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DYNAMICS ANALYSIS OF HIV-1 INFECTION MODEL WITH

CTL IMMUNE RESPONSE AND DELAYS

TING GUO AND FEI ZHAO

Abstract. In this paper, we rigorously analyze an HIV-1 infection model with CTL immune
response and three time delays which represent the latent period, virus production period and
immune response delay, respectively. We begin this model with proving the positivity and bound-
edness of the solution. For this model, the basic reproduction number R0 and the immune

reproduction number R1 are identified. Moreover, we have shown that the model has three e-
quilibria, namely the infection-free equilibrium E0, the infectious equilibrium without immune
response E1 and the infectious equilibrium with immune response E2. By applying fluctuation
lemma and Lyapunov functionals, we have demonstrated that the global stability of E0 and E1

are only related to R0 and R1. The local stability of the third equilibrium is obtained under four
situations. Further, we give the conditions for the existence of Hopf bifurcation. Finally, some
numerical simulations are carried out for illustrating the theoretical results.
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1. Introduction

In the past few decades, many researchers and scientists focus on the study of
simulating the interactions between pathogens and the host immune system. There
is a convincing evidence that cytotoxic T lymphocyte (CTL) cells which attack
infected cells are the main host immune factor that determines virus load [1–4].
Moreover, the Human Immunodeficiency Virus (HIV) models are crucial among
the disease models since the Acquired Immune Deficiency Syndrome (AIDS) is
mainly due to HIV and is still not curable today. Therefore, it makes sense to
spend some time researching HIV-1 infection model with CTL immune response.

Based on some biological background in cellular immunology, Perelson and Nel-
son [5] established a four-dimensional ordinary differential system to study the dy-
namical behavior with cellular immune responses in 1999. The model is as follows:

(1)


ẋ = s− dx(t)− βx(t)v(t),
ẏ = βx(t)v(t)− ay(t)− py(t)z(t),
v̇ = ky(t)− uv(t),
ż = f(x, y, z)− hz(t),

where a dot denotes the differentiation with respect to time t, variables x, y, v and
z represent the density of the healthy cells, the infected cells, the virus and CTL
cells, respectively. Healthy cells are produced at rate s and they died out naturally
at rate dx. These cells may come into contact with the virus and become infected
cells at rate βxv. Infected cells died out naturally at rate ay and are removed by z
at rate pyz. From the infected cells, the viruses are replicated at rate ky and they
are cleared naturally at rate uv. CTL cells decay at a rate hz and f(x, y, z) has
some different expressions according to the different assumptions. For example, the
authors of [6, 7] supposed that the generation of CTL only depend on the infected
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cells, the researchers of [8] think that the emergence of CTL not only depend on
the infected cells but also is related to the CTL cells. Based above analysis, the
authors of [9] considered the formation of the CTL is also related to the healthy
cells.

Most of the models discussed so far capture the CTL in a single population, z.
However, when CTLs are stimulated by antigen, the population of CTL precursors
(CTLp) expands. Upon contact with the virus during a subsequent infection, CTLp
becomes CTL effectors (CTLe) which is again responsible for clearing away the in-
vading virus [10–12]. Therefore, in order to describes the dynamics of CTL immune
response more accurately, Wodarz [13] modified model (1) by assuming that the
virus population is at a quasi-steady state, i.e. v = (k/u)y, and introduced w (rep-
resents CTLp) and z (represents CTLe) according to the action principle of CTL.
Then, model (1) reduces to

(2)


ẋ = s− dx(t)− βx(t)y(t),
ẏ = βx(t)y(t)− ay(t)− py(t)z(t),
ẇ = cy(t)w(t)− cqy(t)w(t)− bw(t),
ż = cqy(t)w(t)− hz(t).

Compared to model (1), healthy cells in this model become infected cells at rate
βxy. CTLp emerges at rate cyw, becomes CTLe at rate cqyw and decays at rate
bw. Similarly, CTLe are created at rate cqyw and cleared at rate hz. Chan and
Yu [12] analyzed the stability of equilibria and bifurcation dynamics of model (2).

In order to model the immune system more precisely, Yu et al. [14] combined
model (2) and the viruses to have the following 5-dimensional system :

(3)


ẋ = s− dx(t)− βx(t)v(t),
ẏ = βx(t)v(t)− ay(t)− py(t)z(t),
v̇ = ky(t)− uv(t),
ẇ = cy(t)w(t)− cqy(t)w(t)− bw(t),
ż = cqy(t)w(t)− hz(t).

The dynamical properties of model (3) (Fig. 1) have also been studied in [14].
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Figure 1. Model (3) with viral infection and immune response.
Uninfected cell (healthy cell) x is infected with viral particle v,
becomes infected cell y; in order to clear away the infected cell,
the immune system generates CTLp w which has receptors specif-
ically for detecting the virus form the previous infection. During
a subsequent infection, CTLp differentiates CTLe z which is again
responsible for clearing away the invading virus.
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The interplay between virus and the host immune system is a more complicated
process [15], which includes viral attachment, viral replication, virus clearance and
so on. In the real situation, there may be a lag between the time the virus particles
attach target cells and the time the host cell contains the infectious viral particles
in its cytoplasm [16]. Time is also necessary for a newly infected virus to become
mature and then infectious [17]. There is also a period between the time of infection
and the recognition of the infected cells by CTLs [18]. In this paper, we introduce
three time delays into the model (3) to further describe the real process of HIV-1
infection with CTL immune response. τ1, τ2 and τ3 denote the eclipse phase, virus
production period and the response time delay of CTLp, respectively. Moreover,
we assume that the probability density that a cell still remains infected for τ1 time
units after being contacted by the virus obeys an exponentially decay function [19].
Similarly, the probability density of infected cells and CTLp are also exponentially
decay functions. Therefore, model (3) can be modified into

(4)


ẋ = s− dx(t)− βx(t)v(t),
ẏ = βe−a1τ1x(t− τ1)v(t− τ1)− ay(t)− py(t)z(t),
v̇ = ke−a2τ2y(t− τ2)− uv(t),
ẇ = ce−a3τ3y(t− τ3)w(t− τ3)− cqy(t)w(t)− bw(t),
ż = cqy(t)w(t)− hz(t).

All of the coefficient are positive and 0 < q < 1 [14]. Because model (4) contains
multi-time delays and the dimension of the model is higher than two, it may exhibit
more interesting dynamic behaviors. Therefore, we are interested in the study of
dynamical properties of model (4).

The rest of the paper is organized as follows. In section 2, the well-posedness
of the solution is discussed and equilibria of model (4) is given. Also, in order to
properly define biologically meaningful equilibrium, the basic reproduction number
R0 and the immune reproduction number R1 are define. In section 3, we analyze
the stability of the infection-free equilibrium E0. It is shown that when R0 < 1,
E0 is globally asymptotically stable which implying that no virus can invade. In
section 4, we show that if R1 < 1 < R0 holds, the infectious equilibrium without
immune response E1 is globally asymptotically stable which implying that CTL
immune response has not be successfully activated. In section 5, by analyzing
the characteristic equation of the linearized system of model (4) at the infectious
equilibrium with immune response E2, we establish locally asymptotical stability
of equilibrium E2 under four cases. Meanwhile, according to the Hopf bifurcation
theorem for functional differential equations (FDEs), we find that the system can
undergo Hopf bifurcation of nonconstant periodic solution at the equilibrium E2

when the delays cross through a sequence of critical values. Numerical simulations
are provided in section 6 to confirm the theoretical results. Finally, discussion and
conclusion are given in section 7.

2. Well-posedness, equilibria and the reproduction numbers

For the model (4), positivity implies that the cell population survives and bound-
edness shows that cell growth is constrained under limited resources. Thus, it is
of vital importance to indicate the positivity and the boundedness of solution of
model (4).



HIV-1 INFECTION MODEL WITH CTL IMMUNE RESPONSE AND DELAYS 563

Let X = C([−τ, 0], R5
+) be the Banach space of continuous functions from [−τ, 0]

to R5
+ equipped with the sup-norm, where τ = max

{
τ1, τ2, τ3

}
. The initial condi-

tions are given by

(5)

 (x(θ), y(θ), v(θ), w(θ), z(θ)) ∈ X,
x(θ) ≥ 0, y(θ) ≥ 0, v(θ) ≥ 0, w(θ) ≥ 0, z(θ) ≥ 0, θ ∈ [−τ, 0],
x(0) > 0, y(0) > 0, v(0) > 0, w(0) > 0, z(0) > 0.

By the standard theory of functional differential equation [20, 21], we know that
there exists a unique solution (x(t), y(t), v(t), w(t), z(t)) to model (4). Moreover,
we establishes the positivity and boundedness of solutions to model (4) according
to the following theorem.

Theorem 2.1. Let (x(t), y(t), v(t), w(t), z(t)) be the solution of model (4) with the
initial conditions (5). Then, we have

(i) x(t) > 0, y(t) > 0, v(t) > 0, w(t) > 0 and z(t) > 0 for t > 0,
(ii) There exists an M > 0 such that x(t) ≤ M , y(t) ≤ M , v(t) ≤ M , w(t) ≤ M

and z(t) ≤M for sufficiently large time t.

Proof. From the first equation of (4), we have

(6) x(t) = x(0)e−
∫ t
0
(d+βv(η))dη + s

∫ t

0

e−
∫ t
η
(d+βv(ξ))dξdη.

Clearly, x(t) > 0 for t > 0. We claim that y(t) and v(t) are also positive. Assuming
the contrary, let t1 > 0 be the first time such that y(t1) = 0 and ẏ(t1) ≤ 0.
Solving the third equation of system (4), we obtain v(t1 − τ1) = v(0)e−u(t1−τ1) +∫ t1−τ1
0

ke−a2τ2−u(t1−τ1)y(η − τ2)e
uηdη > 0. Together with the second equation of

(4), we have ẏ(t1) = βe−a1τ1x(t1 − τ1)v(t1 − τ1) > 0. It is a contradiction with the
assumption ẏ(t1) ≤ 0. Thus, we conclude that y(t) > 0, and then v(t) > 0. Using
the same argument as in the above proof, we can show that w(t) > 0, z(t) > 0 for
all t > 0. Thus, (i) holds.

Next, we prove that (ii) is tenable. From (6), we can get the following inequality:

x(t) < e−
∫ t
0
d dηx(0) + s

∫ t

0

e−
∫ t
η
d dξdη

= e−dtx(0) + s

∫ t

0

e−d(t−η)dη

= e−dtx(0) +
s

d
(1− e−dt).

Given that the exponential functions have negative exponents, one can see that
x(t) is bounded. To show that y(t) must also be bounded, we define

G(t) = e−a1τ1x(t) + y(t+ τ1)

and let n = min
{
a, d

}
. By calculating the time derivative of G(t) along the solution

of model (4), we obtain

dG(t)

dt
=e−a1τ1(s− dx(t)− βx(t)v(t)) + βe−a1τ1x(t)v(t)

− ay(t+ τ1)− py(t+ τ1)z(t+ τ1)

=se−a1τ1 − de−a1τ1x(t)− ay(t+ τ1)− py(t+ τ1)z(t+ τ1)

≤se−a1τ1 − de−a1τ1x(t)− ay(t+ τ1)

≤se−a1τ1 − nG(t),
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which shows that G(t) is bounded, and thus y(t) is also bounded. For v(t) =

v(0)e−ut +
∫ t
0
ke−a2τ2−uty(η − τ2)e

uηdη, we know that v(0)e−ut is bounded. How-
ever, other parts of the solution may be unbounded as t → ∞. We apply rule of
L’hospital to get

lim
t→∞

∫ t

0

ky(η − τ2)e
−a2τ2−ut+uηdη = lim

t→∞

ky(t− τ2)e
−a2τ2+ut

ueut
=
ky(∞)e−a2τ2

u
.

Since y(t) is bounded, v(t) is also bounded.
By contradiction, we can prove that w and z are bounded. Firstly, we assume

that z is unbounded. From the second equation in (4), we have limt→∞ y(t) = 0.
From the fourth equation in (4), the equality limt→∞ w(t) = 0 is also obtained.
It thus follows from the fifth equation in (4) that limt→∞ z(t) = 0, which contra-
dicts the assumption. Thus, z must be bounded. Similarly, we assume that w is
unbounded. According to the boundedness of z and the fifth equation of (4), we
again have limt→∞ y(t) = 0. In this case, we know from the fourth equation of (4)
that limt→∞ w(t) = 0 when limt→∞ y(t) = 0, which gives another contradiction,
thus w is also bounded. In the other words, there must be a positive constant M
such that x(t) ≤ M , y(t) ≤ M , v(t) ≤ M , w(t) ≤ M and z(t) ≤ M for sufficiently
large time t, finishing the proof of Theorem 2.1. 2

Model (4) has three possible equilibria: the infection-free equilibrium E0, the
infectious equilibrium without immune response E1 and the infectious equilibrium
with immune response E2 given by:

E0 = (x0, y0, v0, w0, z0) = (
s

d
, 0, 0, 0, 0),

E1 = (x1, y1, v1, w1, z1)

= (
auea1τ1+a2τ2

kβ
,
−aduea2τ2 + skβe−a1τ1

akβ
,
skβe−a1τ1−a2τ2 − adu

auβ
, 0, 0),

E2 = (x2, y2, v2, w2, z2),

where

x2 =
suc(e−a3τ3 − q)

duc(e−a3τ3 − q) + βbke−a2τ2
,

y2 =
b

c(e−a3τ3 − q)
,

v2 =
kbe−a2τ2

uc(e−a3τ3 − q)
,

w2 =
h(e−a3τ3 − q)(c(e−a3τ3 − q)(ksβe−a1τ1−a2τ2 − adu)− abβke−a2τ2)

qbp(duc(e−a3τ3 − q) + kbβe−a2τ2)
,

z2 =
c(e−a3τ3 − q)(ksβe−a1τ1−a2τ2 − adu)− abβke−a2τ2

p(duc(e−a3τ3 − q) + kbβe−a2τ2)
.

Obviously, there always exists an infection-free equilibrium E0, which represents
the state that the viruses are absent. By applying the general mathematical theory
of basic reproduction number of disease model [22], we define the basic reproduction
number R0 as

R0 =
ke−a2τ2

u
· βe

−a1τ1

a
· s
d
=
ksβe−a1τ1−a2τ2

adu
.(7)
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It follows from the expression of the E1 that E1 exists if and only if R0 > 1. The
equilibrium E1 represents the state that the viruses are present while the CTL cells
are absent. According to the method in [23], we introduce an immune reproduction
number

R1 =
cu(e−a3τ3 − q)

bke−a2τ2
· ksβe

−a1τ1−a2τ2 − adu

aβu

=
c(e−a3τ3 − q)(ksβe−a1τ1−a2τ2 − adu)

aβbke−a2τ2
.

Thus, the equilibrium E2 (the state in which both the viruses and CTL cells are

present) exists if and only if R1 > 1 and 0 ≤ τ3 < − ln q
a3

. If τ1 = τ2 = τ3 = 0, model

(4) and model (3) are equivalent.
In order to determine the local stability of model (4) at the equilibrium E =

(x̂, ŷ, v̂, ŵ, ẑ) (where E represents any of the equilibria E0, E1 and E2), we need to
linearize the model. The Jacobian matrix of model (4) is given by

A =


−d− βv̂ 0 −βx̂ 0 0

βv̂e−(λ+a1)τ1 −a− pẑ βx̂e−(λ+a1)τ1 0 −pŷ

0 ke−(λ+a2)τ2 −u 0 0

0 cŵe−(λ+a3)τ3 − cqŵ 0 cŷe−(λ+a3)τ3 − cqŷ − b 0
0 cqŵ 0 cqŷ −h

.
The characteristic equation of model (4) at E is

∆(λ) = |λI −A|,(8)

where λ is an eigenvalue of model (4). The roots of (8) determine the local stability
of E.

3. Stability of the infection-free equilibrium E0

First, we consider the local stability of the infection-free equilibrium E0 and have
the following theorem.

Theorem 3.1. When R0 < 1, the infection-free equilibrium E0 is locally asymp-
totically stable for any time delays τ1, τ2, τ3 ≥ 0; when R0 > 1, E0 becomes unstable
and the infectious equilibrium without immune response E1 occurs.

Proof. From (8), we can obtain the characteristic equation at the equilibrium
E0 as follows:

(9) (λ+ h)(λ+ b)(λ+ d)[λ2 + (a+ u)λ+ au− skβ

d
e−a1τ1−a2τ2−λ(τ1+τ2)] = 0.

Thus the eigenvalues of model (4) are −h,−b,−d, the remaining eigenvalues are
determined from the following transcendental equation which is obtained from (9)

(10) λ2 + (a+ u)λ+ au− skβ

d
e−a1τ1−a2τ2−λ(τ1+τ2) = 0.

If R0 > 1, we define a function

f(λ) = λ2 + (a+ u)λ+ au− skβ

d
e−a1τ1−a2τ2−λ(τ1+τ2).

It is clear that f(0) = au − skβ
d e−a1τ1−a2τ2 < 0, limλ→+∞ f(λ) = +∞. Therefore,

there exists at least one positive root when R0 > 1.
If R0 < 1, when τ1 = τ2 = τ3 = 0, equation (10) becomes

(11) λ2 + (a+ u)λ+ au− skβ

d
= 0.
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Obviously, all the roots of (11) have negative real parts when R0 < 1. For any
τ = (τ1, τ2, τ3), where τ1, τ2, τ3 > 0, the roots of equation (10) λ(τ) = r(τ) + iω(τ)
must have negative real part. Otherwise, there has τ̄ which satisfies the inequality
r(τ̄) > 0. Because r(0) < 0 by simple calculation, there must exist τ̂ = (τ̂1, τ̂2, τ̂3)
such that r(τ̂) = 0. Thus, we define λ(τ̂) = iϖ (ϖ > 0) to be a purely imaginary
root of (10). Then we get

(12) −ϖ2+ i(a+u)ϖ+au− skβe−a1τ̂1−a2τ̂2

d
[cosϖ(τ̂1+ τ̂2)− i sinϖ(τ̂1+ τ̂2)] = 0.

Separating the real and imaginary parts of equation (12), we have{
−ϖ2 + au = skβ

d e−a1τ̂1−a2τ̂2 cos[ϖ(τ̂1 + τ̂2)],

−aϖ − uϖ = skβ
d e−a1τ̂1−a2τ̂2 sin[ϖ(τ̂1 + τ̂2)],

which lead to

ϖ4 + (a2 + u2)ϖ2 + a2u2 − β2s2k2

d2
e−2a1τ̂1−2a2τ̂2 = 0.

The above equation has a unique positive solution if and only if au− skβ
d e−a1τ̂1−a2τ̂2 <

0, which is equivalent to R0 > 1. This contradicts to the condition R0 < 1. There-
fore, for any τ1, τ2, τ3 ≥ 0 and R0 < 1, all the roots of equation (10) have negative
real parts, which means that the infection-free equilibrium E0 is locally asymptot-
ically stable. 2

For the global stability of E0, we employ the method of fluctuation lemma [24]
and have the following theorem.

Theorem 3.2. If R0 < 1, the infection-free equilibrium E0 is globally asymptoti-
cally stable, implying that no virus can invade.

Proof. For convenience, we first introduce the following notations

f∞ = lim
t→∞

sup f(t), f∞ = lim
t→∞

inf f(t),

where f(t) is a bounded and continuously differentiable function defined on [0,∞).
In section 2, we have shown that the solution of model (4) are positive and bounded
for the initial condition (5). Therefore, limt→∞ sup and limt→∞ inf are meaningful
for the solution in model (4). By the fluctuation lemma, there exists a sequence tn
with tn → ∞ as n→ ∞ such that

(13) lim
n→∞

x(tn) = x∞, lim
n→∞

ẋ(tn) = 0.

Substituting t = tn into the first equation of (4) and taking limit, using the equa-
tions in (13), we obtain

(14) dx∞ ≤ (d+ βv∞)x∞ ≤ s.

Apply similar technique to the other equations in model (4), we have

(15) ay∞ ≤ (a+ pz∞)y∞ ≤ βe−a1τ1x∞v∞,

(16) uv∞ = ke−a2τ2y∞,

(17) bw∞ = ce−a3τ3y∞w∞ − cqy∞w∞ = c(e−a3τ3 − q)y∞w∞,

(18) hz∞ = cqy∞w∞.
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Combining with (14), (15) and (16), we obtain

ay∞ ≤ βe−a1τ1x∞v∞ ≤ skβ

du
e−a1τ1−a2τ2y∞.

If y∞ > 0, the above inequality leads to a ≤ skβ
du e

−a1τ1−a2τ2 , this implies R0 =
skβ
adue

−a1τ1−a2τ2 ≥ 1 which contradicts R0 < 1, thus y∞ = 0. By applying y∞ = 0
and (16), (17) and (18), we know that v∞ = 0, w∞ = 0 and z∞ = 0. Since
0 ≤ f∞ ≤ f∞, we must have y(t), v(t), w(t) and z(t) approach 0 as t → ∞.
Thus, the first equation in model (4) becomes ẋ = s − dx with v(t) → 0. Finally,
we apply the theory of asymptotically autonomous system [25] and conclude that
limt→∞ x(t) = s

d . This completes the proof of the theorem. 2

4. stability of the infectious equilibrium without immune response E1

From the analysis given in the section 3, we know that when R0 crosses the criti-
cal value 1, the infection-free equilibrium E0 changes its stability and the infectious
equilibrium without immune response E1 existences. Thus, in order to study the
stability of equilibrium E1, we always assume R0 > 1 in this section. We have the
following theorem for the local stability of infectious equilibrium without immune
response E1.

Theorem 4.1. When R1 < 1 < R0 holds, the infectious equilibrium without im-
mune response E1 is locally asymptotically stable for any time delay τ1, τ2, τ3 ≥ 0,
E1 becomes unstable and the infectious equilibrium with immune response E2 e-
merges if R1 > 1 and 0 ≤ τ3 < − ln q

a3
.

Proof. From (8), we obtain the characteristic equation at E1 given by f1(λ)
f2(λ)f3(λ) = 0, where

(19)


f1(λ) = λ+ b+ cqduea2τ2 (R0−1)

kβ − cduea2τ2e−(λ+a3)τ3 (R0−1)
kβ ,

f2(λ) = λ+ h,
f3(λ) = λ3 + (a+ u+ dR0)λ

2 + (duR0 + au+ dR0a− aue−λ(τ1+τ2))λ
+aduR0 − adue−λ(τ1+τ2).

Obviously, for the local stability of E1, we only need to consider the equations
f1(λ) = 0 and f3(λ) = 0.

Similar to theorem 3.1, we analyze the above equation when τ1, τ2, τ3 > 0. First,
for f1(λ) = 0, we assume that λ = iϖ (ϖ > 0) is a solution of equation, then
separating the real and imaginary parts yields

(20)

{
b+ cqduea2τ2R0

βk − cqduea2τ2

kβ = cdue−a3τ3ea2τ2 (R0−1)
kβ cos(ϖτ3),

ϖ = − cdue−a3τ3ea2τ2 (R0−1)
kβ sin(ϖτ3).

Squaring and adding the two equations of (20), we have

(21) ϖ2 + f4 = 0,

where

f4 = b2+
c2q2d2u2e2a2τ2

k2β2
(R0−1)2+

2bcqduea2τ2

kβ
(R0−1)−c

2d2u2e2a2τ2−2a3τ3

k2β2
(R0−1)2.

For convenience, we introduce f5 and f6, then f4 can be rewritten as

f4 = f5 · f6,
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where {
f5 = b+ cqduea2τ2 (R0−1)

kβ + cduea2τ2−a3τ3 (R0−1)
kβ ,

f6 = b+ cqduea2τ2 (R0−1)
kβ − cduea2τ2−a3τ3 (R0−1)

kβ = b(1−R1).

Given that R0 > 1 and all the parameters are positive, thus f5 > 0. Clearly,
f6 > 0 if and only if R1 < 1. Therefore, the all the roots of the equation f1(λ) = 0
have negative real parts when R1 < 1 < R0, or the roots with positive real parts
if R1 > 1. When τ1 = τ2 = τ3 = 0, the first equality in (19) becomes f1(λ) =

λ + b − c(1−q)du(R0−1)
kβ . It is easy to see that if R1 < 1, the root of the equation

f1(λ) = 0 has negative real part. Thus, the same conclusion is given in this case.
We rewrite f3(λ) = 0 as

(22) λ3 + d1λ
2 + d2λ+ d3 − (auλ+ adu)e−λ(τ1+τ2) = 0,

where

d1 = a+ u+ dR0, d2 = duR0 + au+ adR0, d3 = aduR0.

When τ1, τ2, τ3 = 0, (22) becomes

(23) λ3 + b1λ
2 + b2λ+ b3 = 0

and denotes

b1 = a+ u+ dR0, b2 = duR0 + adR0, b3 = adu(R0 − 1).

It is clear that b1, b2, b3 > 0 due to all the parameters are positive and R0 > 1.
According to the Routh-Hurwitz criterion [26], the equilibrium is locally asymp-
totically stable if and only if the coefficients of characteristic polynomial satisfy
∆i > 0, (i = 1, 2, 3), where

∆1 = b1, ∆2 = b1b2 − b3, ∆3 = b3∆2.

Since b1, b2, b3 > 0, we only need to verify the sign of ∆2. The straightforward
calculation shows that

∆2 = (a+ u)d2R2
0 + (a2 + u2)dR0 + adu(R0 + 1) > 0.

Thus, all roots of (23) have negative real parts when τ1 = τ2 = τ3 = 0.
For τ1, τ2, τ3 > 0, we still employ the method of theorem 3.1. By defining

λ = iω(ω > 0) to be a purely imaginary root of f3(λ) = 0, we can obtain

f7 + f8 = 0,

where{
f7 = (a+ u+ dR0)ω

2 + auω sin(ωτ1 + ωτ2)− aduR0 + adu cos(ωτ1 + ωτ2),
f8 = i(ω3 + (−duR0 − au+ cos(ωτ1 + ωτ2)au− adR0)ω − adu sin(ωτ1 + ωτ2)).

Taking moduli of the above equation results in

(24) ω6 + (a2 + u2 + d2R2
0)ω

4 + (a2d2R2
0 + u2d2R2

0)ω
2 + a2d2u2(R2

0 − 1) = 0.

Let

z = ω2, c1 = a2 + u2 + d2R2
0, c2 = (d2u2R2

0 + a2d2R2
0), c3 = a2d2u2(R2

0 − 1),

then (22) becomes

(25) z3 + c1z
2 + c2z + c3 = 0.
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Since R0 > 1, all the coefficients of the equation (25) are positive, and thus all roots
of f3 = 0 have negative real parts. Therefore, we conclude that E1 is locally asymp-
totically stable for any time delay τ1, τ2, τ3 ≥ 0 when R1 < 1 < R0, completing the
proof. 2

Furthermore, we can also show the global stability of the equilibrium E1 in the
following theorem.

Theorem 4.2. If R1 < 1 < R0, the infectious equilibrium without immune response
E1 is globally asymptotically stable, implying that CTL immune response has not
been established.

Proof. To construct the Lyapunov functional of model (4), we first consider the
following equations:

(26)


ẋ = s− dx(t)− βx(t)v(t),
ẏ = βe−a1τ1x(t)v(t)− ay(t)− py(t)z(t),
v̇ = ke−a2τ2y(t)− uv(t),
ẇ = ce−a3τ3y(t)w(t)− cqy(t)w(t)− bw(t),
ż = cqy(t)w(t)− hz(t).

Note that E1 is also the equilibrium of (26). Define a Lyapunov function V0 for E1,

V0 =m̃[e−a1τ1(x− x1 − x1ln
x

x1
) + (y − y1 − y1ln

y

y1
) +

a+ pz1
ke−a2τ2

(v − v1 − v1ln
v

v1
)]

+m(w + z),

where m̃ and m are positive coefficients yet to be determined. Due to the positivity
of the solutions of model (4), and the following inequality

x− 1− lnx ≥ 0

for any x > 0, we have V0 ≥ 0. The equality V0 = 0 holds if and only if x = x1,
y = y1, v = v1, w1 = z1 = 0, showing that E1 is the unique global minimum
of the Lyapunov function. Differentiating V0 along the solution of model (26), we
obtain

dV0
dt

∣∣
(4.8)

=m̃[e−a1τ1(1− x1
x
)ẋ+ (1− y1

y
)ẏ +

a+ pz1
ke−a2τ2

(1− v1
v
)v̇] +m(ẇ + ż)

=m̃[e−a1τ1(1− x1
x
)(s− dx− βxv) + (1− y1

y
)(βe−a1τ1xv − ay − pyz)

+
a+ pz1
ke−a2τ2

(1− v1
v
)(ke−a2τ2y − uv)] +m(ce−a3τ3yw − bw − hz)

=m̃[e−a1τ1(1− x1
x
)(−d(x− x1) + βx1v1 − βxv) + (1− y1

y
)(βe−a1τ1xv

−(a+ pz1)y + py(z1 − z)) +
a+ pz1
ke−a2τ2

(1− v1
v
)(ke−a2τ2y − uv)]

+m(ce−a3τ3yw − bw − hz)

=m̃[−de−a1τ1 (x− x1)
2

x
+ βe−a1τ1x1v1 − βe−a1τ1xv − βe−a1τ1x1v1

x1
x

+βe−a1τ1x1v + βe−a1τ1xv − (a+ pz1)y + py(z1 − z)− βe−a1τ1xv
y1
y

+(a+ pz1)y1 − py1(z1 − z) + (a+ pz1)y −
(a+ pz1)uv

ke−a2τ2
− (a+ pz1)y

v1
v

+
(a+ pz1)uv1
ke−a2τ2

] +m(ce−a3τ3yw − bw − hz)



570 T. GUO AND F. ZHAO

=m̃[−de−a1τ1 (x− x1)
2

x
+ βe−a1τ1x1v1(3−

x1
x

− xvy1
x1v1y

− yv1
y1v

)

+p(y1 − y)z + p(y − y1)z1] +m(ce−a3τ3yw − bw − hz),

where

s−dx1−βx1v1 = 0, βe−a1τ1x1v1−(a+pz1)y1 = 0, ke−a2τ2y1−uv1 = 0, z1 = 0

and the inequality f1+f2+f3 ≥ 3 3
√
f1f2f3, (f1 > 0, f2 > 0, f3 > 0) have been used.

Next, according to the method in [27], we can calculate the derivative of V0 along
(4) using the result for (26). We have

dV0
dt

∣∣
(1.4)

=
dV0
dt

∣∣
(4.8)

+ m̃(1− y1
y
)[βe−a1τ1x(t− τ1)v(t− τ1)− βe−a1τ1xv]

+m̃
a+ pz1
ke−a2τ2

(1− v1
v
)[ke−a2τ2y(t− τ2)− ke−a2τ2y]

+m[ce−a3τ3y(t− τ3)w(t− τ3)− ce−a3τ3yw]

=
dV0
dt

∣∣
(4.8)

+ m̃βe−a1τ1(1− y1
y
)[x(t− τ1)v(t− τ1)− xv] + m̃(a+ pz1)

·(1− v1
v
)[y(t− τ2)− y] +mce−a3τ3 [y(t− τ3)w(t− τ3)− yw]

=− dm̃e−a1τ1
(x− x1)

2

x
+ m̃βe−a1τ1x1v1(3−

x1
x

− x(t− τ1)v(t− τ1)y1
x1v1y

−y(t− τ2)v1
y1v

+ ln
x(t− τ1)v(t− τ1)y(t− τ2)

xyv
) + m̃p(y1 − y)z

+m(ce−a3τ3y(t− τ3)w(t− τ3)− bw − hz)

+m̃βe−a1τ1x1v1(
x(t− τ1)v(t− τ1)

x1v1
− xv

x1v1
− ln

x(t− τ1)v(t− τ1)

xv

+
y(t− τ2)

y1
− y

y1
− ln

y(t− τ2)

y
)

=− dm̃e−a1τ1
(x− x1)

2

x
+ m̃βe−a1τ1x1v1(4−

x1
x

− x(t− τ1)v(t− τ1)y1
x1v1y

−y(t− τ2)v1
y1v

− xvv1
xvv1

+ ln
x(t− τ1)v(t− τ1)y(t− τ2)

xyv
) + m̃p(y1 − y)z

+m(ce−a3τ3y(t− τ3)w(t− τ3)− bw − hz)

+m̃βe−a1τ1x1v1(
x(t− τ1)v(t− τ1)

x1v1
− xv

x1v1
− ln

x(t− τ1)v(t− τ1)

xv

+
y(t− τ2)

y1
− y

y1
− ln

y(t− τ2)

y
).(27)

(28)

To eliminate the last term of (27), we use the technique in [28] and define V1 and
V2 as follows:

V1 =

∫ τ1

0

H(
x(t− η)v(t− η)

x1v1
)dη, V2 =

∫ τ2

0

H(
y(t− η)

y1
)dη,

where H(t) = t − 1 − lnt. V1 ≥ 0, V2 ≥ 0 and V1 = V2 = 0 if and only if
x(t)v(t) = x1v1 and y = y1. It will be useful to digress here and give a brief outline

of the property of H(t). We introduce U =
∫ τ
0
H(ψ(t−η)δ )dη, ψ stands for a positive
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and continuous function, δ is a positive constant. Thus, we have

dU

dt
=

∫ τ

0

d

dt
H(

ψ(t− η)

δ
)dη = −

∫ τ

0

d

dη
H(

ψ(t− η)

δ
)dη

= H(
ψ(t)

δ
)−H(

ψ(t− τ)

δ
)

=
ψ(t)

δ
− ψ(t− τ)

δ
+ ln

ψ(t− τ)

ψ(t)
.(29)

From (29), we have

dV1
dt

=
xv

x1v1
− x(t− τ1)v(t− τ1)

x1v1
+ ln

x(t− τ1)v(t− τ1)

xv
,

dV2
dt

=
y

y1
− y(t− τ2)

y1
+ ln

y(t− τ2)

y
.

(30)

Finally, we construct the Lyapunov function V = V0 + m̃βe−a1τ1x1v1(V1 + V2).
From (27) and (30), we have

dV

dt

∣∣
(1.4)

=− dm̃e−a1τ1
(x− x1)

2

x
+ m̃βe−a1τ1x1v1(4−

x1
x

− x(t− τ1)v(t− τ1)y1
x1v1y

−y(t− τ2)v1
y1v

− xvv1
xvv1

+ ln
x(t− τ1)v(t− τ1)y(t− τ2)

xyv
)

−[mh+ m̃p(y − y1)]z +m[ce−a3τ3y(t− τ3)w(t− τ3)− bw].

The second term is non-positive comes from the inequality

4−x1
x
−y1x(t− τ1)v(t− τ1)

yx1v1
−v1y(t− τ2)

vy1
−xvv1
xvv1

+ln
x(t− τ1)v(t− τ1)y(t− τ2)

xvy
≤ 0,

which can be obtained by (7) in [27] with a1 = x, a2 = xvv1, a3 = x1v1y, a4 = vy1,
b1 = x1, b2 = xvv1, b3 = xvy1, b4 = v1y, b

′
3 = y1x(t− τ1)v(t− τ1), b

′
4 = v1y(t− τ2).

Thus, the following inequality

dV

dt

∣∣
(1.4)

≤ −[mh+ m̃p(y(t)− y1)]z(t) +m[ce−a3τ3y(t− τ3)w(t− τ3)− bw(t)]

holds.
We assume y > y1 and choose m̃ ≫ m such that dV

dt

∣∣
(1.4)

< 0. Thus, the

trajectory enters and stays in the region bounded by y < y1 + ε for t ∈ [T1,∞)
(finite time T1 > 0). The inequality

b

c(e−a3τ3 − q)
− y1 =

b

c(e−a3τ3 − q)
− du(R0 − 1)

ke−a2τ2β
=

b(1−R1)

c(e−a3τ3 − q)
> 0

when R1 < 1 < R0, implying that we can choose appropriate m̃ and m to ensure
that y − ε < y1 <

b
c(e−a3τ3−q) , i.e., y <

b
c(e−a3τ3−q) + ε for arbitrary small ε. Thus,

the solution must enter and stay in the region bounded by y ≤ b
c(e−a3τ3−q) for

t ∈ [T2,∞) (finite time T2 > T1).
Next, we prove that the solution trajectory asymptotically tends to E1. From

(17), we have

(
b

c(e−a3τ3 − q)
− y∞)w∞ = 0.

Since y < b
c(e−a3τ3−q) + ε, the above equation holds if and only if w∞ = 0 (for

t ∈ [T2,∞)), which generates z∞ = 0 on the basis of (18). Hence, model (4) has
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the same dynamics as

(31)

 ẋ = s− dx(t)− βx(t)v(t),
ẏ = βe−a1τ1x(t− τ1)v(t− τ1)− ay(t)− py(t)z(t),
v̇ = ke−a2τ2y(t− τ2)− uv(t).

By simple calculation, we obtain two equilibria of model (31) as follows:

Ẽ0 = (x0, y0, v0) = (
s

d
, 0, 0),

Ẽ1 = (x1, y1, v1) = (
auea1τ1+a2τ2

kβ
,
−aduea2τ2 + skβe−a1τ1

akβ
,
skβe−a1τ1−a2τ2 − adu

auβ
).

It is easy to verify that Ẽ0 is unstable and Ẽ1 is asymptotically stable if R1 < 1 <
R0. To show the model (31) is globally asymptotically stable at Ẽ1, we define the
Lyapunov function as

Ṽ =e−a1τ1(x− x1 − x1ln
x

x1
) + (y − y1 − y1ln

y

y1
) +

a+ pz1
ke−a2τ2

(v − v1 − v1ln
v

v1
)

+ βe−a1τ1x1v1(

∫ τ1

0

H(
x(t− η)v(t− η)

x1v1
)dη +

∫ τ2

0

H(
y(t− η)

y1
)dη).

Clearly,

dṼ

dt

∣∣
(4.12)

≤ −dm̃e−a1τ1 (x− x1)
2

x
< 0.

Thus, when R1 < 1 < R0, the equilibrium Ẽ1 of model (31) is globally asymp-
totically stable, which indicates that the equilibrium E1 of model (4) is globally
asymptotically stable. 2

As shown in Theorems 3.1-4.2, the infection-free equilibrium E0 is globally
asymptotically stable if R0 < 1; when R0 > 1, E0 becomes unstable and the
infectious equilibrium without immune response E1 exists; when R1 < 1 < R0,
the equilibrium E1 is globally asymptotically stable. From which, we know that
the time delays τ1, τ2 and τ3 do not affect the global stability of the equilibria E0

and E1. Moreover, the forward transcritical bifurcation occurs as R0 crosses the
threshold value 1. Because this bifurcation is straightforward compared with Hopf
bifurcation, we only plot it in Fig. 4. From Fig. 4, it is clear that model (1.4)
exhibit a forward bifurcation at R0 = 1.

5. Local stability of the infectious equilibrium with immune response E2

and Hopf bifurcation from E2

From the previous section, we show that the characteristic equations of equilibria
E0 and E1 can be factored into lower degree polynomials, but it is difficult to factor
the characteristic equation at E2. Thus, we determine the stability of E2 by the
different method in sections 3 and 4. We also show that Hopf bifurcation can occur
from E2 when the parameters satisfy certain condition in this section. Because
we mainly focus on the local stability of E2, we always assume that R1 > 1 and
0 ≤ τ3 < − ln q

a3
.

To simplify the analysis for E2, let µ1(t) = x(t) − x2(t), µ2(t) = y(t) − y2(t),
µ3(t) = v(t) − v2(t), µ4(t) = w(t) − w2(t), µ5(t) = z(t) − z2(t), then model (4)
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becomes

(32)



µ̇1(t) = Aµ1(t) +Bµ3(t) + a11µ1(t)µ3(t),
µ̇2(t) = Iµ2(t) +Dµ5(t) + Eµ1(t− τ1) + Fµ3(t− τ1)

+a12µ1(t− τ1)µ3(t− τ1) + a13µ2(t)µ5(t),
µ̇3(t) = Gµ2(t− τ2) +Hµ3(t),
µ̇4(t) = Lµ2(t− τ3)−Qµ2(t) +Mµ4(t− τ3)−Nµ4(t)

+a14µ2(t− τ3)µ4(t− τ3) + a15µ2(t)µ4(t),
µ̇5(t) = Qµ2(t) +Rµ4(t) + Tµ5(t)− a15µ2(t)µ4(t),

where

A =− d− βv2, B = −βx2, a11 = −β, I = −a− pz2, D = −py2,
E =βe−a1τ1v2, F = βe−a1τ1x2, a12 = βe−a1τ1 , a13 = −p, G = ke−a2τ2 ,

H =− u, L = ce−a3τ3w2, M = ce−a3τ3y2, N = cqy2 + b, a14 = ce−a3τ3 ,

a15 =− cq, Q = cqw2, R = cqy2, T = −h.

Because the infectious equilibrium with immune response E2 of model (4) is
transformed into the zero equilibrium (0, 0, 0, 0, 0) of model (32), it is sufficient to
study the stability of the origin for (32). The linearization of (32) at (0, 0, 0, 0, 0)
is

(33)


µ̇1(t) = Aµ1(t) +Bµ3(t),
µ̇2(t) = Iµ2(t) +Dµ5(t) + Eµ1(t− τ1) + Fµ3(t− τ1),
µ̇3(t) = Gµ2(t− τ2) +Hµ3(t),
µ̇4(t) = Lµ2(t− τ3)−Qµ2(t) +Mµ4(t− τ3)−Nµ4(t),
µ̇5(t) = Qµ2(t) +Rµ4(t) + Tµ5(t),

and the corresponding characteristic equation is

λ5 + b4λ
4 + b3λ

3 + b2λ
2 + b1λ+ b0 + (d4λ

4 + d3λ
3 + d2λ

2 + d1λ+ d0)e
−λτ3

+(p3λ
3 + p2λ

2 + p1λ+ p0)e
−λ(τ1+τ2) + (s2λ

2 + s1λ+ s0)e
−λ(τ1+τ2+τ3) = 0,

(34)

where

b4 =− I −H − T +N −A,

b3 =−HN +AH −QD −AN +HT + IA+AT − IN + IH + IT −NT,

b2 =− IAH + IHN + INT − IHT +AHN +AQD −QDN −AHT + IAN

− IAT +QDH +HNT +DRQ+ANT,

b1 =QDHN −AHNT +AQDN −AQDH −ADRQ−DRQH − IANT

− IAHN − IHNT + IAHT,

b0 =ADRQH −AQDHN + IAHNT, d4 = −M,

d3 =AM + IM +HM +MT,

d2 =− IHM +QDM −AHM −AMT −DRL− IMT −HMT − IAM,

d1 =IAMT +AHMT + IAHM +DRLH −QDHM

−AQDM + IHMT +ADRL,

d0 =− IAHMT −ADRLH +AQDHM,

p3 =−GF, p2 = GFT −GFN +AGF − EGB,

p1 =GFNT + EGBT − EGBN −AGFT +AGFN,

p0 =−AGFNT + EGBNT, s2 = GFM,
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s1 =−AGFM + EGBM −GFMT, s0 = −EGBMT +AGFMT.

We note that the characteristic equation (34) is a transcendental equation of λ, so
the following lemma is useful.

Lemma 5.1. [29] For the transcendental equation

p(λ, e−λτ1 , . . . , e−λτm) = λn + p
(0)
1 λn−1 + · · ·+ p

(0)
n−1λ+ p

(0)
n

+[p
(1)
1 λn−1 + · · ·+ p

(1)
n−1λ+ p

(1)
n ]e−λτ1

+ · · ·+ [p
(m)
1 λn−1 + · · ·+ p

(m)
n−1λ+ p

(m)
n ]e−λτm = 0,

where τi(i = 1, 2, . . . ,m) and p
(i)
j (i = 0, 1, 2, . . . ,m; j = 1, 2, . . . , n) are constants.

As (τ1, τ2, . . . , τm) varys, the sum of orders of the zeros of p(λ, e−λτ1 , . . . , e−λτm)
in the open right half plane can change, and only a zero appears on or crosses the
imaginary axis.

It is well known that the zero equilibrium (0, 0, 0, 0, 0) of model (32) is asymp-
totically stable if all roots of equation (34) locate the left-half complex plane, or it
is unstable when equation (34) has a root with positive real part. Thus, we will
discuss the distribution of roots of equation (34) when τ1, τ2 and τ3 have following
different values.

5.1. Case (I): τ1 = τ2 = τ3 = 0. In the absence of three delays, the equation (34)
becomes

λ5+(b4 + d4)λ
4 + (b3 + d3 + p3)λ

3 + (b2 + d2 + p2 + s2)λ
2

+(b1 + d1 + p1 + s1)λ+ b0 + d0 + p0 + s0 = 0.
(35)

By employing the Routh-hurwitz criteria for the equation (35), a set of necessary
and sufficient conditions which all roots of (35) have negative real parts are given
in the following form:

(T1) ∆1 = b4 + d4 > 0,
∆2 = (b4 + d4)(b3 + d3 + p3)− (b2 + d2 + p2 + s2) > 0,
∆3 = −(b4+ d4)

2(b1+ d1+ p1+ s1)+ (b4+ d4)[(b3+ d3+ p3)(b2+ d2+ p2+
s2) + (b0 + d0 + p0 + s0)]
− (b2 + d2 + p2 + s2)

2 > 0,
∆4 = −[(b4+ d4)(b1+ d1+ p1+ s1)− (b0+ d0+ p0+ s0)]

2+ [(b2+ d2+ p2+
s2)(b1 + d1 + p1 + s1)
−(b3+d3+p3)(b0+d0+p0+s0)][(b4+d4)(b3+d3+p3)−(b2+d2+p2+s2)] > 0,
∆5 = (b0 + d0 + p0 + s0)∆4 > 0.

Thus, we have following result for the local stability of the equilibrium E2.

Theorem 5.1. When R1 > 1 and the coefficients of the equation (35) satisfy (T1),
the infectious equilibrium with immune response E2 is locally asymptotically stable.

5.2. Case (II): τ1 = τ2 = 0 and 0 < τ3 < − ln q
a3

. When the intracellular delays [18]

τ1, τ2 are zero and the immune delay 0 < τ3 < − ln q
a3

, the characteristic equation

(34) becomes

(36) λ5+h9λ
4+h8λ

3+h7λ
2+h6λ+h5+(h4λ

4+h3λ
3+h2λ

2+h1λ+h0)e
−λτ3 = 0,

where

h9 = b4, h8 = b3 + p3, h7 = b2 + p2, h6 = b1 + p1, h5 = b0 + p0,

h4 = d4, h3 = d3, h2 = s2 + d2, h1 = s1 + d1, h0 = s0 + d0.
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Assume that λ = iω (ω > 0) is a root of the equation (36), then separating the real
and imaginary parts, we have
(37){

h9ω
4 − h7ω

2 + h5 = −(h4ω
4 − h2ω

2 + h0) cos(ωτ3)− (−h3ω3 + h1ω) sin(ωτ3),
ω5 − h8ω

3 + h6ω = −(−h3ω3 + h1ω) cos(ωτ3) + (h4ω
4 − h2ω

2 + h0) sin(ωτ3).

Squaring and adding the two equations in (37) yields

(38) ω10 + c1ω
8 + c2ω

6 + c3ω
4 + c4ω

2 + c5 = 0,

where

c1 =h29 − h24 − 2h8, c2 = 2h4h2 − 2h9h7 + h28 − h23 + 2h6,

c3 =h27 − 2h4h0 + 2h3h1 − h22 − 2h8h6 + 2h9h5,

c4 =− h21 − 2h7h5 + h26 + 2h2h0, c5 = −h20 + h25.

Denote ν = ω2, then (38) becomes

(39) ν5 + c1ν
4 + c2ν

3 + c3ν
2 + c4ν + c5 = 0.

In order to study the local Hopf bifurcation at E2 of model (4), the equation (39)
should have at least a positive real root.

Using e−a3τ3 − q > 0 and ce−a3τ3y2 = cqy2 + b (i.e., M = N), we obtain c5 > 0
by simple calculation. It is easy to see that if the condition

(T2) c1 > 0, c2 > 0, c3 > 0, c4 > 0

holds, the equation (39) has no positive root. Otherwise, if the condition

(T3) (39) has at least one positive root ν0

holds, then the equation (36) has a pair of purely imaginary roots ±iω+ = ±i√ν0.
By substituting ω+ into (37), we obtain

cos(ω+τ3) = −

(−h3 + h4h9)ω
8
+ + (h1 − h2h9 + h3h8 − h4h7)ω

6
+ + (h0h9 − h1h8

+ h2h7 − h3h6 + h4h5)ω
4
+ + (−h0h7 + h1h6 − h2h5)ω

2
+ + h0h5

(h4ω4
+ − h2ω2

+ + h0)2 + (−h3ω3
+ + h1ω)2

.

Since cosx is a periodic function with period 2π, the critical value have the following
form:

τ3j =
1

ω+
[arccos(−

(−h3 + h4h9)ω
8
+ + (h1 − h2h9 + h3h8 − h4h7)ω

6
+ + h0h9ω

4
+

(h4ω4
+ − h2ω2

+ + h0)2 + (−h3ω3
+ + h1ω)2

+
(−h1h8 + h2h7 − h3h6 + h4h5)ω

4
+ + (−h0h7 + h1h6 − h2h5)ω

2
+ + h0h5

(h4ω4
+ − h2ω2

+ + h0)2 + (−h3ω3
+ + h1ω)2

) + 2jπ],

(j = 0, 1, 2, 3, . . . ). Let λ(τ3) = α(τ3)+ iω(τ3) be the root of the equation (36) near
τ3 = τ3j satisfying α(τ3j ) = 0 and ω(τ3j ) = ω+. By differentiating the equation
(36) with respect to τ3, we get

dλ

dτ3
=

λ(h4λ
4 + h3λ

3 + h2λ
2 + h1λ+ h0)

(5λ4 + 4h9λ
3 + 3h8λ

2 + 2h7λ+ h6)e
λτ3 + (4h4λ

3 + 3h3λ
2 + 2h2λ+ h1)

− τ3(h4λ
4 + h3λ

3 + h2λ
2 + h1λ+ h0)

.

Substituting τ3 = τ3j into the above equation yields

dλ

dτ3

∣∣
τ3=τ3j
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=
(iω+)(h4ω

4
+ − ih3ω

3
+ − h2ω

2
+ + ih1ω+ + h0)

(5ω4
+ − 4ih9ω

3
+ − 3h8ω

2
+ + 2ih7ω+ + h6)e

iω+(τ3j ) + (−4ih4ω
3
+

− 3h3ω
2
+ + 2ih2ω+ + h1)− τ3j (h4ω

4 − ih3ω
3
+ − h2ω

2
+ + ih1ω+ + h0)

.(40)

Notice that

ℜ( dλ
dτ3

∣∣
τ3=τ3j

) ̸= 0 ⇔ ℜ( dλ
dτ3

∣∣
τ3=τ3j

)−1 ̸= 0.

From (40), we obtain

ℜ( dλ
dτ3

∣∣
τ3=τ3j

)−1 ̸= 0.

According to the above results, we have the following theorem.

Theorem 5.2. When R1 > 1, 0 < τ3 < − ln q
a3

and the condition (T1) is satisfied,
then we have the following conclusions,

(i) If (T2) holds, then the equilibrium E2 of model (4) is asymptotically stable.
(ii) If the condition (T3) holds, then the infectious equilibrium with immune re-

sponse E2 of model (4) is locally asymptotically stable for τ3 ∈ [0, τ30) and
becomes unstable for τ3 > τ30 . Moreover, when τ3 = τ30 , a Hopf bifurcation
occurs. That is, a family of periodic solutions bifurcate from E2 as τ3 passes
through the critical value τ30 .

5.3. Case (III): τ1 > 0, τ2 > 0 and τ3 = 0. When intracellular delays τ1, τ2 ̸= 0
and immune delay τ3 = 0, the characteristic equation (34) becomes
(41)

λ5+m8λ
4+m7λ

3+m6λ
2+m5λ+m4+(m3λ

3+m2λ
2+m1λ+m0)e

−λ(τ1+τ2) = 0,

where

m8 = b4 + d4, m7 = b3 + d3, m6 = b2 + d2, m5 = b1 + d1, m4 = b0 + d0,

m3 = p3, m2 = s2 + p2, m1 = s1 + p1, m0 = s0 + p0.

Here, we assume that τ1 is a parameter and τ2 is located within a stable interval.
Similar to case (II), let λ = iϖ (ϖ > 0) is a root of (41), then (41) can be rewritten
as

(42) h(ϖ) = ϖ10 + g1ϖ
8 + g2ϖ

6 + g3ϖ
4 + g4ϖ

2 + g5 = 0,

where

g1 = m2
8 − 2m7, g2 = m2

7 −m2
3 − 2m8m6 + 2m5,

g3 = 2m8m4 +m2
6 − 2m7m5 −m2

2 + 2m1m3,

g4 = m2
5 −m2

1 + 2m2m0 − 2m6m4, g5 = m2
4 −m2

0.

By simple calculation, we find that g5 > 0 always holds. We assume that the
condition of Hopf bifurcation similars to those in case (II), that is,

(T4) (42) has at least one positive root

holds, and define the positive roots of the equation (42) are ϖ1, ϖ2, . . . , ϖ10. S-

ince the periodicity of trigonometric function, there exists a sequence {τ j1i
∣∣j =

1, 2, 3, . . . } for every fixed ϖi(i = 1, 2, 3, . . . 10). Define

τ10 = min
{
τ j1i

∣∣i = 1, 2, . . . , n; j = 1, 2, 3, . . .
}
.

When τ3 = 0, τ1 = τ10 and τ2 ∈ [0, τ20 ], equation (41) has a pair of purely imaginary
roots ±(iϖ). If
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(T5) ℜ( dλdτ1 |λ=iϖ) ̸= 0

holds, we have the following theorem.

Theorem 5.3. When R1 > 1, for τ1 > 0, τ2 > 0 and τ3 = 0, assume that (T1),
(T4) and (T5) are satisfied, then the infectious equilibrium with immune response
E2 of model (4) is locally asymptotically stable for τ1 ∈ [0, τ10 ], and becomes unstable
for τ1 > τ10 . Furthermore, when τ1 = τ10 , a Hopf bifurcation occurs. That is, a
family of periodic solutions bifurcate from E2 as τ1 passes through the critical value
τ10 .

In [18], the authors divide three time delays into intracellular delay and immune
delay. In this paper, we also focus on the effect of intracellular delays (τ1 and τ2)
and immune delay (τ3) on HIV-1 infection model. In addition, the research methods
and conclusions of the other four cases (‘τ1 = τ3 = 0, τ2 > 0’, ‘τ2 = τ3 = 0, τ1 > 0’,
‘τ2 = 0, τ1 > 0, τ3 > 0’ and ‘τ1 = 0, τ2 > 0, τ3 > 0’) are similar to those of cases (II)
and (III). Thus, we ignore the other cases to make the presentation more clear.

5.4. Case (IV): τ1 > 0, τ2 > 0 and 0 < τ3 < − ln q
a3

. For the equation (34), we
can regard τ2 as a parameter and τ1, τ3 are located within stable interval. Let
λ = iω(ω > 0) to be a purely imaginary root of (34), we obtain

(43) ω10 + l1ω
9 + l2ω

8 + l3ω
7 + l4ω

6 + l5ω
5 + l6ω

4 + l7ω
3 + l8ω

2 + l9ω + l10 = 0,

where

r1 =cosωτ3, r2 = sinωτ3, l1 = −2d4r2,

l2 =b24 − 2d3r1 + 2b4d4r1 − 2b3 + d24,

l3 =2d2r2 − 2b4d3r2 + 2b3d4r2,

l4 =2b1 + d23 − 2b2d4r1 − 2b4b2 − p23 + 2d1r1 + 2b3d3r1 − 2d4d2 − 2b4d2r1 + b23,

l5 =2p3r2s2 + 2b4d1r2 + 2b2d3r2 − 2d0r2 − 2b3d2r2 − 2b1d4r2,

l6 =b22 − 2b3b1 + 2d4d0 − 2b3d1r1 + 2b4b0 + 2p3r1s1 + 2b2d2r1 − 2d3d1 + d22

− p22 − s22 + 2b4d0r1 + 2p3p1 + 2b0d4r1 − 2p2r1s2 − 2b1d3r1,

l7 =2p2r2s1 − 2p3r2s0 + 2b3d0r2 − 2p1r2s2 − 2b0d3r2 − 2b2d1r2,

l8 =d21 − s21 − 2p1r1s1 + 2p2r1s0 + 2p0p2 + 2s0s2 − 2b2d0r1 + 2p0r1s2 + b21 − p21

− 2b0d2r1 + 2b1d1r1 − 2b0b2 − 2d0d2,

l9 =− 2b1d0r2 − 2p0r2s1 + 2b0d1r2 + 2p1r2s0,

l10 =2b0d0r1 + b20 − s20 − p20 − 2p0s0r1 + d20.

Denote

(44) h(ω) = ω10+ l1ω
9+ l2ω

8+ l3ω
7+ l4ω

6+ l5ω
5+ l6ω

4+ l7ω
3+ l8ω

2+ l9ω+ l10.

We assume that

(T6) l10 < 0

holds, and thus h(0) < 0 holds. Because h(ω) → +∞ as ω → +∞, the equation
(43) has finite positive roots ω1, ω2, . . . , ω10. Since the periodicity of trigonomet-

ric function, there exists a sequence {τ j2i
∣∣j = 1, 2, 3, . . . } for every fixed ωi(i =

1, 2, 3, . . . 10). Define

τ20 = min
{
τ j2i

∣∣i = 1, 2, . . . , k; j = 1, 2, 3, . . .
}
.

When τ2 = τ20 and τ1 ∈ [0, τ10 ], τ3 ∈ [0, τ30 ], the equation (43) has a pair of purely
imaginary roots ±(iω). Let condition
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(T7) ℜ( dλdτ2
∣∣
λ=iω

) ̸= 0

hold, we have the following theorem.

Theorem 5.4. When R1 > 1, for τ1 > 0, τ2 > 0 and 0 < τ3 < − ln q
a3

, assume that

(T1), (T3), (T4), (T5), (T6) and (T7) are satisfied, then the infectious equilibrium
with immune response E2 of model (4) is locally asymptotically stable for τ2 ∈
[0, τ20 ] and becomes unstable for τ2 > τ20 . Furthermore, when τ2 = τ20 , a Hopf
bifurcation occurs. That is, a family of periodic solutions bifurcate from E2 as τ2
passes through the critical value τ20 .

6. Numerical simulations

In this section, we demonstrate the theoretical results obtained in the sections
3, 4 and 5 through numerical simulations. We have shown that the basic repro-
duction number R0 and the immune reproduction number R1 play a decisive role
in determining the dynamics in sections 3 and 4. Thus, for convenience, we vary
R0 and R1 by changing s and fixing the rest of the parameter values in model (4).

Next, when R1 > 1 and 0 ≤ τ3 < − ln q
a3

, we choose τ1, τ2 or τ3 as a bifurcation

parameter and fix all other parameter values in model (4) for the simulations of the
section 5.

Let

d = c = h = q =
1

10
, β =

3

400
, p = 1, b = 0.6, a = 0.02, k = 27,

u = 5.2, a1 = 0.02, a2 = 0.28, a3 = 0.08, τ1 = 0, τ2 = 13, τ3 = 24.
(45)

With these parameter values, we have

R0 =
19.47115384

e3.64
s

and

R1 = 41.15226337(
1

e1.92
− 0.1)(0.2025s− 0.0104).

6.1. Infection-free equilibrium E0. Straightforward calculation shows that when
0 < s < 1.95, the inequality 0 < R0 < 1 holds. If s = 1.4, we get the infection-
free equilibrium E0 : (x, y, v, w, z) = (14, 0, 0, 0, 0). Numerical simulation for the
infection-free equilibrium E0 are shown in Fig. 2 which shows that E0 is asymp-
totically stable. This confirms the result in Theorem 3.2.

6.2. Infectious equilibrium without immune response E1. Increasing s to
pass through the critical value 1.95 causes E0 loses its stability and the equilibrium
E1 exists. According to Theorem 4.2, E1 is asymptotically stable when R1 <
1 < R0, i.e., 1.95 < s < 2.63. We choose s = 2.6, with the parameter values
given in (45), the infectious equilibrium without immune response E1 becomes
E1 : (x, y, v, w, z) = (19.5632, 32.1839, 4.387, 0, 0). Numerical simulation for the
infectious equilibrium without immune response E1 are shown in Fig. 3 which
shows that E1 is asymptotically stable. This confirms the result in Theorem 4.2.

6.3. Infectious equilibrium with immune response E2. In this section, we
consider model (4) with the coefficients:

d = c = h = q =
1

10
, β =

3

400
, p = 1, b = 0.6, a = 0.02,

k = 27, u = 5.2, s = 7, a1 = 0.02, a2 = 0.28, a3 = 0.08.
(46)
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Figure 2. The numerical approximations of system (4) for the
parameter values given in (45) and s = 1.4, which shows that
solution trajectories converge to the infection-free equilibrium E0 :
(x, y, v, w, z) = (14, 0, 0, 0, 0).
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Figure 3. The numerical approximations of system (4) for the
parameter values given in (45) and s = 2.6, which shows that
solution trajectories converge to the infectious equilibrium without
immune response E1 : (x, y, v, w, z) =
(19.5632, 32.1839, 4.387, 0, 0).
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Figure 4. The figure of the virus versus the basic reproduction
number R0

Based on the analysis in the section 5, the four cases will be simulated.
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Figure 5. The numerical approximations of system (4) for the pa-
rameter values given in (46) and τ1 = τ2 = τ3 = 0, showing that the
infectious equilibrium with immune response E2 : (x, y, v, w, z) =
(19.4652, 6.66667, 34.6154, 1.10703, 0.738021) is asymptotically sta-
ble.

Case (I): In the absence of delays (i.e., τ1 = τ2 = τ3 = 0), we choose the param-

eter values in (46). In this case, R1 = 52.1148 > 1 and 0 ≤ τ3 < − ln q
a3

≈ 28.78, i.e.,
the conditions for existence of the infectious equilibrium with immune response E2

are satisfied. Note that we always choose τ3 < 28.78 in the following simulation.
Substituting the parameter values in (46) into the expressions in (T1), we have
∆1 = 4.32578 > 0, ∆2 = 25.1694 > 0, ∆3 = 53.2214 > 0, ∆4 = 14.0264 > 0, ∆5 =
2.3608 > 0. Thus, the equilibrium E2 = (19.4652, 6.66667, 34.6154, 1.10703, 0.738021)
is asymptotically stable (see Fig. 5). This confirms the result in Theorem 5.1.

Case (II): In the absence of intracellular delays and using the parameter values
in (46), the conditions (T1) and (T3) hold. In this case, we obtain the critical
value of immune delay τ30 = 19.2107. If τ3 = 11.6 < τ30 , the immune reproduction
number R1 = 17.1 > 1, the solution trajectories converge to the infectious equi-
librium with immune response E2 = (7.85524, 20.3153, 105.483, 0.140732, 0.285901)
after some initial transient oscillations (see Fig. 6). When τ3 = 24 > τ30 , model
(4) undergoes Hopf bifurcation and the periodic solutions are shown in Fig. 7. The
results obtained in Theorem 5.2 are verified.

Case (III): In the absence of immune delay (τ3 = 0), we choose τ2 = 3.6 and fix
all other parameter values in (46). With these values, we know that the conditions
(T1), (T4) and (T5) are satisfied. Moreover, the critical value of delay τ1 is 11.4942.
When τ1 = 9 < 11.4942, the solution trajectories are shown in Fig. 8. From Fig.
8, we observe that the solution trajectories eventually tend to the infectious equi-
librium with immune response E2 = (35.9442, 6.6667, 12.6328, 0.61003, 0.406687).
If we choose τ1 = 12.6 > 11.4942, the model (4) undergoes Hopf bifurcation and
the periodic solutions are shown in Fig. 9. This confirms the result in Theorem 5.3.
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Figure 6. The numerical approximations of system (4) for the
parameter values given in (46) and τ1 = τ2 = 0, τ3 = 11.6 <
19.2107, showing that solution trajectories converge to the in-
fectious equilibrium with immune response E2 : (x, y, v, w, z) =
(7.85524, 20.3153, 105.483, 0.140732, 0.285901).
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Figure 7. The numerical approximations of system (4) for the
parameter values given in (46) and τ1 = τ2 = 0, τ3 = 24 >
19.2107, showing that Hopf bifurcation occurs from the infec-
tious equilibrium with immune response E2 : (x, y, v, w, z) =
(1.36893, 128.736, 668.438, 0.002587, 0.033314).

Case (IV): When τ1 > 0, τ2 > 0 and 0 < τ3 < − ln q
a3

, we choose τ1 = 1, τ3 = 1 and

use the parameter values in (46). In this case, the conditions (T1) and (T3)-(T7)
hold, the critical value of delay is τ20 = 5.11681. For the case τ2 = 0.5 < τ20 , the
solution trajectories converge to the infectious equilibrium with immune response
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Figure 8. The numerical approximations of system (4) for the
parameter values given in (46) and τ2 = 3.6, τ3 = 0, τ1 = 9 <
11.4942, showing that solution trajectories converge to the in-
fectious equilibrium with immune response E2 : (x, y, v, w, z) =
(35.9442, 6.6667, 12.6328, 0.61003, 0.406687).
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Figure 9. The numerical approximations of system (4) for the
parameter values given in (46) and τ2 = 3.6, τ3 = 0, τ1 =
12.6 > 12.4879, showing that Hopf bifurcation occurs from the
infectious equilibrium with immune response E2 : (x, y, v, w, z) =
(35.9442, 6.6667, 12.6328, 0.565568, 0.377045).

E2 = (20.1857, 7.28937, 32.904, 0.891505, 0.649851) (see Fig. 10). If τ2 = 5.6 > τ20 ,
the model (4) undergoes Hopf bifurcation and the periodic solutions are shown in
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Figure 10. The numerical approximations of system (4) for the
parameter values given in (46) and τ1 = 1, τ3 = 1, τ2 = 0.5 <
5.11681, showing that solution trajectories converge to the in-
fectious equilibrium with immune response E2 : (x, y, v, w, z) =
(20.1857, 7.28937, 32.904, 0.891505, 0.649851).
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Figure 11. The numerical approximations of system (4) for the
parameter values given in (46) and τ1 = 1, τ3 = 1, τ2 = 5.6 >
5.11681, showing that Hopf bifurcation occurs from the infec-
tious equilibrium with immune response E2 : (x, y, v, w, z) =
(43.9768, 7.28937, 7.88999, 0.452623, 0.329933).

Fig. 11. This supports the results in Theorem 5.4.
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7. Conclusion and discussion

In this paper, we analyze a 5-dimensional HIV-1 model with three delays. τ1, τ2
are intracellular delays (τ1, τ2 represent the latent period and virus production pe-
riod, respectively) and τ3 is immune response delay. Because positivity implies
that the cell population survives and boundedness can be interpreted as a natural
restriction to growth due to limited resources, we prove that the solutions of model
(4) are positive and bounded in section 2. The theoretical results show that model
(4) has three equilibria: the infection-free equilibrium E0, the infectious equilibrium
without immune response E1 and the infectious equilibrium with immune response
E2. The basic reproduction number R0 and the immune reproduction number R1

are identified. We show that if R0 < 1, the infection-free equilibrium is global-
ly asymptotically stable in section 3; if R1 < 1 < R0, the infectious equilibrium
without immune response equilibrium is globally asymptotically stable in section
4; if R1 > 1 and 0 < τ3 < − ln q

a3
, under suitable conditions of the parameters, the

infectious equilibrium with immune response is locally asymptotically stable when
τ2 is less than a certain critical value, and loses its stability and a Hopf bifurcation
occurs at the equilibrium E2 when τ2 is greater than the critical value in case (IV)
of section 5. It follows from the coordinates of E2 that if τ3 is too large, all coordi-
nates are negative. Mathematically, the disappearance or appearance of equilibria
depends on its own characteristics, i.e., the coordinates of the equilibria. Thus,
the equilibrium E2 does not exist. In this case, the model finally converges to the
equilibria E0 or E1 under their respective conditions of stability. The reproduc-
tion numbers R0, R1 and the times delays play an important role in determining
the dynamic behavior of model (4). In section 6, some numerical simulations are
carried out to illustrate the theoretical results.

In this paper, in order to simulate real situation, we introduce three time delays.
Generally speaking, the mathematical analysis of the model with multiple delays is
more complicated. Moreover, we introduce the immune reproduction number R1,
and expound its influence on the stability of equilibria. Because three delays and
two classes of CTL immune cells are considered, the current model has rich dynam-
ics. However, the studies [30–32] have shown that distributed delay is more close
to biological significance than discrete delay. Thus, we will consider the distributed
time delays in future research.

From biological point of view, the basic reproduction number R0 denotes the
average number of infected cells that arise from any one infected cell in the expected
life time in the initial infection [33], and the immune reproduction number R1

represents the average number of the CTL cells produced by one CTL cell (in
the survival time) activated by infected cells [34]. Moreover, we conclude that
the infected cells can be cleared by decreasing the value of the basic reproduction
number to below one from theoretical results. According to the equation (7) for
R0, we can increase the intracellular delays τ1 and τ2 to reduce R0. In other words,
any drugs that can prolong the latent period or slow down virus production process
may help to control the HIV-1 infection. However, HIV-1 still cannot be eradicated
thoroughly in terms of the current treatment regiments.
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