥Ωc ≤ ∥ε̃h,c∥Ωc + C|εh,c|Ωc ≤ C1δm + C2δf + C3δc.(47)

From (44) and (47), the proof of the theorem is complete. �
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6. Numerical Examples

In this section, we present some numerical examples to verify the efficiency of
the WG method for solving the dual-porosity-Stokes model. In the examples, we
calculate the relative errors in the energy norm

|||eh,m|||m :=
|||Qh,dpm − phm|||m

|||Qh,dpm|||m
, |||eh,f |||f :=

|||Qh,dpf − phf |||f
|||Qh,dpf |||f

,

|||eh,c||| :=
|||Qh,cu− uh|||

|||Qh,cu|||
,

and the relative errors in the L2 norm

∥e0,m∥Th,d
:=

∥Q0,dpm − p0m∥Th,d

∥Q0,dpm∥Th,d

, ∥e0,f∥Th,d
:=

∥Q0,dpf − p0f∥Th,d

∥Q0,dpf∥Th,d

,

∥e0,c∥Th,c
:=

∥Q0,cu− u0∥Th,c

∥Q0,cu∥Th,c

, ∥εh,c∥Th,c
:=

∥Qh,cp− ph∥Th,c

∥Q h,c

p∥Th,c
.

We implement these examples on three types of meshes: the triangular meshes
T 1
h , the rectangular meshes T 2

h and the polygon meshes T 3
h (see Figure 2).

Figure 2. The first level grid of meshes, left: T 1
h , middle: T 2

h , right: T 3
h .

Example 6.1. Consider the dual-porosity-Stokes model in the rectangular domain
Ω = (0, π) × (−1, 1). The dual-porosity domain, Stokes domain and the interface
are Ωd = (0, π) × (0, 1), Ωc = (0, π) × (−1, 0) and Γ = (0, π) × {0}, respectively.
Choose km = 0.01, kf = 1, µ = 1, ν = 1, ρ = 1, σ = 1, and αν

√
N√

trace(Π)
= 1 in the

dual-porosity-Stokes model. The exact solutions are

pm = sin(xy2 − y3), pf = (ey − e−y) sinx,

u =

(
1
π sin(2πy) cosx
(−2 + 1

π2 sin
2(πy)) sinx

)
, p = 0.

In this example, we use the P1 to P2 WG elements to solve the dual-porosity-
Stokes model on different meshes. The convergence results obtained from Example
6.1 are shown in Figures 3-8. As we can see, the errors of matrix pressure function
pm and microfracture pressure function pf reach the optimal convergence orders
in the energy norm and L2 norm. In the conduit domain, the Pk WG elements
show the convergence orders O(hk) and O(hk+1) for the fluid velocity function in
the energy norm and L2 norm, respectively. For the fluid pressure function, the
Pk WG elements achieve the convergence orders O(hk) in the L2 norm. These
numerical results are consistent with the theoretical analysis.
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Figure 3. The convergence results for Example 6.1 on T 1
h with k = 1.
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Figure 4. The convergence results for Example 6.1 on T 1
h with k = 2.
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Figure 5. The convergence results for Example 6.1 on T 2
h with k = 1.
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Figure 6. The convergence results for Example 6.1 on T 2
h with k = 2.
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Figure 7. The convergence results for Example 6.1 on T 3
h with k = 1.
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Figure 8. The convergence results for Example 6.1 on T 3
h with k = 2.

Example 6.2. The choice of the domain, the interface and model parameters are
the same as in Example 6.1. The exact solution are as follows:

pm = ex + 2x2, pf =
(1
2
y2 + y

)
ex +

1

3
x3y + xy2 + 2xy,

u =

(
ex + ey + x2 + y2

(−y − 1)ex − 1
3x

3 − 2xy − 2x

)
,

p = (
1

2
y2 + y − 2)ex +

1

3
x3y + xy2 + 2xy − 4x.

In Figures 9-11, we present the convergence resluts of Example 6.2. From these
figures, it becomes evident that the convergence orders of matrix pressure function
pm and microfracture pressure function pf in the energy norm and the L2 norm
are O(hk) and O(hk+1). Moreover, the convergence orders of fluid velocity function
u in the energy norm and L2 norm areO(hk) and O(hk+1), and the convergence
orders of fluid pressure function p in L2 norm are O(hk). These results demonstrate
that all numerical solutions converge at the optimal orders. Hence, the results of
the above numerical examples show that it is effective to use the WG method to
solve the dual-porosity-Stokes model.

7. Conclusion

In this paper, we use the weak Galerkin finite element method to solve the dual-
porosity-Stokes model. We prove the stability of the numerical scheme and the
existence and uniqueness of the numerical solutions. For the proposed WG scheme,
the error equations are obtained. Based on the error equations, we give the optimal
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Figure 9. The convergence results for Example 6.2 on T 1
h with k = 1.
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Figure 10. The convergence results for Example 6.2 on T 2
h with k = 2.
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Figure 11. The convergence results for Example 6.2 on T 3
h with k = 3.

error estimates in the energy norm. Furthermore, numerical results demonstrate
that the error convergence orders agree with theoretical analysis.

Appendix

Lemma A.1. [31](Trace inequality) For any g ∈ H1(T ), we have

∥g∥2e ≤ C(h−1
T ∥g∥2T + hT ∥∇g∥2T ).(A.1)

Lemma A.2. [31](Inverse inequality) If g is a polynomial function on T , we have

∥∇g∥2T ≤ Ch−2
T ∥g∥2T ,(A.2)

where C is a constant only related to the degree and dimension of the polynomial.
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Lemma A.3. [32] For any ϕ ∈ Hr+1(Ω) with 1 ≤ r ≤ k, we have∑
T∈Th

∥ϕ−Q0ϕ∥2T +
∑
T∈Th

h2T ∥∇(ϕ−Q0ϕ)∥2T ≤ Ch2(r+1)∥ϕ∥2r+1,(A.3)

∑
T∈Th

∥∇ϕ−Qh(∇ϕ)∥2T ≤ Ch2r∥ϕ∥2r+1,(A.4)

∑
T∈Th

∥ϕ−Qbϕ∥2∂T ≤ Ch2r∥∇ϕ∥2∂T,r,(A.5)

where C is a constant independent of the mesh size h and function ϕ.

Lemma A.4. There exists a positive numbers C such that for any ψh ∈ Vh,d, we
have

∥∇ψ0∥ ≤ C|||ψh|||i, i = m, f,(A.6)

where C is independent of h.

Proof. For any ψh ∈ Vh,d and q ∈ [Pk−1(Td)]
N in Td ∈ Th,d, according to the

definition of weak gradient operator, integration by parts and the property of the
L2 projection operator, we have

(∇wψh,q)Td
= (∇ψ0,q)Td

+ ⟨ψb − ψ0,q · n⟩∂Td

= (∇ψ0,q)Td
+ ⟨ψb −Qb,dψ0,q · n⟩∂Td

.
(A.7)

Choosing q = ∇ψ0 in Eq.(A.7) gives

(∇wψh,∇ψ0)Td
= (∇ψ0,∇ψ0)Td

+ ⟨ψb −Qb,dψ0,∇ψ0 · n⟩∂Td
.

By the Cauchy-schwarz inequality, trace inequality, and inverse inequality, we ob-
tain

∥∇ψ0∥2Td

=(∇ψ0,∇ψ0)Td

≤∥∇wψh∥Td
∥∇ψ0∥Td

+ ∥Qb,dψ0 − ψb∥∂Td
∥∇ψ0∥∂Td

≤∥∇wψh∥Td
∥∇ψ0∥Td

+ Ch
− 1

2

Td
∥Qb,dψ0 − ψb∥∂Td

∥∇ψ0∥Td

≤C
(
∥∇wψh∥2Td

+ h
− 1

2

Td
∥Qbψ0 − ψb∥2∂Td

) 1
2

∥∇ψ0∥Td
,

i.e.

∥∇ψ0∥Td
≤ C|||ψh|||i, i = m, f.

So the proof of Eq.(A.6) is complete. �

Lemma A.5. Suppose pm, pf ∈ Hk+1(Ωd), u ∈ [Hk+1(Ωc)]
N and p ∈ Hk(Ωc),

then we have following estimates

|ℓ1(pm, ψh
m)| ≤ Chk∥pm∥k+1,Ωd

|||ψh
m|||m,(A.8)

|ℓ2((pf , ψh
f )| ≤ Chk∥pf∥k+1,Ωd

|||ψh
f |||f ,(A.9)

|ℓ3(u,vh)| ≤ Chk∥u∥k+1,Ωc |||vh|||,(A.10)

|ℓ4(p,vh)| ≤ Chk∥p∥k,Ωc |||vh|||,(A.11)

|s(Qh,dpm, ψ
h
m)| ≤ Chk∥pm∥k+1,Ωd

|||ψh
m|||m,(A.12)

|s(Qh,dpf , ψ
h
f )| ≤ Chk∥pf∥k+1,Ωd

|||ψh
f |||f ,(A.13)

|sc(Qh,cu,vh)| ≤ Chk∥u∥k+1|||vh|||.(A.14)
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Proof. As to the estimate (A.8), according to the Cauchy-schwarz inequality, trace
inequality, projection inequality (A.3) and Lemma A.4, we have

∣∣ℓ1(pm, ψh
m)

∣∣ =
∣∣∣∣∣∣kmµ

∑
Td∈Th,d

⟨(∇pm −Qh,d(∇pm)) · n, ψ0
m − ψb

m⟩∂Td

∣∣∣∣∣∣
≤C

 ∑
Td∈Th,d

∥∇pm −Qh,d(∇pm)∥2∂Td

 1
2
 ∑

Td∈Th,d

∥ψ0
m − ψb

m∥2∂Td

 1
2

≤C

 ∑
Td∈Th,d

∥∇pm −Qh,d(∇pm)∥2∂Td

 1
2

 ∑
Td∈Th,d

∥ψ0
m −Qb,dψ

0
m∥2∂Td

+ ∥Qb,dψ
0
m − ψb

m∥2∂Td

 1
2

≤Chk∥pm∥k+1|||ψh
m|||m.

The proof of the estimate (A.9) is similar to the estimate (A.8). For the esti-
mate (A.10), it follows from the Cauchy-Schwarz inequality, trace inequality and
projection inequality (A.3) that

|ℓ3(u,vh)|

=

∣∣∣∣∣∣2µ
∑

Tc∈Th,c

⟨(D(u)−Qh,cD(u))n,v0 − vb⟩∂Tc

∣∣∣∣∣∣
≤C

 ∑
Tc∈Th,c

hT ∥D(u)−Qh,cD(u)∥2∂Tc

 1
2
 ∑

Tc∈Th,c

h−1
T ∥v0 − vb∥2∂Tc

 1
2

≤Chk∥u∥k+1|||vh|||.

For the estimate (A.11), by trace inequality, projection inequality (A.5), we get

|ℓ4(p,vh)|

=

∣∣∣∣∣∣
∑

Tc∈Th,c

⟨(p−Qh,cp)n,v0 − vb⟩∂Tc

∣∣∣∣∣∣
≤

 ∑
Tc∈Th,c

hT ∥p−Qh,cp∥2∂Tc

 1
2
 ∑

Tc∈Th,c

h−1
T ∥v0 − vb∥2∂Tc

 1
2

≤Chk∥p∥k|||vh|||.



606 L. YANG, W. MU, H. PENG, AND X. WANG

We consider the estimate (A.12). Using the Cauchy-schwarz inequality, trace in-
equality and projection inequality (A.3), we obtain

|s(Qh,dpm, ψ
h
m)|

=

∣∣∣∣∣∣
∑

Td∈Th,d

h−1
Td

⟨Qb,dQ0,dpm −Qb,dpm, Qb,dψ
0
m − ψb

m⟩∂Td

∣∣∣∣∣∣
≤C

 ∑
Td∈Th,d

h−1
Td

∥Qb,dQ0,dpm −Qb,dpm∥2∂Td

 1
2

 ∑
Td∈Th,d

h−1
Td

∥Qb,dψ
0
m − ψb

m∥2∂Td

 1
2

≤C

 ∑
Td∈Th,d

h−1
Td

∥Q0,dpm − pm∥2∂Td

 1
2

|||ψh
m|||m

≤Chk∥pm∥k+1|||ψh
m|||m.

The proof of the estimates (A.13)-(A.14) is similar to the estimate (A.12). �
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