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hp-VERSION ANALYSIS FOR ARBITRARILY SHAPED

ELEMENTS ON THE BOUNDARY DISCONTINUOUS

GALERKIN METHOD FOR STOKES SYSTEMS

EFTHYMIOS N. KARATZAS

Abstract. In the present work, we examine and analyze an hp-version interior penalty discontin-

uous Galerkin finite element method for the numerical approximation of a steady fluid system on
computational meshes consisting of polytopic elements on the boundary. This approach is based
on the discontinuous Galerkin method, enriched by arbitrarily shaped elements techniques as has
been introduced in [13]. In this framework, and employing extensions of trace, Markov-type, and

H1/L2-type inverse estimates to arbitrary element shapes, we examine a stationary Stokes fluid
system enabling the proof of the inf/sup condition and the hp- a priori error estimates, while we
investigate the optimal convergence rates numerically. This approach recovers and integrates the
flexibility and superiority of the discontinuous Galerkin methods for fluids whenever geometrical

deformations are taking place by degenerating the edges, facets, of the polytopic elements only
on the boundary, combined with the efficiency of the hp-version techniques based on arbitrarily
shaped elements without requiring any mapping from a given reference frame.

Key words. Arbitrarily shaped elements, discontinuous Galerkin finite element method, hp-
version stability, a-priori error estimates, fluid dynamics.

1. Introduction

Recent years have shown scientists’ interest significantly focused on the context
of Galerkin finite element methods. This effort has given birth to new methods
based on general-shaped elements which arise computational complexity reduction,
like mimetic finite difference methods [9], virtual element methods [8], various dis-
continuous Galerkin approaches such as interior penalty Galerkin methods [14], and
hybridized discontinuous Galerkin [15, 18], which are very attractive and used by
the engineering and mathematics community. We continue by reporting more works
related to discontinuous Galerkin (dG) methods, similar finite element frameworks,
and advances, h- or hp- version, fluid and Stokes systems related literature. We also
introduce the skeleton of the present work. Hence, other approaches have involved
non-polynomial approximation spaces like polygonal and other generalized finite
element methods, [26,54]. We refer to [14] for admissible polygonal/polyhedral ele-
ment shapes for which the general interior penalty discontinuous Galerkin method
(IP-dG), appears both stable and convergent while generalizes under mild assump-
tions the validity of standard approximation results, such as inverse estimates, best
approximation estimates, and extension theorems.

In a p-version Galerkin framework achieving exponential convergence, for smooth
partial differential equation problems defined on generally curved domains using
isoparametrically mapped elements, we recall [46,47], while for non-linear maps on
element patches that are used to represent domain geometry we refer to [45, 53].
Although in both cases, as the polynomial order increases, the aforementioned map-
ping appears very costly and/or difficult to construct and implement in practice.
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For Stokes flow systems, in [4, 55], an hp-discontinuous Galerkin approximation
that shows better stability properties than the corresponding conforming ones is ex-
amined with finite element triangulation not required to be conforming employing
discontinuous pressures and velocities, while it is defined on the interfaces between
the elements involving the jumps of the velocity and the average of the pressure.
The work of [28] also, describes a family of dG finite element methods formulated
and analyzed for Stokes and Navier-Stokes problems introducing the good behav-
ior of the inf-sup and optimal energy estimates for the velocity and pressure. In
addition, this method can treat a finite number of non-overlapping domains with
non-matching grids at interfaces. In [16, 32, 52], Stokes system local discontinuous
Galerkin methods for a class of shape regular meshes with hanging nodes is in-
vestigated, as well as, several mixed discontinuous Galerkin approximations with
their a priori error estimates. In [6], a discontinuous Galerkin (dG) approach to
simulations on complex-shaped domains, using trial and test functions defined on
a structured grid with essential boundary conditions imposed weakly, where the
discretization allows the number of unknowns to be independent of the complexity
of the domain. [44] concerns an unfitted dG method proposing to discretize ellip-
tic interface problems, where h- and hp- error estimates and convergence rates are
proved. The authors of [56], treat an unfitted dG method for the elliptic inter-
face problems, based on a variant of the local dG method, obtaining the optimal
convergence for the exact solution in the energy norm and its flux in the L2 nor-
m. In [7] an unfitted discontinuous Galerkin method for transport processes in
complex domains in porous media problems is examined, allowing finite element
meshes that are significantly coarser than those required by standard conforming
finite element approaches. Further, in [25] an advection problem is developed based
on an unfitted discontinuous Galerkin approach where the surface is not explicitly
tracked by the mesh which means the method is flexible with respect to geometry
efficiently capturing the advection driven by the evolution of the surface without
the need for a space-time formulation, back-tracking trajectories or streamline d-
iffusion. Finally, in [24] a linear transport equation on a cut cell mesh using the
upwind discontinuous Galerkin method with piecewise linear polynomials and with
a method of lines approach is presented employing explicit time-stepping schemes,
regardless of the presence of cut cells.

In addition, various classes of fitted and unfitted mesh methods for interface
or transmission problems may be seen as generalized concepts of mesh elements,
as well as, several unfitted finite element methods have been proposed in recent
years, indicatively we mention the unfitted boundary finite element methods [5] and
immersed finite element methods [41]. More extensively, an optimally convergent
method of fictitious type domains avoiding the numerical integration on cut mesh
elements for a Poisson system has been introduced in [40], while in [29] a method for
the finite element solution of the elliptic interface problem, using an approach due to
Nitsche is proposed allowing discontinuities internal to the elements approximating
the solution across the interface. In addition, from a reduced basis for unfitted mesh
methods point of view, evaluating the fixed background mesh used in immersed and
unfitted mesh methods, parametrized Stokes and other flow systems have managed
to be solved using a unified reduced basis presenting the flexibility of such methods
in geometrically parametrized Stokes, Navier-Stokes, Cahn-Hilliard systems as in
[33–37]. For an immersed interface method for discrete surface representations
employing accurate jump conditions evaluated along interface representations using
projections, one could see [38], and for a ghost fluid method coupled with a volume
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of fluid method employing an exact Riemann solver [10]. For a fictitious domain
finite element method, well suited for elliptic problems posed in a domain given
by a level-set function without requiring a mesh fitting the boundary can be found
in [23]. The early work of [50] handles the flow of a viscous incompressible fluid
containing immersed boundaries which move with the fluid and exert forces on the
fluid, and in [57] a finite difference scheme with ghost cell technique is used to study
viscous fluid flow with internal structures. In [49], a conservative cut-cell Immersed
Boundary method with sub-cell resolution is analyzed.

We extend the literature with [31], where a high-order hybridizable dG method
for solving elliptic interface problems in which the solution and gradient are non-
smooth because of jump conditions across the interface and it is endowed with
several distinct characteristics. [19] contains an unfitted hybridizable dG method
mesh method for the Poisson interface problem constructing an ansatz function in
the vicinity of the interface with an appropriate choice of flux for treating the jump
conditions, designed through a piecewise quadratic Hermite polynomial interpola-
tion with post-processing via a standard Lagrange polynomial interpolation. These
approaches usually employ penalization on the boundary interface and/or weak
enforcement of the boundary conditions and data usually supported by a level set
geometry description, [48].

In the present work, we investigate the applicability of the interior-penalty dis-
continuous Galerkin method discretizing steady Stokes flow cases onto meshes with
boundaries considering general, essentially arbitrarily shaped element shapes in the
sense of [13], which allow attaining smaller errors compared with other competitive
finite element methods e.g. comparing with the unfitted dG approaches of [2], fact
verified numerically in Section 6. Furthermore, our analysis allows for curved ele-
ment shapes without the use of any non-linear elemental maps. We use extended
hp- trace and inverse estimates to the arbitrary shape of boundary elements and
we prove the inf-sup stability of the method in proper, to the prescribed method,
norm. A priori error bounds for the resulting method are given under very weak
assumptions. Numerical experiments are also presented, indicating the efficiency
of the proposed framework.

This manuscript is structured as follows: we start with the Stokes flow model
problem and the necessary preliminaries in Section 2. The various components of
the interior penalty stabilized arbitrary boundary elements dG discretization are
discussed in subsection 2.2 and we recall trace inverse estimates that are pivotal
in the proof of the stability of IP-dG methods employed with the constants that
appear and affect several inverse, stability, and error estimates. Approximation
results needed for the analysis of the method are collected in Section 3. Section 4 is
devoted to stability estimates and the derivation of the discrete inf–sup condition,
followed by a–priori error estimates in Section 5. Concluding, the aforementioned
analysis is numerically verified with tests in Section 6 that depict the optimal
theoretical hp-convergence rates and the hp-accuracy of the method.

It is noted that this work determines an approach where many expensive pe-
nalization terms can be omitted and appear beneficial especially, for fluid systems
where additional penalization is needed. These results are relevant to the hp-version
framework and geometrical challenges and verify that there is no loss of stability
and accuracy, as traditionally appears e.g. in cases with excessive and/or insuffi-
cient penalization that typically results in accuracy loss. Further, we report that the
theoretical tools presented are adapted to a Nitsche-type formulation. The inf-sup
stability result of the method in a Stokes-like norm is proved on hp-approximation
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Figure 1. Example geometries Ω♯ and their boundaries Γ .

that will also lead to an error bound, an a priori error estimate and optimal conver-
gence rates. The theoretical developments presented regarding stability and a-priori
error analysis of IP-dG methods considering general arbitrarily shaped elements,
to the best of our knowledge are new for Stokes systems.

Figure 2. Meshes T ♯ based on arbitrarily-shaped boundary ele-
ments, the covering meshes T cov from Definition 3.7, examples of

refined Figure 1’s geometries Ω♯ tessellations T ♯
a , T

♯
b , T ♯

c and the
covering domains, Ωcov.

2. Model problem

2.1. Problem formulation. The steady Stokes equations for an incompressible
viscous fluid confined in an open, bounded domain Ω♯ ⊂ Rd (d = 2, 3) with Lips-
chitz boundary Γ = ∂Ω♯ can be expressed in the form

−∆u+∇p = f and ∇ · u = 0 in Ω♯, with u = 0 on Γ .(1)
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Here u = (u1, . . . , ud) : Ω♯ → Rd (d = 2, 3) and p : Ω♯ → R denote the velocity

and pressure fields, and f ∈
[
L2(Ω♯)

]d
is a forcing term. Since the pressure is

determined by (1) up to an additive constant, we assume
∫
Ω♯ pdx = 0 to uniquely

determine p. Hence, in the following, we will consider for pressure the standard
space L2

0(Ω
♯) :=

{
q ∈ L2(Ω♯) :

∫
Ω♯ q dx = 0

}
of square-integrable functions with

zero average over Ω♯.
Defining for all u,v ∈ V ♯ := [H1

0 (Ω
♯)]d and p ∈ Q♯ := L2

0(Ω
♯) the bilinear forms

a(u,v) =

∫
Ω♯

∇u : ∇v dx, b(v, p) = −
∫
Ω♯

p∇ · v dx,(2)

a weak solution to (1) is a pair (u, p) ∈ [H1
0 (Ω

♯)]d × L2
0(Ω

♯) = V ♯ ×Q♯, such that

(3) A(u, p;v, q) =

∫
Ω♯

f · v dx, for all test functions (v, q) ∈ V ♯ ×Q♯,

with

A(u, p;v, q) = a(u,v) + b(u, q) + b(v, p).

The well–posedness of (3) is standard [17].

2.2. Arbitrarily shaped discontinuous Galerkin method on the boundary.
Implementation of arbitrarily shaped boundary elements discontinuous Galerkin
method for the discretization of (3) relies on a covering domain Ωcov which con-
tains the true geometry Ω♯, see Figures 1, 2. Let T cov be the corresponding covering
shape-regular mesh of Ωcov and T ♯ is the mesh corresponding to Ω♯. The active
mesh

T ♯ =
{
K ∩Ω♯; for all K ∈ T cov with K ∩Ω♯ ̸= ∅

}
is the minimal submesh of T cov which coversΩ♯ employing polytopic, e.g. polygonal
boundary interface elements and is actually fitted to its boundary Γ : we allow mesh
boundary elements K ∈ T ♯ which are arbitrarily shaped and with very general
interfaces. In the present work, numerical experiments consider boundary elements
as Lipschitz curved elements and with only curved facet the one that coincides to
the corresponding part of the boundary Γ , see Figures 1, 2 or the more general case
of Figure 3. However, one could also employ general interfaces with neighboring
elements, [14, 20,22].

Finite element spaces for u and p will be built upon the domain Ω♯ =
∪

K∈T ♯ K

which corresponds to T ♯. The mesh skeleton
∪

K∈T ♯ ∂K –including the curved
boundary facets– is subdivided into the internal part

F ♯
int =

{
F = K+ ∩K− : K+,K− ∈ T ♯ and F * Γ

}
which actually denotes the set of interior faces in the active mesh and the boundary
part Γ ≡ ∂Ω♯. We denote by hK = diam(K) the local mesh size for K ∈ T ♯

boundary elements and hF = min {hK+ , hK−} for F = K+ ∩K−.
We choose to enforce boundary conditions at Γ to be weakly satisfied through

Nitsche’s method. We highlight that we do not employ coercivity recovery tech-
niques applied over the covering domain Ωcov, e.g. by means of additional ghost
penalty terms which act on the gradient jumps –usually higher order– in the bound-
ary zone; see, for instance, [11, 12, 33, 42]. Instead, the T ♯ coercivity is ensured
following the approach of [14,20].

To define the arbitrarily shape discontinuous Galerkin discretization for the S-
tokes problem (3), we employ the element-wise discontinuous polynomial finite
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(i) (ii)

Figure 3. (i) Curved boundary elements for d = 2 with one
curved face and vertices vk,i and the unit outward normal vec-
tor to Fi at x ∈ Fi where KFi is star-shaped and (ii) the covering
mesh T cov, and the mesh T ♯ corresponding to the truth geometry
with arbitrary shape boundary elements.

elements for pressure and velocity spaces of order p ≥ 1:

V ♯
h ≡ Sp

T ♯,uh
:=

{
wh ∈

(
L2(Ω♯)

)d
: wh|K ∈ (Pp(K))

d
,K ∈ T ♯

}
(d = 2, 3)

Q♯
h ≡ Sp

T ♯,ph
:=

{
wh ∈ L2

0(Ω
♯) : wh|K ∈ Pp−1(K),K ∈ T ♯

}
.

The broken Sobolev space Hp(Ω♯, T ♯), with respect to the subdivision T ♯ up to
composite order p, is defined as

Hp(Ω♯, T ♯) = {w ∈ L2(Ω♯) : w|K ∈ Hp(K) ∀K ∈ T ♯}.

It is important to mention that whenever the notation ∇v is used for functions
that lay in the discontinuous Galerkin space, i.e. w /∈ H1(Ω♯), will correspond to
the broken gradient, such that, (∇w)|K = ∇(w|K) for all K ∈ T ♯. So, the broken
gradient ∇T ♯w of a function w ∈ L2(Ω♯) with w|K ∈ H1(K), for all K ∈ T , is
defined element-wise by (∇T ♯w)|K := ∇(w|K). When F ⊂ Γ, it is {{w}} = [[w]] = w
and {{w}} = [[w]] = w. The same applies to the broken divergence operator ∇ · w
defined element-wise. Moreover, recall the definition

{{w}} :=
1

2

(
w+ + w−) , {{w}} :=

1

2

(
w+ +w−) ,

of the average operator {{·}} across an interior face F for w, w scalar and vector-
valued functions on T ♯ respectively, where w± (resp. w±) are the traces of w
(resp. w) on F = K+∩K− from the interior of K±. More precisely, with w±(x) =
limt→0+ w(x± tnF) for x ∈ F and nF we denote the outward-pointing unit normal
vector to F and with nΓ the outward unit normal to the boundary Γ . The jump
operator [[·]] across F is defined respectively by

[[w]] := w+ − w−, [[w]] := w+ −w−.

We are now ready to formulate a discrete counterpart of (3) through a discon-
tinuous Galerkin method. The symmetric interior penalty discretizations of the
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diffusion term and the pressure–velocity coupling in (2) lead to the bilinear forms

ah(uh,vh) =

∫
Ω♯

∇uh : ∇vh dx

−
∑

F∈F♯
int∪Γ

∫
F

({{∇uh}} · nF[[vh]] + {{∇vh}} · nF[[uh]]) dγ

−
∫
Γ

uh∇vh · nΓ dγ −
∫
Γ

vh∇uh · nΓ dγ +

∫
Γ

σuhvh dγ

+
∑

F∈F♯
int∪Γ

∫
F

σ[[uh]][[vh]] dγ,

bh(vh, ph) =−
∫
Ω♯

ph∇ · vh dx+
∑

F∈F♯
int∪Γ

∫
F

[[vh]] · nF {{ph}} dγ +

∫
Γ

vh · nΓph dγ,

where σ > 0 is the discontinuity-penalization function in L∞(F ♯
int ∪ Γ) that affects

the stability of the method as well as the approximation quality and will be investi-
gated below. This symmetric interior penalty parameter in the definition of ah(·, ·)
will be sufficiently large in a sense that will be made precise later, see Lemma 4.2
and its proof below.

We note that the latter formulation’s disadvantage is that it is not well defined for
H1(Ω♯) regularity, e.g. traces of functions defined in L2(Ω♯) are not well defined in

F ♯
int. The latter issue affects the terms {{∇(w)}}, and ∇w ·nF in the sense that they

are not well defined in H1(Ω♯). This causes the need of additional regularity while
the Galerkin orthogonality cannot be derived explicitly. In order to achieve optimal
a priori error estimates, under the presence of terms such {{∇w}} |F , ∇w·nF |F which
may involve {{∇(w − πpw)}}F and ∇(w − πpw) · nF |F , where πpw is an operator

πp : H lK (K) → Pp(K) an approximation of w for lk ≥ 0 will be introduced in
Lemma 4.3 and it is estimated optimally. We note at this point that the H1(F )
semi-norm for an hp- a priori approximation error bound would require W 1,∞ norm
error bounds which also require further regularity, see for more details the work
of [14]. To avoid the latter issue we employ proper bilinear form extensions. In
particular we introduce the orthogonal L2-projection in the FEM space Sp

T ♯,·, e.g.

ΠL2 : (L2(Ω♯))d → (Sp
T ♯,·)

d concluding in the variational form:

ãh(uh,vh) =

∫
Ω♯

∇uh : ∇vh dx

−
∑

F∈F♯
int∪Γ

∫
F

({{ΠL2(∇uh)}} · nF[[vh]] + {{ΠL2(∇vh)}} · nF[[uh]]) dγ

−
∫
Γ

uhΠL2(∇vh) · nΓ dγ −
∫
Γ

vhΠL2(∇uh) · nΓ dγ

+

∫
Γ

σuhvh dγ +
∑

F∈F♯
int∪Γ

∫
F

σ[[uh]][[vh]] dγ,

bh(vh, ph) =−
∫
Ω♯

ph∇ · vh dx+
∑

F∈F♯
int∪Γ

∫
F

[[vh]] · nF {{ph}} dγ +

∫
Γ

vh · nΓph dγ
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respectively. For future reference, note that element-wise integration by parts in
the previous forms yields the equivalent formulations

ãh(uh,vh) =−
∫
Ω♯

∇∇uh · vh dx+
∑

F∈F♯
int∪Γ

∫
F

[[ΠL2(∇uh)]] · nF {{vh}} dγ

−
∑

F∈F♯
int∪Γ

∫
F

{{ΠL2(∇vh)}} · nF[[uh]] dγ −
∫
Γ

uhΠL2(∇vh) · nΓ dγ

+

∫
Γ

σuhvh dγ +
∑

F∈F♯
int∪Γ

∫
F

σ[[uh]][[vh]] dγ,(4)

and

bh(vh, ph) =

∫
Ω♯

vh · ∇ph dx−
∑

F∈F♯
int∪Γ

∫
F

{{vh}} · nF[[ph]] dγ,(5)

which will be useful for asserting the consistency of the method.
Using the aforementioned weak formulation, an arbitrarily shape boundary ele-

ments discontinuous Galerkin method for (3) now reads as follows: Find (uh, ph) ∈
V ♯
h ×Q♯

h, such that

(6) Ah(uh, ph;vh, qh) = Lh(vh, qh), for all (vh, qh) ∈ V ♯
h ×Q♯

h.

The bilinear and linear forms Ah and Lh are defined by

Ah(uh, ph;vh, qh) =ãh(uh,vh) + bh(uh, qh) + bh(vh, ph),

and Lh(vh, qh) =

∫
Ω♯

f · vh dx.(7)

We report that in the right-hand side Lh(vh, qh) we have omitted the zero Nitsche

boundary terms, as well as, ãh(uh,vh) = ah(uh,vh) when uh,vh ∈ V ♯
h .

3. Preliminaries

Next, we define the discontinuity penalization parameter σ : Γ ∪ F ♯
int → R,

the standard Sobolev norms and semi–norms on a domain X for s ∈ N will be
denoted by ∥ · ∥s,X and | · |s,X , respectively, omitting the index in case s = 0. The
a–priori error bounds for the proposed dG method will be proved with respect to
the following mesh-dependent norms:

|||v|||2 =∥∇v∥2Ω♯ + ∥σ1/2v∥2Γ +
∑
F∈Γ

∥p−1h
1/2
F ∇v · nΓ ∥2F

+
∑

F∈F♯
int

∥σ1/2[[v]]∥2F +
1

2

∑
K∈T cov

∥p−1h
1/2
K ∇v|T · nT ∥2∂K ,

|||p|||2 =∥p∥2Ω♯ +
∑
F∈Γ

∥p−1h
1/2
F p∥2F +

∑
F∈F♯

int

∥p−1h
1/2
F [[p]]∥2F

+
1

2

∑
K∈T cov

∥p−1h
1/2
K p∥2∂K ,

and |||(v, p)|||2 = |||v|||2 + |||p|||2. To investigate stability, since some terms of the
above terms dominate related to others, we will also make use of the following
norms in Ω♯ for the discrete velocity and pressure approximations, e.g. for the
velocity norm the third and fifth terms appear similar hp- behavior with the first
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term and for pressure the second, third and fourth term with the first term. For
this reason, we also update and define the norms:

|||v|||2V c = ∥∇v∥2Ωcov + ∥σ1/2v∥2Γ +
∑

F∈F♯
int

∥σ1/2[[v]]∥2F , and |||p|||2Qc = ∥p∥2Ωcov ,(8)

while |||(v, p)|||2V c,Qc = |||v|||2V c + |||p|||2Qc . We underline, that in the following, and
for completeness we treat all the aforementioned terms showing this equivalence.

The following section is devoted to useful trace and inverse estimates, which have
been proved in [14,20] and they will form the basis to prove a–priori error estimates
of the proposed method.

3.1. Inverse estimates (trace and H1–L2). It is easy to derive the estimates
with respect to the norms |||·||| and |||·|||V c or Qc , namely,

(9) |||v||| ≤ CV c |||v|||V c , |||p||| ≤ CQc |||p|||Qc .

Assumption 3.1. For each element K ∈ T ♯ with K∩Γ ̸= ∅, we assume that K is a
Lipschitz domain, and ∂K can be subdivided into mutually exclusive subsets {Fi}nK

i=1

characterized by the property that respective sub-elements KFi ≡ KFi(v0,i) ⊂ K
there exist, with d planar faces meeting at one vertex v0,i ∈ K, with Fi ⊂ ∂KFi :
for i = 1, ..., nK , we consider that (a) KFi is star-shaped with respect to v0,i, and
(b) di(x) ·nFi(x) > 0 for di(x) := x− v0,i, x ∈ KFi , and nFi(x) the respective unit
outward normal vector to Fi at x ∈ Fi. It is also considered that the boundary ∂K
of each element K ∈ T ♯, K ∩ Γ ̸= ∅ is the union of a finite number of closed C1

surfaces.

Both (a) and (b) assumptions, for the two-dimensional case, are visualized in
Figure 3. We notice that in the above weak mesh assumption, the sub-domains
{Fi}nK

i=1 are not required to coincide with the faces of the element K, namely,
each Fi may be part of a face or may include one or more faces of K, as well
as, there is no requirement for {nK}K∈T ♯,K∩Γ ̸=0 to remain uniformly bounded
across the mesh. In particular Assumption 3.1 states that the curvature of the
collection of consecutive curved faces comprising Fi cannot be arbitrarily large
almost everywhere. Moreover, with some small loss of generality, Assumption 3.1
b) can be made stronger by adding the ingredient that it is possible to consider a
fixed point v0,i such that there exists a global constant csh > 0, such that

di(x) · nFi(x) ≥ cshhKFi
(10)

see e.g. [24, 65]. We underline that (10) does not imply shape-regularity of the
KFi

’s; in particular KFi
’s with small Fi compared to the remaining (straight) faces

of KFi are acceptable. Such anisotropic boundary sub-elements KFi ’s may be nec-
essary to ensure that each KFi

remains star-shaped when an element boundary’s
curvature is locally large, see e.g., KFi in Figure 3 and a collection of both shape-
regular and anisotropic KFi ’s. In general, Fi is not required to be connected,
although, by splitting Fi to its connected subsets, re-indexing the Fi’s to corre-
spond to unique KFi , we can correspond one KFi to each Fi. The aforementioned
Assumptions 3.1 are sufficient for the proof of the trace estimates as well as for the
validity of the H1–L2 inverse estimate as in [14].

Lemma 3.2. Let element K ∈ T ♯ be a Lipschitz domain satisfying Assumption
3.1. Then, for each Fi ⊂ ∂K from Assumptions 3.1, i = 1, ..., nK , and for each
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v ∈ Pp(K), we have the inverse estimate:

||v||2Fi
≤ (p+ 1)(p+ d)

min
x∈Fi

(di · nFi)
||v||2KFi

.(11)

Remark 3.3. Inequality (11) is a function of v0,i defining KFi . The right-hand
side can be minimized with a choice of an optimal v0,i. We underline that un-
der the stronger assumption (3.1), one could derive the trace inverse estimate for
star-shaped, shape-regular elements with piece-wise smooth boundaries: ||v||2∂K ≤
C p2

hK
||v||2K .

Lemma 3.4. Let K ∈ T ♯ be a Lipschitz domain satisfying Assumption 3.1. Then,
for all ε > 0, we have the estimate

||v||2Fi
≤ d+ ε

min
x∈Fi

(di · nFi)
||v||2KFi

+
max
x∈Fi

|di|22
εmin
x∈Fi

(di · nFi)
||∇v||2KFi

,

for all v ∈ H1(Ω♯) and i = 1, ..., nK . We note that summing over i = 1, ..., nK ,
under assumption di(x)·nFi(x) ≥ cshhKFi

and that hKFi
∼ hK we take the estimate

gives the classical trace estimate ||v||2∂K ≤ C(h−1
K ||v||2K + hK ||∇v||2K).

Definition 3.5. An elementK ∈ T ♯ is said to be p-coverable with respect to p ∈ N,
if there exists a set of mK overlapping shape regular simplices Ki, i = 1, ...,mK ,
mK ∈ N, such that

dist(K, ∂Ki) < Cas
diam(Ki)

p2
, and |Ki| ≥ cas|K|(12)

for all i = 1, ...,mK , where Cas and cas are positive constants, independent of K
and T ♯.

Lemma 3.6 ( [14] ). Let K ∈ T ♯ Lipschitz satisfying Assumption 3.1. Then, for
each v ∈ Pp(K), we have the inverse inequality

||v||2Fi
≤ CINV (p,K, Fi)

(p+ 1)(p+ d)|Fi|
|K|

||v||2K ,(13)

with CINV(p,K, Fi) to be if K is p-coverable: min{C(K,Fi), c
−1
as 2

5d+1p2(d−1)}, oth-
erwise:
C(K,Fi), with cas > 0 as in Definition 3.5 and C = |K|

|Fi| sup
v0,i∈K

min
x∈Fi

(di·nFi
) .

After defining the covering domain Ω̄cov and considering the Assumption 3.8, see
e.g. [14, 20], we interpolate a pair (u, p) ∈ [H2(Ω♯)]d ×H1(Ω♯) through a suitable
interpolant of [Hp+1(Ω♯)]d ×Hp(Ω♯) -extensions of the functions (u, p) on Ωcov.

Definition 3.7. Given a mesh T ♯, we define a covering T cov = {K} of T ♯ to
be a set of open shape-regular dCsimplices K, such that for each K ∈ T ♯, there
exists a K ∈ T cov with K ⊂ K. For a given T cov, we define the covering domain
Ω̄cov := ∪K∈T cov K̄.

Assumption 3.8. For a given mesh T ♯, we postulate the existence of a covering
T cov, and of a global constant OΩ♯ ∈ N, independent of the mesh parameters, such
that

max
K∈T

card{K ′ ∈ T : K ′ ∪ K ̸= ∅,K ∈ T cov such that K ⊂ K} ≤ OΩ♯ .
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For such T cov, we further assume that hK := diam(K) ≤ CdiamhK , for all pairs
K ∈ T ♯, K ∈ T cov, with K ⊂ K, for a global constant Cdiam > 0, uniformly with
respect to the mesh size hK .

The latter assumption provides the shape-regularity of the covering mesh T cov

–not though for the true T ♯– in the sense that there exists a positive constant
c, independent of the mesh parameters, such that ∀K ∈ T cov ⊂ T , ρK ≥ chK
holds, with ρK denoting the diameter of the largest ball contained in K. The
aforementioned will allow the application of the standard hp-version approximation
estimates on simplicial elements, see e.g., from [53] that on each K we can restrict
the error over K ⊂ K. However, it requires to extend properly the exact solution u
onto Ωcov. In particular:

Theorem 3.9. Let Ω♯ be a domain with a Lipschitz boundary. Then there exists a
linear extension operator E : Hs(Ω♯) → Hs(Rd), s ∈ N0, such that Ev|Ω♯ = v and

||Ev||Hs(Rd) ≤ CE||v||Hs(Ω♯),

where CE is a positive constant depending only on s and on Ω♯.

We also recall from [14] theH1–L2 inverse inequality for polynomials on a general
curved element K ∈ T ♯.

Lemma 3.10. Let K ∈ T ♯ satisfy Assumptions 3.1, 3.8 and (10). Then, for each
v ∈ Pp(K), the inverse estimates hold, for K p-coverable:

||∇v||K≤ C
p2

hK
||v||K , and(14)

||∇v · nF ||F ≤ C ′ p3

h
3/2
K

||v||K(15)

hold, and the constants C, C ′ are dependent on the shape-regularity constant.

Proof. The first estimate comes immediately from [14] will the second comes from
the algebraic calculations:

||∇v · nF ||F ≤ C
p

h
1/2
K

||∇v||K ≤ C ′ p
2

hK

p

h
1/2
K

||v||K = C ′ p3

h
3/2
K

||v||K .

�

4. Stability estimates

The fact that the discrete problem is well-posed follows by the inf–sup stability
of the bilinear form Ah in the formulation (6) with respect to the |||·|||V c,Qc norm.
We begin by investigating the properties of the separate forms which contribute
to Ah. A useful observation is that the form ãh(·, ·), is continuous and coercive
with respect to the norm |||·|||V c . For this proof, we will use that the arbitrarily
shaped boundary elements can be properly extended from the real domain Ω♯ to
the covering one, Ωcov.

Lemma 4.1. There are constants Cu, Cp > 0, depending only on the shape-regularity
and the polynomial order and not on the mesh or the location of the boundary, such
that the following estimates hold:

∥∇vh∥2Ωcov ≤ Cu∥∇vh∥2Ω♯ ≤ Cu∥∇vh∥2Ωcov , for all vh ∈ V ♯
h , and(16)

∥ph∥2Ωcov ≤ Cp∥ph∥2Ω♯ ≤ Cp∥ph∥2Ωcov , for all ph ∈ Q♯
h.(17)
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Proof. Considering also the Assumption 3.1, we assume that there is an integer
N > 0 such that for each element K ∈ T cov with K∩Γ ̸= ∅ there exists an element
K ′ ∈ T cov with K ′ ∩ Γ = ∅ and at most N elements {K}Ni=1 such that K1 = K,
KN = K ′ and Ki ∩Ki+1 ∈ ∂iT cov, i = 1, ...N − 1. In particular, this means that
the number of facets we need to cross so that we pass from the aforementioned
element K to K ′ ⊂ Ω♯ is bounded. Similar assumptions were made by [2], see also
references therein, which ensure that Γ is reasonably resolved by T cov. For the
first inequality (16) we compose the norm over Ωcov into sums over internal and
boundary T cov elements, ∥·∥T cov =

∑
∥ · ∥T cov-boundary-K’s+

∑
∥ · ∥T cov-internal K’s.

Let K0 be a boundary element of T cov. Then, there exists a KN ⊂ Ω♯ and at most
N − 1 T cov-boundary elements Ki and facets Ki−1 ∩ Ki = Fi that has to be
overtaken in order to go across from K0 to KN . Considering the aforementioned
shape-regularity of the mesh, each facet corresponding to T cov-boundary elements
F will only be involved in a finite number of such crossings. Additionally, let v be a
polynomial function of order p defined on both the boundary element K ∈ T ♯ and
its corresponding extended K ∈ T cov. Then there is a constant C > 0, depending
only on the shape-regularity of T cov and the polynomial order p of v, such that
∥v∥2K ≤ C∥v∥2K . Here, each component of ∇vh has been treated as v iteratively
to each neighboring pair {Ki−1,Ki} and we take the desired estimate. The first
inequality of (17) follows similarly following the same procedure for qh. The second
inequalities of (16)-(17) can be derived straightforwardly. �

With this preliminary result in place, we are now ready to prove discrete coer-
civity of ãh and continuity:

Lemma 4.2. For suitably large discontinuity penalization parameter σ > 0 in the
definition of the bilinear form ah(·, ·), there exists a constant ca > 0, such that

(18) ãh(vh,vh) ≥ccoer|||vh|||2V ♯ ,

for any vh ∈ V ♯
h , and there exist constants Ca, Cb > 0, such that

ãh(uh,vh) ≤ Ca|||uh||| · |||vh|||,(19)

for every uh,vh ∈ V ♯
h ,

ãh(u,vh) ≤ Ca|||u||| · |||vh|||,(20)

for every (u,vh) ∈ ([Hk+1(Ω♯) ∩H1
0 (Ω

♯)]d + V ♯
h )× V ♯

h ,

bh(u, ph) ≤ Cb|||u||| · |||ph|||,(21)

for every (u, ph) ∈ ([Hk+1(Ω♯) ∩H1
0 (Ω

♯)]d + V ♯
h )×Q♯

h, and

bh(uh, p) ≤ Cb|||uh||| · |||p|||,(22)

for every (uh, p) ∈ V ♯
h × ([Hk(Ω♯) ∩ L2

0(Ω
♯)] +Q♯

h).
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Proof. The proof is based on standard arguments. In particular, for any λ > 0, we
have

ãh(vh,vh) =∥∇vh∥2Ω♯ + ∥σ1/2vh∥2Γ +
∑

F∈F♯
int

∥σ1/2[[vh]]∥2F

− 2

∫
Γ

vhΠL2(∇vh) · nΓ dγ − 2
∑

F∈F♯
int

∫
F

{{ΠL2(∇vh)}} · nF [[vh]] dγ

≥∥∇vh∥2Ω♯ + ∥σ1/2vh∥2Γ +
∑

F∈F♯
int

∥σ1/2[[vh]]∥2F

− λσ∥σ−1/2ΠL2(∇vh) · nΓ ∥2Γ − λ−1σ−1∥σ1/2vh∥2Γ
− λσ

∑
F∈F♯

int

∥σ−1/2 {{ΠL2(∇vh)}} · nF ∥2F − λ−1σ−1
∑

F∈F♯
int

∥σ1/2[[vh]]∥2F

≥∥∇vh∥2Ω♯ + (1− λ−1σ−1)(∥σ1/2vh∥2Γ +
∑

F∈F♯
int

∥σ1/2[[vh]]∥2F )

− λσ(
∑

F∈F♯
int

∥σ−1/2 {{ΠL2(∇vh)}} · nF ∥2F + ∥σ−1/2ΠL2(∇vh) · nΓ ∥2Γ ).(23)

Young’s inequality ab ≤ a2/(2ϵ)+ϵb2/2 and inverse estimates (13), (15), are applied
to the latter term in (23) to achieving a lower bound. In particular, note for

F ∈ F ♯
int with F = ∂K ∩ ∂K

′
that

∥σ−1/2 {{ΠL2(∇vh)}} · nF ∥F

≤
(∥σ−1/2ΠL2(∇vh) · nF ∥F⊂∂K + ∥σ−1/2ΠL2(∇vh) · nF ∥F⊂∂K′ )

2

≤p2
(
CINV (p,K, Fi)

|Fi|
|K|

||ΠL2(σ−1/2∇vh) · nF ||2K

+CINV (p,K
′, Fi)

|Fi|
|K ′|

||ΠL2(σ−1/2∇vh) · nF ||2K′

)/
2

≤1

2
p2 max

κ=K,K′
{CINV (p, κ, Fi)

|Fi|
|κ|

∥σ−1/2ΠL2(∇vh)∥κ}

≤Cp,1 max
κ=K,K′

{∥σ−1/2ΠL2(∇vh)∥κ}

and then summing over all faces in the active mesh,

(24)
∑

F∈F♯
int

F=∂K∩∂K′

∥σ−1/2 {{ΠL2(∇vh)}} · nF ∥2F≤ Cmax∥∇vh∥2Ω♯ .
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Likewise, using (15)

∥σ−1/2ΠL2(∇vh) · nΓ ∥2Γ
=

∑
K∩Γ ̸=∅

∥σ−1/2ΠL2(∇vh) · nΓ ∥2K∩Γ

≤
∑

K∩Γ ̸=∅

σ−1/2
∑
i∈IK

F

CINV (p,K, FK
i )

p2|Fi|
|K|

||ΠL2(∇vh) · nΓ ||2K

≤
∑

K∩Γ ̸=∅

σ−1/2|IKF |max
i∈IK

F

{CINV (p,K, FK
i )}p

2|Fi|
|K|

||∇vh||2K

≤Cp,2

∑
K∩Γ ̸=∅

∥∇vh∥2K≤ C ′
max∥∇vh∥2Ω♯ .(25)

Then, application of (16) verifies, for a suitable choice of λ, that the terms in (24)
and (25) can be dominated by the leading two terms in (23). Indeed, letting Cmax

and C ′
max the constants in (24) and (15) respectively and collecting all estimates,

we conclude

ãh(vh,vh) ≥(C−1
u − λσ(Cmax + C ′

max))∥∇vh∥2Ω♯

+ (1− λ−1σ−1)
(
∥σ1/2vh∥2Γ +

∑
F∈F♯

int

∥σ1/2[[vh]]∥2F
)
.

Coercivity (18) is already verified for 1 > λ−1σ−1 > Cu(Cmax + C ′
max), or 1 <

λσ < Cu(Cmax + C ′
max) which is valid for λ = (1 + Cu(Cmax + C ′

max))/(2σ). The
corresponding coercivity constant is ca = min{C−1

u −λσ(Cmax+C ′
max), 1−λ−1σ−1}.

The proof of the continuity is standard and it is omitted for brevity. �

We recall also from [14, 20] the following lemma and corollary that will be used
next.

Lemma 4.3. Let K ∈ T ♯ satisfy Assumptions 3.1 and 3.8, and let K ∈ T cov be the
corresponding simplex with K ⊂ K as in Definition 3.7. Suppose that v ∈ L2(Ω♯)
is such that the extension Ev|K ∈ H lK (K), for some lK ≥ 0, and that Assumption
3.8 is satisfied. Then, there exists an operator πp : H lK (K) → Pp(K), such that

(26) ||v − πpv||Hq(K) ≤ C1
hsK−q
K

plK−q
||Ev||HlK (K),

for 0 ≤ q ≤ lK , and

(27) ||v − πpv||Fi ≤ C
1
2
ap(p,K, Fi)|Fi|

1
2
h
sK−d/2
K

plK−1/2
||Ev||HlK (K), lK ≥ d/2,

with

Cap(p,K, Fi) := C2 min{ hd
K

|Fi| sup
v0,i∈K

min
x∈Fi

(di · n)
, pd−1},

sK = min{p + 1, lK}, and C1, C2 > 0 constants depending only on the shape-
regularity of K, q, lK , on Cdiam (from Assumption 3.8) and on the domain Ω♯.

We note that the correspondence between CINV(p,K, Fi) from Lemma 3.6, and
Cap(p,K, Fi) while hd

K ∼ |K| is the typical case. The key attribute of both expres-
sions is that they remain bounded for degenerating |Fi|, allowing for the estimates
(13) and (27) to remain finite as |Fi| → 0.
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Corollary 4.4. The approximation errors of the extended interpolation operators

πp and πp for (u, p) ∈
[
Hp+1(Ω♯)

]d ×Hp(Ω♯) satisfy

|||u− πpu||| ≤C
∑

K∈T ♯

hp
K

pp−
1
2

||u||p+1,K ,(28)

|||(u− πpu, p− πpp)||| ≤C
∑

K∈T ♯

hp
K

pp−
1
2

(
||u||p+1,K +

1

p
1
2

||p||p,K
)
.(29)

Proof. It is convenient to introduce the auxiliary norm

|||v|||2h =
∑

K∈T cov

||∇v||K2 + ∥σ1/2v∥2Γ +
∑

F∈T ♯∩Γ

∥p−1h
1/2
F nΓ · ∇v∥2F

+
∑

F∈F♯
int

∥σ1/2[[v]]∥2F +
1

2

∑
K∈T cov

∥p−1h
1/2
K ∇v|K · n∂K∥2∂K ,

see also [14, p.60]. This norm clearly bounds |||v|||, in the sense that |||v − πpv||| ≤∣∣∣∣∣∣Ep+1v − πpv
∣∣∣∣∣∣

h
. Hence, we may prove the estimate for |||·|||h instead of |||·|||. Set-

ting eπ = Ep+1u− πpu, we take by definition

|||eπ|||2h =
∑

K∈T cov

||∇eπ||K2 + ∥σ1/2eπ∥2Γ +
∑

F∈T ♯∩Γ

∥p−1h
1/2
F ∇eπ · nF ∥2F

+
∑

F∈F♯
int

∥σ1/2[[eπ]]∥2F +
∑

F∈F♯
int

∥p−1h
1/2
F {{∇eπ}} · nF ∥2F .

All the above terms may be estimated, using the local approximation properties
(26)–(27), the aforementioned inverse estimates and the stability of the extension
operator Ek+1. For instance,∑

K∈T cov

∥∇eπ∥K ≤
∑

K∈T cov

∥eπ∥H1(K)

(26)

≤ C
∑

K∈T cov

hp
K
pp

||Eu||Hp+1(K),

after choosing q = 1, lk = p+1 and sk = min(p+1, lk) in (26). Similarly, we derive∑
F∈T ♯∩Γ

∥ph−1/2
F eπ∥F

(27)

≤ C
∑

K∈T cov

ph
−1/2
K

h
p+1/2
K

pp+1/2
||Eu||Hp+1(K)

=C
∑

K∈T cov

hp
K

pp−
1
2

||Eu||Hp+1(K),

e.g. for d = 2, lk = p + 1. Let F ⊂ ∂K. As we have seen in the variational
formulation, the norm ||∇ep · nF ||F can be efficiently approximated by ||∇ep ·
nF ||F ≤ C p

h
1/2
K

||∇ep||L2(K). We note that inserting the ΠL2 projection we are

losing p1/2 accuracy, [27], although this is consistent with the half power we lose
from the penalization of the method and we can prove optimal a–priori error bounds.
Finally, we take∑

F∈T ♯∩Γ

||p−1h
1/2
F · ∇ep · nF ||F ≤C

∑
K∈T cov

p−1h
1/2
K

p

h
1/2
K

||∇ep||K

≤C
∑

K∈T cov

hp
K
pp

||Eu||Hp+1(K).
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Proceeding in a similar fashion, we have∑
F∈F♯

int

∥σ[[eπ]]∥F =
∑

F∈F♯
int

∥ph−1/2
F [[eπ]]∥F≤ C

∑
K∈T cov

hp
K

pp−
1
2

||Eu||Hp+1(K),

∑
F∈F♯

int

∥p−1h
1/2
F {{∇eπ}} · nF ∥2F ≤C

∑
K∈T cov

hp
K
pp

||Eu||Hp+1(K),

and the proof of (29) is complete. The proof of the estimate (29) for the approx-
imation error in the product space is similar, considering the auxiliary pressure
norm

|||p|||2h =
∑

K∈T cov

∥p∥2K +
∑

F∈T ♯∩Γ

∥p−1h
1/2
F p∥2F +

∑
F∈F♯

int

∥p−1h
1/2
F [[p]]∥2F

and proving the assertion for eπ = |||Ep− πpp|||h. In particular we can employ a
multiplicative trace inequality:

||q||2∂K ≤ C(||q||K ||∇q||K + h−1
K ||q||2K), q ∈ H1(K),

[30, p2140], [55, p1571], and we conclude to∑
F∈T ♯

∥p−1h
1/2
F eπ∥2F

≤C
∑

K∈T ♯

(
||p−1h

1/2
K eπ||K ||p−1h

1/2
K ∇eπ||K + h−1

K ||p−1h
1/2
K eπ||2K

)
q=0,sK=lK=p

≤ C
∑

K∈T cov

K∈T ♯

(hsK−0
K

pp−0
||p−1h

1/2
K Ep||Hp(K)||p−1h

1/2
K ∇eπ||K + h−1

K ||p−1h
1/2
K eπ||2K

)

≤C
∑

K∈T cov

K∈T ♯

(hp
K

pp
||p−1hK

1/2Ep||Hp(K)
p2

hK
||p−1h

1/2
K eπ||K + h−1

K ||p−1h
1/2
K eπ||2K

)

≤C
∑

K∈T cov

K∈T ♯

(hp
K

pp
||p−1h

1/2
K Ep||Hp(K)

p

h
1/2
K

||eπ||K + p−2||eπ||2K
)
,

and finally with standard algebra∑
F∈T ♯

∥p−1h
1/2
F eπ∥2F ≤C

∑
K∈T cov

K∈T ♯

(hp
K

pp
||Ep||Hp(K)||eπ||K + p−2||eπ||2K

)

≤C
∑

K∈T cov

(hp
K

pp
||Ep||Hp(K)

hp
K

pp
||Ep||Hp(K) + p−2h

2p
K

p2p
||Ep||2Hp(K)

)
≤C

∑
K∈T cov

(h2p
K

p2p
||Ep||2Hp(K) +

h2p
K

p2(p+1)
||Ep||2Hp(K)

)
≤C

∑
K∈T cov

h2p
K

p2p
||Ep||2Hp(K),

which completes the proof. �

We continue with the stability for the bh proof.



544 E. N. KARATZAS

Lemma 4.5. There exists C > 0, such that for every ph ∈ Q♯
h we have

C ∥ph∥Ω♯ ≤ sup
wh∈V ♯

h\{0}

bh(wh, ph)

|||wh|||V c

+
( ∑

K∈T ♯

∥∥p−2hK∇ph
∥∥2
K

)1/2

+
( ∑

F∈F♯
int

∥∥∥p−1h
1/2
F [[ph]]

∥∥∥2
F

)1/2

.(30)

Proof. Considering a fixed ph ∈ Q♯
h, due to the surjectivity of the divergence oper-

ator there exists a vph
∈
[
H1

0 (Ω
♯)
]d
, such that

(31) ∇ · vph
= ph (a) and CΩ♯ ∥vph

∥1,Ω♯ ≤ ∥ph∥Ω♯ (b)

for some constant CΩ♯ > 0. Then, applying integration by parts on each element

and the fact that vph
and [[vph

]] vanish on Γ and on F ∈ F ♯
int respectively –since

vph
∈
[
H1

0 (Ω
♯)
]d

is an element of the continuous space– implies

∥ph∥2Ω♯ =

∫
Ω♯

ph (∇ · vph
) dx

=−
∫
Ω♯

vph
∇ph dx+

∑
K∈T ♯

∫
∂K

(vph
· nF ) ph dx

=−
∫
Ω♯

vph
∇ph dx+

∑
F∈F♯

int

∫
F

{{vph
}} · nF [[ph]] dγ

+
∑

F∈F♯
int

∫
F

[[vph
]] · nF {{ph}} dγ +

∫
Γ∩K

(vph
· nΓ ) ph dγ

=−
∫
Ω♯

vph
∇ph dx+

∑
F∈F♯

int

∫
F

{{vph
}} · nF [[ph]] dγ.

Next, we introduce interpolation error eh := πpvph
−vph

for vph
7→ πpvph

∈ V ♯
h in

the previous expression and holds that

∥ph∥2Ω♯ =

∫
Ω♯

eh∇ph dx−
∫
Ω♯

πpvph
∇ph dx+

∑
F∈F♯

int

∫
F

{{vph
}} · nF [[ph]] dγ

(5)
=

∫
Ω♯

eh∇ph dx− bh(πpvph
, ph)−

∑
F∈F♯

int

∫
F

{{eh}} · nF [[ph]] dγ.(32)

For the first term, the Cauchy–Schwarz inequality, (26) and (31)a, yields∣∣∣ ∫
Ω♯

eh∇ph dx
∣∣∣ ≤( ∑

K∈T ♯

∥∥ph−1/2
K eh

∥∥2
K

)1/2( ∑
K∈T ♯

∥∥p−1h
1/2
K ∇ph

∥∥2
K

)1/2

(26)

≤ C ∥vph
∥1,Ω♯

( ∑
K∈T ♯

∥∥p−1hK
1/2∇ph

∥∥2
K

)1/2

(31)a

≤ CC−1
Ω♯ ∥ph∥Ω♯

( ∑
K∈T ♯

∥∥p−1h
1/2
K ∇ph

∥∥2
K

)1/2

.(33)
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Employing the continuity property of the extended interpolation operator and (31),

|bh(πpvph
, ph)| =

|bh(πpvph
, ph)|

|||πpvph
|||V c

|||πpvph
|||V c

≤
(

sup
wh∈V ♯

h\{0}

bh(wh, ph)

|||wh|||V c

)
Cproj ∥vph

∥1,Ω♯

≤
(

sup
wh∈V ♯

h\{0}

bh(wh, ph)

|||wh|||V c

)
CprojC

−1
Ω♯ ∥ph∥Ω♯ .(34)

To handle the third term, we follow the steps similarly as we did for the first term
using (27) and we conclude to∣∣∣ ∑

F∈F♯
int

∫
F

{{eh}} · nF [[ph]] dγ
∣∣∣

≤
( ∑

F∈F♯
int

∥∥ph−1/2
F {{eh}}

∥∥2
F

)1/2( ∑
F∈F♯

int

∥∥p−1h
1/2
F [[ph]]

∥∥2
F

)1/2

≤C
∥∥vph

∥∥
1,Ω♯

( ∑
F∈F♯

int

∥∥p−1h
1/2
F [[ph]]

∥∥2
F

)1/2

≤CC−1
Ω♯ ∥ph∥Ω♯

( ∑
F∈F♯

int

∥∥p−1h
1/2
F [[ph]]

∥∥2
F

)1/2

.(35)

Finally, we collect the inequalities (33)-(35), and the proof is completed. �

An instant conclusion is the following.

Corollary 4.6. For every ph ∈ Q♯
h, there exists wh ∈ V ♯

h , such that

bh(wh,−ph) ≥∥ph∥2Ω♯ − Cσ

(( ∑
K∈T ♯

∥∥p−2hK∇ph
∥∥2
K

)1/2
+

( ∑
F∈F♯

int

∥∥p−1hF
1/2[[ph]]

∥∥2
F

)1/2) ∥ph∥Ω♯ ,(36)

for suitable Cσ > 0.

Proof. We denote by C1, C2 the constants appearing in (33), (35), we rearrange
(32) and we derive

bh(πpvph
,−ph) ≥ ∥ph∥2Ω♯ −

∣∣∣∣∫
Ω♯

eh∇ph dx

∣∣∣∣−
∣∣∣∣∣∣
∑

F∈F♯
int

∫
F

{{eh}} · nF [[ph]] dγ

∣∣∣∣∣∣ ,
hence, the result clearly follows for wh = πpvph

with Cσ = max {C1, C2}. �

Next, we pass to the discrete inf–sup stability which is being proven below.

Theorem 4.7. There is a constant cbil > 0, such that for all (uh, ph) ∈ V ♯
h ×Q♯

h,
we have

(37) cbil|||(uh, ph)|||V c,Qc ≤ sup
(vh,qh)∈V ♯

h×Q♯
h

Ah(uh, ph;vh, qh)

|||(vh, qh)|||V c,Qc

.
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Proof. Similar to [2], let (uh, ph) ∈ V ♯
h × Q♯

h and note by Corollary 4.6 that there

exists wh ∈ V ♯
h in (36). As a matter of fact, there is no loss of generality in setting

|||wh|||V c = ∥ph∥Ω♯ and then inequality (36) combined with the Young inequality

and factorizing with respect to ∥ph∥2Ω♯ we obtain

bh(wh,−ph) ≥
(
1− Cσλ

2

)
∥ph∥2Ω♯ −

Cσ

2λ

(( ∑
K∈T ♯

∥∥p−2hK∇ph
∥∥2
K

)1/2
+
( ∑
F∈F♯

int

∥∥p−1h
1/2
F [[ph]]

∥∥2
F

)1/2)2

≥
(
1− Cσλ

2

)
∥ph∥2Ω♯ −

Cσ

λ

∑
K∈T ♯

∥∥p−2hK∇ph
∥∥2
K

− Cσ

λ

∑
F∈F♯

int

∥∥p−1h
1/2
F [[ph]]

∥∥2
F
.(38)

We focus now on showing that for a sensible choice of parameters ζ1 > 0 and ζ2 > 0,
there exists a constant cbil > 0 such that the test pair (vh, qh) = (uh,−ph) +
ζ1(−wh, 0)+ζ2(−p−4θ∇ph, 0), for proper θ ∈ R that will be chosen later, yields

(39) Ah(uh, ph;vh, qh) ≥ cbil|||(uh, ph)|||V c,Qc |||(vh, qh)|||V c,Qc ,

whereby the desired outcome (37) is then provided.
Consequently, if we initially test with (uh,−ph) using the coercivity estimate

(18) of ãh, we derive

Ah(uh, ph;uh,−ph) = ãh(uh,uh) ≥ ca|||uh|||2V c .(40)

Thus, we consider (−wh, 0) in (38) and utilize the continuity estimate (19) of ãh
together with the Young inequality,

Ah(uh, ph;−wh, 0) =− ãh(uh,wh) + bh(wh,−ph)

≥− Ca

2λ
|||uh|||2V c +

(
1− Caλ

2
− Cσλ

2

)
∥ph∥2Ω♯

− Cσ

λ

∑
K∈T ♯

∥∥p−2hK∇ph
∥∥2
K
− Cσ

λ

∑
F∈F♯

int

∥∥p−1hF
1/2[[ph]]

∥∥2
F

≥− C1|||uh|||2V c + C2 ∥ph∥2Ω♯ − C3

∑
K∈T ♯

∥∥p−2hK∇ph
∥∥2
K

− C3

∑
F∈F♯

int

∥∥p−1hF
1/2[[ph]]

∥∥2
F
,(41)

where C1 = Ca

2λ , C2 = 1 − Ca+Cσ

2 λ and C3 = Cσ

λ are positive constants for small

enough 0 < λ < 2
Ca+Cσ

. Therefore, to gain the desired control and to balance the

negative contribution ∥p−4h2
K∇ph∥2K in (41), we test with (−p−4θ∇ph, 0) using the

continuity estimate (19) for ãh, the Cauchy-Schwarz inequality, the inverse estimate
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(11) and Young inequality. In particular,

Ah(uh, ph;−p−4θ∇ph, 0)

=ãh(uh,−p−4θ∇ph) + bh(−p−4θ∇ph, ph)

≥− |ãh(uh,−p−4θ∇ph)|−
∑

K∈T ♯

∥∥∥p−2θ1/2∇ph

∥∥∥2
K

+
∑

F∈F♯
int

∫
F

{{
p−4θ∇ph

}}
· nF [[ph]] dγ

≥− Ca|||uh|||V c

∣∣∣∣∣∣p−4θ∇ph
∣∣∣∣∣∣

V c−
∑

K∈T ♯

∥∥∥p−2θ1/2∇ph

∥∥∥2
K

+Ĉ
( ∑
F∈F♯

int

∥p−3θ3/4∇ph · nF ∥2F
)1/2( ∑

F∈F♯
int

∥p−1θ1/4[[ph]]∥2F
)1/2

and we conclude to

Ah(uh, ph;−p−4θ∇ph, 0)

≥− Ca

2λ1
|||uh|||2V c −

Caλ1

2

∣∣∣∣∣∣p−4θ∇ph
∣∣∣∣∣∣2

V c−
∑

K∈T ♯

∥∥∥p−2θ1/2∇ph

∥∥∥2
K

+C
( ∑
K∈T ♯

∥p−2θ3/4h
−1/2
K ∇ph∥2K

)1/2( ∑
F∈F♯

int

∥p−1θ1/4[[ph]]∥2F
)1/2

(43), θ=h2
K

≥ − Ca

2λ1
|||uh|||2V c −

C̃Caλ1

2

∑
K∈T cov

∥∥p−2hK∇ph
∥∥2
K −

∑
K∈T ♯

∥∥p−2hK∇ph
∥∥2
K

+
Cλ2

2

∑
K∈T ♯

∥∥p−2hK∇ph
∥∥2
K
+

C

2λ2

∑
F∈F♯

int

∥∥∥p−1h
1/2
F [[ph]]

∥∥∥2
F

≥− Ca

2λ1
|||uh|||2V c−

∑
K∈T ♯

∥∥p−2hK∇ph
∥∥2
K
− Cp

2
(C̃Caλ1

−Cλ2)
∥∥p−2hK∇ph

∥∥2
Ω♯ +

C

2λ2

∑
F∈F♯

int

∥∥∥p−1h
1/2
F [[ph]]

∥∥∥2
F

≥− C4|||uh|||2V c + C5

∑
K∈T ♯

∥∥p−2hK∇ph
∥∥2
K
+C6

∑
F∈F♯

int

∥∥∥p−1h
1/2
F [[ph]]

∥∥∥2
F

(42)

where C4 = Ca

2λ1
, C5 = 1 − cp

2 (C̃Caλ1−Cλ2) and C6 = C
2λ2

are positive constants
for properly chosen

λ1 > 2/(cpC̃Ca) > 0

and

0 < λ2 < 2/(cpC)(cpC̃Caλ1/2− 1).
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We note that in the last inequality C̃ > 0, we take σ = ph
−1/2
K and we derive

the bound∣∣∣∣∣∣p−4θ∇ph
∣∣∣∣∣∣2

V c

=
∥∥p−4θ∇∇ph

∥∥2
Ωcov +

∑
F∈T ♯∩Γ

∥∥∥p−3θh
−1/2
F ∇ph

∥∥∥2
F
+

∑
F∈F♯

int

∥∥∥p−3θh
−1/2
F [[∇ph]]

∥∥∥2
F

≤
∑

K∈T cov

∥∥p−2θh−1
K ∇ph

∥∥2
K +

∑
F∈T ♯∩Γ

∥∥∥p−3θh
−1/2
F ∇ph

∥∥∥2
F
+

∑
F∈F♯

int

∥∥∥p−3θh
−1/2
F [[∇ph]]

∥∥∥2
F

≤C̃
∑

K∈T cov

∥∥p−2hK∇ph
∥∥2
K

(43)

which has been obtained by the trace inequalities (11), the inverse inequality (14)
and finally setting θ = h2

K . In particular, if we regard the norm on a facet F ⊂
∂K ∈ T ♯,∥∥σp−4h2

F∇ph
∥∥
F
≤
∥∥∥p−3h

3/2
F ∇ph

∥∥∥
F
≤

∥∥∥p−3h
3/2
F ∇ph

∥∥∥
∂K

≤ Cp−2hK ∥∇ph∥K ,

by (11) and (14) respectively. Then, the norm corresponding to the jump on F =

K ∩ K ′ satisfies
∥∥∥p−3h

3/2
F [[∇ph]]

∥∥∥
F

≤ Cp−2hK max {∥[∇ph∥K , ∥[∇ph∥K′} leading

to the estimate ∑
F∈F♯

int

∥∥∥p−3h
3/2
F [[∇ph]]

∥∥∥2
F
≤ C

∑
K∈T ♯

∥∥p−2hK∇ph
∥∥2
K
.

Proceeding in a similar way for the other terms, we obtain (43).
Finally, we collect inequalities (40)–(42) and we choose (vh, qh) = (uh,−ph) +

ζ1(−wh, 0) + ζ2(−p−4h2
K∇ph, 0). Then, we obtain that

Ah(uh, ph;vh, qh)

≥ca|||uh|||2V c + ζ1(−C1|||uh|||2V c + C2 ∥ph∥2Ω♯

− C3

∑
K∈T ♯

∥∥p−2hK∇ph
∥∥2
K
− C3

∑
F∈F♯

int

∥∥∥p−1hF
1/2[[ph]]

∥∥∥2
F
)

+ ζ2(−C4|||uh|||2V c + C5

∑
K∈T ♯

∥∥p−2hK∇ph
∥∥2
K
+C6

∑
F∈F♯

int

∥∥∥p−1h
1/2
F [[ph]]

∥∥∥2
F
)

≥(ca − ζ1C1 − ζ2C4)|||uh|||2V c + ζ1C2 ∥ph∥2Ω♯ + (ζ2C5 − ζ1C3)
∑

K∈T ♯

∥∥p−2hK∇ph
∥∥2
K

+(ζ2C6 − ζ1C3)
∑

F∈F♯
int

∥∥∥p−1h
1/2
F [[ph]]

∥∥∥2
F
.

(44)

We force ζ1 ≤ C−1
3 min{C5, C6}ζ2 or ζ2 ≥ C3min{C5C6}−1ζ1 and we choose ζ2 =

2C3min{C5C6}−1ζ1. We finally impose ζ1 ≤ ca/(C1 + 2C3 min{C5, C6}−1) and we
conclude that

Ah(uh, ph;vh, qh) ≤ C(|||uh|||2V c + |||ph|||2Qc) = C|||(uh, ph)|||2V c,Qc , for C > 0.
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We now note that∣∣∣∣∣∣(uh − ζ1wh − ζ2p
−4h2

K∇ph,−ph)
∣∣∣∣∣∣2

V c,Qc

=
∣∣∣∣∣∣uh − ζ1wh − ζ2p

−4h2
K∇ph

∣∣∣∣∣∣2
V c + |||ph|||2Qc

≤|||uh|||2V c + ζ1|||wh|||2V c + ζ2
∣∣∣∣∣∣p−4h2

K∇ph
∣∣∣∣∣∣2

V c + |||ph|||2Qc

≤|||uh|||2V c + (ζ1 + 2CC3min{C5, C6}−1
ζ1 + 1)|||ph|||2Qc

≤
(
(ζ1(1 + 2CC3min{C5, C6}−1

)) + 1
)
|||(uh, ph)|||2V c,Qc ,

and the proof of (39) follows, where cbil = min{ca−ζ1(C1+2C3min{C5C6}−1)C4,ζ1C2}
ζ1(1+C2C3min{C5,C6}−1)+1

.

�
5. Error estimates

Estimating the inconsistency of the bilinear form by the best approximation
estimates, we have the following approximate Galerkin orthogonality. To obtain
error estimates, in this section we will assume that the exact solution (u, p) ∈[
H1

0 (Ω
♯)
]d × L2

0(Ω
♯).

Lemma 5.1. Let (u, p) ∈
[
H2(Ω♯) ∩H1

0 (Ω
♯)
]d×[

H1(Ω♯) ∩ L2
0(Ω

♯)
]
be the solution

to the Stokes problem (1) and (uh, ph) ∈ V ♯
h ×Q♯

h the finite element approximation
in (6), with h = maxK∈T cov hK due to shape regularity of T cov, see also Assumption
3.8. Then,

(45) Ah(u− uh, p− ph;vh, qh) = O(hp/pp−
1
2 ) for every (vh, qh) ∈ V ♯

h ×Q♯
h.

Next, we prove the a priori error estimate and optimal convergence rates for the
velocity and pressure.

Theorem 5.2. Let (u, p) ∈
[
Hp+1(Ω♯) ∩H1

0 (Ω
♯)
]d ×

[
Hp(Ω♯) ∩ L2

0(Ω
♯)
]
be the

solution to the Stokes problem (1) and (uh, ph) ∈ V ♯
h × Q♯

h the finite element ap-
proximation in agreement with (6). Then, there exists a constant C > 0, such
that

(46) |||(u− uh, p− ph)||| ≤ C
∑

K∈T ♯

hp
K

pp−
1
2

(
||u||p+1,K +

1

p
1
2

||p||p,K
)
.

Proof. We start by rearranging the (u − uh, p − ph) error adding and subtracting
appropriate terms, and we conclude to its discrete and projection error components:

|||(u− uh, p− ph)||| ≤ |||(u− πpu, p− πpp)|||+ |||(πpu− uh, πpp− ph)|||.
The first term optimal estimate is provided by (28) and (29) as it is proven in
Corollary 4.4. The second term first is bounded by

|||(πpu− uh, πpp− ph)||| ≤ C|||(πpu− uh, πpp− ph)|||V c,Qc ,

according to (9). Due to (45) from Lemma 5.1 and Theorem, 4.7 there exists a pair

(vh, qh) ∈ V ♯
h ×Q♯

h with ∥(vh, qh)∥V c,Qc = 1, such that

cbil|||(πpu− uh, πpp− ph)|||V c,Qc ≤Ah(πpu− uh, πpp− ph;vh, qh)

=Ah(πpu− u, πpp− p;vh, qh).

Hence, we use the definition of the corresponding form Ah to take

Ah(πpu− u, πpp− p;vh, qh)

=ãh(πpu− u,vh) + bh(vh, πpp− p) + bh(πpu− u, qh).(47)
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Next, recalling that the pair (vh, qh) has unit |||·|||V c,Qc norm, we derive

Ah(πpu− u, πpp− p;vh, qh) ≤Ca|||πpu− u||| · |||vh|||+ Cb|||vh||| · |||πpp− ph|||
+ Cb|||πpu− u||| · |||qh|||,

and after employing the continuity of ãh and bh in (20)–(22) and Corollary 4.4, also
bounds the remaining terms. At this end, an estimate for (47) follows as

Ah(πpu− u, πpp− p;vh, qh)

≤C
∑

K∈T ♯

hp
K

pp−
1
2

{
max {|||vh||| · |||qh|||}

(
3||u||p+1,K +

1

p
1
2

||p||p,K
)}

≤C
∑

K∈T ♯

hp
K

pp−
1
2

(
||u||p+1,K +

1

p
1
2

||p||p,K
)
,

and the estimate (46) follows. It is also necessary to check that the extended
bilinear form ãh(·, ·) and the related inconsistency error bound does not affect the
aforementioned optimal error bound, see also [14, Section 4.2]. This can easily be
verified by employing again the tools of Corollary 4.4. In particular, we consider
the residual Rh(vh) := ãh(u,vh)−ah(u,vh), we substitute the bilinear forms with
their components as in Subsection 2.2, we recall that u belongs in V ♯, e.g. [[u]] is
zero, on the boundary u|Γ = 0, and the residual becomes

−
∑

F∈F♯
int∪Γ

∫
F

({{ΠL2(∇u)−∇u}} · nF[[vh]]) dγ −
∫
Γ

(
vhΠL2(∇u)−∇u

)
· nΓ

)
dγ,

or

|Rh(vh)| ≤
∑

F∈F♯
int∪Γ

∫
F

|{{ΠL2(∇u)−∇u}} · nF[[vh]]| dγ

+

∫
Γ

∣∣vhΠL2(∇u)−∇u
)
· nΓ

∣∣ dγ.
Next, we add and subtract the term πp∇u, and after algebraic calculations we
derive that

|Rh(vh)|

≤
∑

F∈F♯
int∪Γ

∫
F

|({{∇u− πp∇u}} · nF[[vh]]|+ |{{ΠL2(∇u)− πp∇u}} · nF[[vh]]|) dγ

+

∫
Γ

vh

(
|∇u− πp∇u|+ |ΠL2(∇u)− πp∇u|

)
· nΓ dγ

≤
∑

F∈F♯
int∪Γ

∫
F

|({{∇u− πp∇u}} · nF[[vh]]|+ |{{ΠL2(∇u− πp∇u)}} · nF[[vh]]|) dγ

+

∫
Γ

vh

(
|∇u− πp∇u|+ |ΠL2(∇u− πp∇u)|

)
· nΓ dγ.

Finally, for the last inequality terms we use the fact that ΠL2πpv coincides with
πpv, we follow the same procedure as in the beginning of the present proof, the
tools as demonstrated in Collorary 4.4, that the projector ΠL2 has the stability
property ||ΠL2v||L2(K) ≤ ||v||L2(K), and we verify that the related inconsistency
error bound does not affect the aforementioned optimal error bound. �
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Remark 5.3. We note that if one makes stronger assumptions as mesh quasi-
uniformity: h = maxK∈T ♯ hK , then the estimate of Theorem 5.2 is transformed

to |||(u− uh, p− ph)|||≤ C hp

pp− 1
2

(
||u||p+1,Ω♯ + 1

p
1
2
||p||p,Ω♯

)
, which verifies optimal

convergence in h and suboptimal in p by p1/2.

6. Numerical Experiments/Convergence tests

6.1. 1st experiment: Rectangular domain Ω♯. We consider a two–dimensional
test case of (1) in the unit square Ω♯ = [0, 1]

2
with exact solution

u (x, y) = (u (x, y) ,−u (y, x)) , p (x, y) = sin (2πx) cos (2πy) ,

where u(x, y) = (cos (2πx)− 1) sin (2πy).
Note that the mean value of p (x, y) over Ω♯ vanishes by construction, thus

ensuring that the problem (1) is uniquely solvable. As in subsection 2.2, in the spirit
of arbitrarily shaped discontinuous Galerkin method on the boundary approach, we
consider the original domain Ω♯ as seen in Figure 1’s first geometry. A level set
description of the geometry is possible through the function

(48) ϕ (x, y) = |x− 0.5|+ |y − 0.5|+ ||x− 0.5| − |y − 0.5|| − 1 < 0.

To investigate the error convergence behavior of the discretization (6), we consider

a sequence of successively refined tessellations {T ♯
hi
}i>0 of Ω♯ with mesh parame-

ters hi = 2−i−2, for i = 0, . . . , 7. As it is shown in the rectangular geometry case
of Figure 2 exploiting the level-set function information on ∂Ω♯, elements contain-
ing straight faces approximating the polytopal boundary are marked. Finally, all
marked elements are treated as classical triangular elements in the interior, with
polytopal elements only on the boundary described by the domain level-set func-
tion, thus capturing the domain exactly. To allow for several polynomial degrees
pi, the symmetric interior penalty parameter in (4) scales as σ = p2i /hi. A sparse
solver has been used to solve the arising linear systems.

As expected from the theoretical error estimate stated in Theorem 5.2, optimal
p-th order convergence rates with respect to the H1–norm of the velocity error and
the L2–norm of the pressure error are in agreement with the error results as they
are visualized in Table 1 (p1/p0) and Table 2 (p2/p1). Although, as seen in Table
3 (p3/p2) the convergence rates are optimal for the velocity and suboptimal for
pressure. The superiority of the higher order framework is obvious and show that
the method is efficient. Numerical experiments verify these facts, indeed, for larger
p, much smaller errors are attained in progressively coarser meshes, for pi/pi−1

Taylor–Hood velocity/pressure pairs order, and the inf–sup stability is guaranteed.
The aforementioned results are visualized in Figure 4.

Moreover in Table 4, and in the context of [2], a sequence of p3/p2 approxi-
mations for the velocity and pressure solution in progressively finer meshes is il-
lustrated, showcasing the convergence of the method and the errors with respect
to several mesh sizes. Further investigation, revealed that contrasting the results
between Table 3 and Table 4 related to the p3/p2 case, i.e. comparing the suggest-
ed in the present work framework without any ghost type of stabilization on the
boundary zone area, against to the full ghost penalty stabilization, showed that:
the suggested method, yields better error behavior and better convergence rates
only for the velocity, although suboptimal for the pressure even if the errors are
better, a phenomenon that will be discussed later and it is probably caused by
the quadrature on the polytopal boundary elements we employed. Therefore, we
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Table 1. Rectangular geometry: Errors and rates of convergence
with respect to H1-norm for the velocity and L2-norm for the pres-
sure, using p1/p0 finite elements.

Discretization Errors and convergence rates: p1/p0 polynomials case

hmax ∥u− uh∥1,Ω♯ Conv. rate ∥p− ph∥Ω♯ Conv. rate

0.25(= 2−2) 1.469461 – 0.8756151 –
0.125(= 2−3) 0.871741 0.7533148 0.4336638 1.0137197
0.0625(= 2−4) 0.526300 0.7280155 0.3289021 0.3989189
0.03125(= 2−5) 0.290011 0.8597764 0.1901614 0.7904334
0.015625(= 2−6) 0.151577 0.9360504 0.1006410 0.9180059
0.0078125(= 2−7) 0.077476 0.9682347 0.0515098 0.9662987
0.00390625(= 2−8) 0.039269 0.9803399 0.0261353 0.9788479

Mean: – 0.8709553 – 0.8443707

Table 2. Rectangular geometry: Errors and rates of convergence
with respect to H1-norm for the velocity and L2-norm for the pres-
sure, using p2/p1 and finite elements.

Discretization Errors and convergence rates: p2/p1 polynomials case

hmax ∥u− uh∥1,Ω♯ Conv. rate ∥p− ph∥Ω♯ Conv. rate

0.25(= 2−2) 0.2372591 – 0.1131108 –
0.125(= 2−3) 0.1129321 1.0710074 0.0512201 1.1429531
0.0625(= 2−4) 0.0337229 1.7436526 0.0165609 1.6289302
0.03125(= 2−5) 0.0088867 1.9240082 0.0046825 1.8224281
0.015625(= 2−6) 0.0023107 1.9433135 0.0012434 1.9129403
0.0078125(= 2−7) 0.0005816 1.9900301 0.0003073 2.0165782

Mean: – 1.7344024 – 1.7047660

Table 3. Rectangular geometry: Errors and rates of convergence
with respect to H1-norm for the velocity and L2-norm for the pres-
sure, using p3/p2 finite elements.

Discretization Errors and convergence rates: p3/p2 polynomials case

hmax ∥u− uh∥1,Ω♯ Conv. rate ∥p− ph∥Ω♯ Conv. rate

0.25(= 2−2) 0.0466716 – 0.0184400 –
0.125(= 2−3) 0.0076981 2.5999546 0.0069364 1.4105717
0.0625(= 2−4) 0.0012099 2.6696092 0.0017273 2.0056609
0.03125(= 2−5) 0.0001644 2.8789030 0.0009789 0.8192784
0.015625(= 2−6) 2.5518e-05 2.6883086 0.0003071 1.6720465

Mean: – 2.7091938 – 1.4768894

may avoid integration errors related to the normal derivative up to the third-order
jump terms used in the ghost penalty stabilization approach, [42, 43], which lead
to a significant improvement for the velocity and pressure errors, as well as, crucial
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Table 4. Rectangular geometry: Errors and rates of convergence
with respect to H1-norm for the velocity and L2-norm for the pres-
sure, using p3/p2 finite elements with higher order ghost boundary
elements area stabilization in the context of [2].

Discretization Errors and convergence rates: p3/p2 polynomials case

hmax ∥u− uh∥1,Ω♯ Conv. rate ∥p− ph∥Ω♯ Conv. rate

0.25(= 2−2) 0.3386166 – 0.7184173 –
0.125(= 2−3) 0.0247465 3.7743523 0.0590158 3.60564722
0.0625(= 2−4) 0.0039329 2.6535468 0.0096287 2.61568216
0.03125(= 2−5) 0.0006434 2.6117326 0.0017089 2.4942619
0.015625(= 2−6) 0.0002045 1.6536038 0.0003671 2.2187371

Mean: – 2.67330889 – 2.73358212
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Figure 4. Rectangular geometry: Visualization of the H1-norm
velocity errors and L2-norm pressure errors with respect to the
discretization size.

computational cost savings. We again underline that the evaluation of boundary
elements stabilization is avoided, namely, computations of gradually higher order
normal derivative jumps –depended on the finite element order– seem unnecessary
with the suggested approach. We also re-note that the pressure convergence rate in
Table 3 is suboptimal although the error is much smaller e.g. than the case where
full boundary area elements stabilization is applied for p3/p2 and as it is reported
in Table 4. Finally, we report that in practice, the condition number for arbitrarily
shaped boundary elements discontinuous Galerkin methods to solve Stokes prob-
lem is typically very large. The employment of efficient multigrid preconditioners
for such cases, is left as a further challenge, see also the works [1], [20]. We also
clarify that for the polytopal boundary elements, the current implementation per-
forms quadrature by a sufficiently fine sub-triangulation approximating properly
the curved element. Although, this first implementation of ours could be the issue
of noticing slightly lower convergence rate than the predicted and specially on high-
est order polynomial case, and even worse for the pressure component. It is noted
that in this case the sub-triangulation is only used to generate the quadrature rules.
Of course, this is not the only possibility. For instance, domain-exact quadrature
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algorithms for many curved domains exist, for such algorithms see [3, 21] and the
references therein, and we plan to investigate this issue in the future.

6.2. 2nd experiment: Circular domain Ω♯. We consider a two–dimensional
test case of (1) in Ω♯ to be a disc of radius r = 1 with exact solution

u (x, y) = (ux (x, y) , uy (y, x)) , p (x, y) = (y2+x2−r2)2(2y2+x2)exp(−k(y2+x2))/2,

where

ux = −y(y2+x2−r2)exp(−k(y2+x2)/2) and uy = x(y2+x2−r2)exp(−k(y2+x2)/2),

k = 3π/2. Note that the mean value of p (x, y) over Ω♯ vanishes by construction,
thus ensuring that the problem (1) is uniquely solvable as well as it is divergence free.
Again, following subsection 2.2, in the spirit of arbitrarily shaped discontinuous
Galerkin method on the boundary approach, we consider the original domain Ω♯ as
it is in Figure 1’s second image. A level set description of the geometry is possible
through the function

(49) ϕ (x, y) = y2 + x2 − r2 < 0.

We can easily confirm the results of Theorem 5.2 with the results as reported

Table 5. Circular geometry: Errors and rates of convergence with
respect to H1-norm for the velocity and L2-norm for the pressure,
using p1/p0 finite elements and with no ghost boundary elements
area stabilization.

Discretization Errors and convergence rates: p1/p0 polynomials case

hmax ∥u− uh∥1,Ω♯ Conv. rate ∥p− ph∥Ω♯ Conv. rate

0.62500625 0.2091145 – 0.1462374 –
0.31250312 0.1643200 0.3477844 0.0742179 0.9784737
0.15625156 0.0842741 0.9633462 0.0469684 0.6600764
0.07812578 0.0441366 0.9331140 0.0265372 0.8236700
0.03906289 0.0226625 0.9616639 0.0141321 0.9090371
0.01953144 0.0114507 0.9848749 0.0072050 0.9718974
0.00976572 0.0057310 0.9985631 0.0035962 1.0025094

Mean: – 0.968312 – 0.873438

in Tables 5, 6, 7 for p = 1, 2, 3 respectively and for Taylor-Hood u, p pairs. The
superiority of the higher order cases is clarified, with respect to the errors and to
the convergence rates where we manage better results in a much coarser mesh. This
can also be seen with a glance in the visualization of Figure 5.

Finally, we highlight that the convergence rates for both tests seems to stop
in the denser meshes and especially in the highest order polynomials rectangular
geometry cases even if we notice good error results. This in our opinion happens
due to the aforementioned way of integration on the polytopal boundary elements
and we will leave the correction for the future, and of course crucial role played the
corner points since in this last experiment –with the smoother circular geometry–
we noticed correction of the pressure suboptimal convergence rates.
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Table 6. Circular geometry: Errors and rates of convergence with
respect to H1-norm for the velocity and L2-norm for the pressure,
using p2/p1 finite elements and with no ghost boundary elements
area stabilization.

Discretization Errors and convergence rates: p2/p1 polynomials case

hmax ∥u− uh∥1,Ω♯ Conv. rate ∥p− ph∥Ω♯ Conv. rate

0.62500625 0.0328117 – 0.0145547 –
0.31250312 0.0319032 0.0405088 0.0123406 0.2380803
0.15625156 0.0082061 1.9589227 0.0039063 1.6595269
0.07812578 0.0020995 1.9666160 0.0010171 1.9412207
0.03906289 0.0005342 1.9746348 0.0002690 1.9189042
0.01953144 0.0001331 2.0038963 6.759e-05 1.9927008

Mean: – 1.976017 – 1.878088

Table 7. Circular geometry: Errors and rates of convergence with
respect to H1-norm for the velocity and L2-norm for the pressure,
using p3/p2 finite elements and with no ghost boundary elements
area stabilization.

Discretization Errors and convergence rates: p3/p2 polynomials case

hmax ∥u− uh∥1,Ω♯ Conv. rate ∥p− ph∥Ω♯ Conv. rate

0.62500625 0.0120753 – 0.0070916 –
0.31250312 0.0044922 1.4265409 0.0014351 2.3048990
0.15625156 0.0005162 3.1212517 0.0001907 2.9113670
0.07812578 6.4007e-05 3.0118057 2.7194e-05 2.8103814
0.03906289 8.3068e-06 2.9458756 5.3857e-06 2.3361018

Mean: – 2.62636850 – 2.5906872
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Figure 5. Circular geometry: Visualization of the H1-norm ve-
locity errors and L2-norm pressure errors with respect to the dis-
cretization size.
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7. Conclusion

In this effort, we proposed and tested a discontinuous Galerkin method for the
incompressible Stokes flow employing arbitrarily shaped elements. hp-version op-
timal order convergence is proved for higher order finite elements of pi/pi−1 order
for velocity and pressure fields. This method may prove valuable in applications
where special emphasis is placed on the effective approximation of pressure, attain-
ing much smaller errors in coarser meshes and whenever geometrical morphings
are taking place. In fact, control over the error of the pressure field is among the
most decisive points of difficulty for many methods. Numerical test experiments
demonstrated the very good stability and accuracy properties of the method. The
theoretical convergence rates for the H1-norm of the velocity and the L2-norm of
the pressure have been validated by our tests, even for the p3/p2 case. Significantly
smaller errors have been noticed considering the comparison of the method under
consideration, with the unfitted dG finite element method of [2] and the results
as reported in Table 3 and Table 4 for step h = 2−6. In particular 2.5518e − 05,
0.0003071 for the presented approach, and 0.0002045, 0.0003671 for a fully stabilized
with efficient ghost penalty fictitious domain FEM and for the velocity and pressure
respectively have been reported. The latter, after comparison, shows smaller errors
for the pressure and one order of magnitude better errors for the velocity which
validates the superiority of the proposed approach. In the present work, we focused
on the static Stokes problem. Thus, the method seems very promising. Future work
will extend our investigations to more general fluid mechanics problems, including
time-dependent problems on complex domains and/or nonlinearities, as well as,
Navier-Stokes and fluid-structure interaction systems. Finally, future development
would be a proper preconditioner and a reduced order modeling investigation.
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[24] C. Engwer, S. May, A. Nüßing, and F. Streitbürger. A Stabilized DG Cut Cell Method
for Discretizing the Linear Transport Equation. SIAM Journal on Scientific Computing,
42(6):A3677–A3703, 2020.

[25] C. Engwer, T. Ranner, and S. Westerheide. An unfitted discontinuous Galerkin scheme for

conservation laws on evolving surfaces. Proceedings of the Conference Algoritmy, pages
44–54, 2016.

[26] T. Fries and T. Belytschko. The extended/generalized finite element method: An overview of
the method and its applications. International Journal for Numerical Methods in Engineering,

84(3):253–304, 2010.
[27] E. H. Georgoulis, Edward J. C. Hall, and J. M. Melenk. On the Suboptimality of the p-

Version Interior Penalty Discontinuous Galerkin Method. Journal of Scientific Computing,

42:54–67, 2010.
[28] V. Girault, B. Rivière, and M. A. Wheeler. Discontinuous Galerkin method with non–

overlapping domain decomposition for the Stokes and Navier–Stokes problems. Math. Com-
put., 74:53–84, 2005.

[29] A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche’s method,
for elliptic interface problems. Comput. Methods Appl. Mech. Eng, 191:5537–5552, 2002.

[30] Paul Houston et al. Discontinuous hp-finite element methods for advection-diffusion-reaction
problems. SIAM Journal on Numerical Analysis, 39(6):2133–2163, 2002.



558 E. N. KARATZAS

[31] L. N. T. Huynh, N. C. Nguyen, J. Peraire, and B. C. Khoo. A high order hybrizidable
discontinuous Galerkin method for elliptic interface problems. Int. J. Numer. Meth. Engrg.,

93:183–200, 2013.
[32] E. N. Karatzas. Boundary and distributed optimal control for a population dynamics PDE

model with discontinuous in time Galerkin FEM schemes. Comput. Math. Appl., 165(6):70–
87, 2024.

[33] E. N. Karatzas, F. Ballarin, and G. Rozza. Projection-based reduced order models for a cut
finite element method in parametrized domains. Computers & Mathematics with Applica-
tions, 3(79):833–851, 2020.

[34] E. N. Karatzas and G. Rozza. A Reduced Order Model for a Stable Embedded Boundary

Parametrized Cahn-Hilliard Phase-Field System Based on Cut Finite Elements. J Sci Com-
put, 89(9):1–29, 2021.

[35] E. N. Karatzas, G. Stabile, N. Atallah, G. Scovazzi, and G. Rozza. A reduced order approach
for the embedded shifted boundary fem and a heat exchange system on parametrized ge-

ometries. pages 22–25. IUTAM Symposium on Model Order Reduction of Coupled Systems,
Stuttgart, Germany, May, 2018. IUTAM Bookseries, vol 36. Springer, Cham, 2020.

[36] E. N. Karatzas, G. Stabile, L. Nouveau, G. Scovazzi, and G. Rozza. A reduced basis approach

for PDEs on parametrized geometries based on the shifted boundary finite element method
and application to a Stokes flow. Comput. Methods Appl. Mech. Engrg., 347:568–587, 2019.

[37] E. N. Karatzas, G. Stabile, L. Nouveau, G. Scovazzi, and G. Rozza. A reduced-order shifted
boundary method for parametrized incompressible Navier-Stokes equations. Comput. Meth-

ods Appl. Mech. Engrg., 370:113–273, 2020.
[38] E. M. Kolahdouz, A. P. S. Bhalla, B. A. Craven, and B. E. Griffith. An immersed interface

method for faceted surfaces. Journal of Computational Physics, 400, 2020.
[39] C. Lehrenfeld, F. Heimann, J. Preuß , and H. von Wahl. ngsxfem: Add-on to ngsolve for geo-

metrically unfitted finite element discretizations. Journal of Open Source Software, 6(64):32–
37, 2021.

[40] A. Lozinski. Cutfem without cutting the mesh cells: a new way to impose dirichlet and
neumann boundary conditions on unfitted meshes. Computer Methods in Applied Mechanics

and Engineering, 356:75–100, 2019.
[41] A. Main and G. Scovazzi. The shifted boundary method for embedded domain computations.

Part I: Poisson and Stokes problems. Journal of Computational Physics, 372:972–995, 2018.
[42] A. Massing, M. G. Larson, A. Logg, and M. E. Rognes. A stabilized Nitsche fictitious domain

method for the Stokes problem. J. Sci. Comput., 61:604–628, 2014.
[43] A. Massing, M. G. Larson, A. Logg, and M. E. Rognes. A stabilized Nitsche overlapping mesh

method for the Stokes problem. Numer. Math., 128:73–101, 2014.

[44] R. Massjung. An unfitted discontinuous galerkin method applied to elliptic interface problems.
SIAM J. Numer. Anal., 50:3134–3162, 2012.

[45] J. M. Melenk. hp-finite element methods for singular perturbations. 2002.
[46] V. Murti and S. Valliappan. Numerical inverse isoparametric mapping in remeshing and nodal

quantity contouring. Computers & Structures, 22(6):1011–1021, 1986.
[47] V. Murti, Y. Wang, and S. Valliappan. Numerical inverse isoparametric mapping in 3D FEM.

Computers & Structures, 29(4):611–622, 1988.
[48] S. J. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces., volume 153 of

Applied mathematical sciences. Springer, 2003.
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