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MIXED VIRTUAL ELEMENT METHOD FOR LINEAR

PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS

MEGHANA SUTHAR AND SANGITA YADAV

Abstract. This article develops and analyses a mixed virtual element scheme for the spatial
discretization of linear parabolic integro-differential equations (PIDEs) combined with backward
Euler’s temporal discretization approach. The introduction of mixed Ritz-Volterra projection
significantly helps in managing the integral terms, yielding optimal convergence of order O(hk+1)

for the two unknowns p(x, t) and σ(x, t). In addition, a step-by-step analysis is proposed for the
super convergence of the discrete solution of order O(hk+2). The fully discrete case has also been
analyzed and discussed to achieve O(τ) in time. Several computational experiments are discussed

to validate the proposed schemes computational efficiency and support the theoretical conclusions.

Key words. Mixed virtual element method, parabolic integro-differential equation, error esti-
mates, super-convergence.

1. Introduction

Mathematical models for solving the electrical circuit problems specified by the
Kirchhoff voltage laws [34], for a disease transmitted through the movement of
contagious individuals [29], heat flow in a substance with memory [30], etc., give
rise to the linear integro-differential equations. With consideration for the diverse
array of applications of these equations across various domains, our focus lies in
the exploration of PIDEs of the following form:

pt(x, t)−∇ ·
(
a(x)∇p(x, t)−

∫ t

0

b(x; t, s)∇p(x, s)ds

)
= f(x, t) (x, t) ∈ D × (0, T ],

p(x, t) = 0 (x, t) ∈ ∂D × (0, T ],

p(x, 0) = p0(x) x ∈ D.

(1)

Here, D ⊂ R2 is a bounded polygon domain having ∂D as the boundary; fur-
thermore, the interval [0, T ] represents a finite time span. This article intends to
introduce and examine the mixed virtual element method (VEM) concerning PIDEs
(1), with the primary goal of studying the effect of time discretization on virtual
element solution. For our analysis, we would require the assumptions listed below
on the coefficients and the function f :

H.1 the coefficient a(x) is bounded, positive i.e. a(x) ≥ µ0 > 0, and smooth
enough,

H.2 the coefficient b(x; t, s) and its derivative bt(x; t, s), bs(x; t, s) are real-valued,
bounded, and smooth,

H.3 the function f is real-valued and smooth enough.

In literature, various approaches have been made to obtain the numerical solution
to these equations and related problems, such as the finite element method (FEM)
[23, 14], finite volume method [16], VEM [40], least-square Galerkin method [24],
hp-local discontinuous Galerkin method [32], spectral method [19], HDG method
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[26] etc. Further, by extending these ideas in [31, 12, 20], fully discrete schemes were
proposed in which discretization of time is implemented using implicit finite differ-
ence schemes. The reason for employing finite element scheme and their variants
is the computational efficiency and well-established theory of these methods. We
stress that polygonal meshes have many benefits: greater flexibility in the meshing
of arbitrary geometries, better accuracy in the numerical solution over that obtain-
able using triangular and quadrilateral meshes on a given nodal grid, and many
more, see [36]. To deal with polygonal meshes, VEM was introduced in [1] and is
very much appreciated by the scientific community. A detailed study shows that
this method can be considered as a generalization of the standard FEM over general
polygonal and polyhedral meshes as the convergence analysis of this method can be
placed within the structure of the FEM, which is well developed in the literature.
In general, VEM has been successfully applied for an approximate estimation of
various partial differential equations; for recent developments and applications of
this method, we refer to [38, 39, 6, 2, 38] and references within.

One of our concerns in (1) is determining the flux or velocity in addition to
the pressure; the typical Galerkin method yields a loss of precision because it is
estimated from the approximated solution via post-processing. The mixed methods,
on the other hand, provide a direct estimate of this physical quantity and lead to
locally conservative solutions. Another advantage of using a mixed technique here
is the ability to introduce one more unknown of physical importance, which may be
computed directly without adding any new sources of error. Mixed VEM has been
effectively employed to approximate a number of partial differential equations; see
[9, 8, 10, 21, 11, 22] and references therein for details. Here, we introduce σ(x, t),
defined by

(2) σ(x, t) = a(x)∇p(x, t)−
∫ t

0

b(x; t, s)∇p(x, s)ds,

and rewrite (1) as:

(3) pt(x, t)−∇ · σ(x, t) = f(x, t).

The meaning of this independent variable ‘σ’ is velocity field while discussing flow
in porous media, whereas (3) expresses a mass balance in any subdomain of D,
see[35]. So, the mixed formulation for this setting simultaneously approximates
the pressure and the velocity field while maintaining the underlying local mass
conservation. Since there is an integral term in (2) which involves ∇p, we introduce
a new kernel known as the resolvent kernel to deal with this integral term. This
formulation has been explored in [35, 17, 18] for the semi-discrete formulation and
non-smooth initial data, but the fully-discrete case has not been explored yet for
this formulation to the best of our knowledge.

For the mixed variational formulation corresponding to (2), we will use the re-
solvent kernel, applicable to any Volterra integral equation of the second kind [33],
which takes the form:

(4) X(t) = F (t) +

∫ t

0

K(t, s)X(s)ds.

The resolvent kernel for (4) can be expressed as:

X(t) = F (t) +

∫ t

0

R(t, s)F (s)ds.
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Moreover, the resolvent kernel of (4) satisfies:

R(t, s) = K(t, s) +

∫ s

t

K(t, z)R(z, s)dz.

Although determining the resolvent kernel for a given kernel may be a challenging
task, but computationally, this approach proves significantly more efficient. This is
particularly evident when comparing it to the formulation outlined in [27], which
involves two terms under the integral sign and hence requires N × N times more
computation of a matrix. Additionally, in the 3-field formulation discussed in [28],
the system of equations is considerably larger than the system arising from this
formulation. Hence, whenever the resolvent kernel is available, utilizing this formu-
lation yields computational cost cutting. Furthermore, if the resolvent kernel turns
out to be a series, we can truncate the series and get the desired result as shown
by Example 3 in Section 5.

There is hardly any result in mixed VEM applied to PIDEs, so an effort has been
made to address this shortcoming. With the computational benefits and polygonal
meshes in mind, we plan to employ mixed VEM for a certain class of PIDEs to
conduct an in-depth analysis of the convergence behavior of PIDEs.

This paper implements the mixed VEM method on (1). This work presents
several significant contributions, which are outlined as follows:

• To tackle the integral term, an approach involving a novel projection with a
memory term (referred to as mixed Ritz-Volterra (R.V.) projection) is intro-
duced, which helps in achieving the optimal convergence of order O(hk+1)
for both the unknowns.

• A fully discretized scheme is put forth, utilizing the backward Euler’s
method for temporal derivative and the left rectangular rule for the dis-
cretization of the integral term.

• The analysis is performed to show the super convergence of the discrete
solution, which has been verified with the different numerical experiments.

• Theoretical results have been validated through the implementation of nu-
merical experiments.

Unlike finite element formulation, virtual element discretization necessitates using
the L2 projection operator, complicating the convergence analysis.

Throughout the article, for a bounded polygon domain D and an integer m ≥ 0,
we employ conventional notation (·, ·)m,D and ∥ · ∥m,D to denote the Hm(D) inner
product and norm. Furthermore, we write commonly (·, ·) and ∥ · ∥ to indicate the
L2 inner product and norm. Also, | · |m,D symbolises the Hm(D) semi-norm. The
space Xm

q , for q = 1, 2 with the standard modification for q = ∞ is defined as:

Xm
q = {v(x, t) ∈ Hm(D) for a.e. t ∈ (0, T ] and

(∫ T

0

∥v(·, t)∥qmdt

)1/q

< ∞},

with the norm

∥v∥Xm
q

=

(∫ T

0

∥v(·, t)∥qmdt

)1/q

∥v∥Xm
∞

= sup
0≤t≤T

∥v(·, t)∥m.

We consider the space V = H(div;D) andQ = L2(D), whereas the spacesH(div;D)
and H(rot;D) is defined as:

H(div;D) = {χ ∈ (Q)2 : div χ ∈ Q},

H(rot;D) = {χ ∈ (Q)2 : rot χ ∈ Q}.
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For more details about these spaces, see [3]. The upcoming sections are organized
as follows: Section 2 presents the introduction of virtual element spaces along with
the variational and semi-discrete VEM formulation. The analysis of convergence
for the semi-discrete scheme is conducted in Section 3 by introducing a mixed R.V.
projection depending on the memory term. Also, the super convergence property
is discussed in the same section. Section 4 outlines the fully discrete scheme and
its convergence analysis. Lastly, Section 5 contains details of distinct numerical
experiments aimed at validating the theoretical findings presented in Sections 3,
and 4.

2. VEM Approximation

2.1. Virtual Element Space. We assume Ih to be the collection of decompo-
sition of D into star-shaped sub-polygons E, and Eh is the set of edges e of Ih.
Along with this, we postulate that for each element E, ∃ a δE > 0 such that E is
star-shaped from every point of the disc DδE with radius δEhE (hE represents the
element E’s diameter), while he represents the edge e’s length, of the element E
and fulfills he ≥ δEhE . While considering a sequence of decomposition {Ih}h, we
assume δE ≥ δ0 > 0 for some δ0 independent of E and Ih. The largest diameter of
Ih’s elements is h, as is customary. Here, Pk(E) is the set consisting of polynomials
of degree ≤ k in E. Moreover, the mesh assumptions can be significantly relaxed
with some changes in the interpolation estimates, stability term, etc., as discussed
in Remark 3.3 of [4] and further elaborated in [13, 25, 7]. Now, we define the local
space

V k
h (E) = {χ ∈ H(div;E) ∩H(rot;E) : χ · n|e ∈ Pk(e) ∀e ∈ ∂E, ∇ · χ ∈ Pk(E)

and, rot χ ∈ Pk−1(E), for k ≥ 0},

where P−1(E) = {0}. For our analysis, we define the discrete spaces as:

V k
h := {χ ∈ V : χ|E ∈ V k

h (E) ∀ E in Ih},

Qk
h := {q ∈ L2(D) : q|E ∈ Pk(E) ∀ E in Ih}.

The discrete bilinear forms in spaces V k
h and Qk

h can be computed via degrees of
freedom (dof). For the space Qk

h, we are considering the scaled monomials on each
element E as dof: (

1,

(
x− xcE

hE

)
,

(
y − ycE
hE

))
for k = 1;

(
1,

(
x− xcE

hE

)
,

(
y − ycE
hE

)
,

(
x− xcE

hE

)2

,

(
x− xcE

hE

)(
y − ycE
hE

)
,

(
y − ycE
hE

)2
)

for k = 2, and in a similar way for a higher value of k, where (xcE , ycE ) and
hE represents the centroid and diameter of the polygon E, respectively. For the
local space V k

h (E), we present the well-defined collection of operators as dof, see [4]:

•
∫
e

χ · nqkdγ for each edge e of the element E, ∀qk ∈ Pk(e),

•
∫
E

χ · gk−1dx, ∀gk−1 ∈ ∇Pk(E),

•
∫
E

χ · g⊥k dx, ∀g⊥k ∈ L2(E) orthogonal of ∇Pk+1(E) in (Pk(E))2.
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To define discrete variational formulation, we make use of the L2-projection oper-
ators denoted by Π0

k : Q → Qk
h and Π0

k : V → V k
h , and defined for any q ∈ Q and

χ ∈ V as: ∫
E

(q −Π0
kq)pkdx = 0 ∀pk ∈ Pk(E), ∀E ∈ Ih,∫

E

(χ−Π0
kχ)pkdx = 0 ∀pk ∈ (Pk(E))2, ∀E ∈ Ih.

Π0
k and Π0

k satisfies the following estimates, see[4]:

(5) ||q −Π0
kq||0 ≤ Chr|q|r, ||χ−Π0

kχ||0 ≤ Chr|χ|r 0 ≤ r ≤ k + 1.

Now, define “Fortin” operator ΠF
h : (H1(D))2 → V k

h through the dof of the space
V k
h as:

•
∫
e

(χ−ΠF
hχ) · nqkdγ = 0 for each edge e, ∀qk ∈ Pk(E),

•
∫
E

(χ−ΠF
hχ) · gk−1dx = 0 for each element E, ∀gk−1 ∈ ∇Pk(E),

•
∫
E

(χ−ΠF
hχ) · g⊥k dx = 0 for each element E, ∀g⊥k ∈ L2(E) orthogonal

of ∇Pk+1(E) in (Pk(E))2.

ΠF
h satisfy the following properties and estimates:

∇ ·ΠF
hχ = Π0

k∇ · χ,

(6) ||χ−ΠF
hχ||0 ≤ Chr|χ|r, ∥∇ · (χ−ΠF

hχ)∥0 ≤ Chr|∇ · χ|r 0 ≤ r ≤ k + 1.

For more details about ΠF
h , we refer to [37].

2.2. The Continuous and Semi-discrete Formulation. Assuming µ(x) =
a−1(x), (2) becomes:

∇p(x, t) = µ(x)σ(x, t) +

∫ t

0

µ(x)b(x; t, s)∇p(x, s)ds,

which can be rewritten as:

∇p(x, t) = µ(x)σ(x, t) +

∫ t

0

R(x; t, s)µ(x)σ(x, s)ds.

where R(x; t, s) is the resolvent kernel of µ(x)b(x; t, s), see [33, 35, 17] and satisfy
the following:

R(x; t, s) = µ(x)b(x; t, s) +

∫ t

s

µ(x)b(x; t, z)R(x; z, s)dz t > s ≥ 0.

One of the possible ways of finding a resolvent kernel R(t, s) for any kernel K(t, s)
is:

R(t, s) =
∞∑

m=1

Km(t, s),

where Km(t, s) is given by:

(7) K1(t, s) = K(t, s); Km(t, s) =

∫ t

s

K(t, z)Km−1(z, s)dz.

The smoothness and boundedness of the resolvent kernel are derived from the s-
moothness and boundedness of a−1(x)b(x; t, s). For further details, please see [17].
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By denoting K(x; t, s) = R(x; t, s)µ(x), we define variational formulation as: Find
(p,σ) ∈ L2(0, T ;Q)× L2(0, T ;V), for a.e. t in (0, T ), see [15] such that:

(pt, ϕ)− (∇ · σ, ϕ) = (f, ϕ) ∀ϕ ∈ Q,

(µσ,χ) +

∫ t

0

(K(t, s)σ(s),χ)ds+ (∇ · χ, p) = 0 ∀χ ∈ V.
(8)

with the initial condition p(·, 0) = p0.
Now, the mixed VEM formulation reads as: Find (ph,σh) ∈ L2(0, T ;Qk

h) ×
L2(0, T ;Vk

h), for a.e. t in (0, T ) such that:

(ph,t, ϕh)− (∇ · σh, ϕh) = (f, ϕh) ∀ϕh ∈ Qk
h,

ah(σh,χh) +

∫ t

0

Kh(t, s;σh(s),χh)ds+ (∇ · χh, ph) = 0 ∀χh ∈ V k
h ,

(9)

where the initial condition ph(·, 0) follows Remark 2 and [40]. The discrete bilinear
forms above are defined ∀zh,χh ∈ V k

h as:

ah(zh,χh) :=
∑
E∈Ih

aEh (zh,χh), Kh(t, s;zh,χh) :=
∑
E∈Ih

KE
h (t, s; zh,χh),

and bilinear forms aEh (·, ·) : V k
h (E)×V k

h (E) → R and KE
h (·, ·) : V k

h (E)×V k
h (E) → R,

on every element E ∈ Ih are defined as:

aEh (lh, qh) := (µΠ0
klh,Π

0
kqh)0,E + SE

0 ((I −Π0
k)lh, (I −Π0

k)qh) ∀lh, qh ∈ V k
h (E),

KE
h (t, s; lh, qh) := (K(t, s)Π0

klh,Π
0
kqh)0,E ∀lh, qh ∈ V k

h (E).

The stability term SE
0 : V k

h (E)× V k
h (E) → R should be constructed in such a way

that, ∃ µ∗, µ
∗ independent of h with 0 < µ∗ ≤ µ∗ and satisfies the following:

µ∗a
E(lh, lh) ≤ SE

0 (lh, lh) ≤ µ∗aE(lh, lh) ∀lh ∈ V k
h (E).

One of the possible choices of SE
0 (·, ·) is:

SK
0 ((I −Π0

k)lh, (I −Π0
k)mh) := µ̄|E|

Ndof∑
i=1

dofi(lh −Π0
klh)dofi(mh −Π0

kmh),

where µ̄ is some positive constant approximation of the coefficients µ(x) [5]. More-
over, ∃ µ1, µ2 > 0, such that:

(10) ah(χh,χh) ≥ µ1∥χh∥2 and |ah(zh,χh)| ≤ µ2∥zh∥∥χh∥ ∀χh ∈ V k
h .

For more details about SE
0 and its properties, see [5, 4].

Remark 1. Adding the stability term SE
0 in aEh (·, ·) helps to prove the coercivity of

aEh . However, since we only need KE
h (·, ·) to be bounded, therefore we don’t need to

add this extra term KE
h (·, ·), see [40].

3. Error Analysis for the Semi-discrete Case

Lemma 1. For E ∈ Ih, let the coefficients µ(x) and K(x; t, s) be smooth scaler-
valued functions in D and u be smooth vector-valued function and χh ∈ V k

h (E).
Then,

aEh (Π
0
ku,χh)− (µΠ0

ku,χh)0,E ≤ Cµh
k+1|u|k+1,E |χh|0,E ,

(11) Kh(t, s;Π
0
ku,χh)− (K(t, s)Π0

ku,χh)0,E ≤ CKh
k+1|u|k+1,E |χh|0,E .



510 M. SUTHAR AND S. YADAV

Proof. Let lh,χh be vector-valued functions in V k
h (E). Then, by using the proper-

ties of Π0
k, we arrive at:

aEh (lh,χh)− (µlh,χh)0,E

= (µlh −Π0
k(µlh),χh −Π0

kχh)0,E + (lh −Π0
klh, µχh −Π0

k(µχh))0,E

− (lh −Π0
klh, µ(χh −Π0

kχh))0,E + SE
0 ((I −Π0

k)lh, (I −Π0
k)χh).

(12)

Now, put lh = Π0
ku in (12) and using the properties ofΠ0

k, last three terms becomes
zero and we arrive at:

aEh (Π
0
ku,χh)− (µΠ0

ku,χh)0,E ≤Cµh
k+1|u|k+1,E |χh|0,E .

Using the similar arguments, we can also prove (11). �
3.1. Mixed Ritz Volterra Projection. For the formulation described in (8) and
(9), we can now derive the optimal error estimates for both the semi-discrete and
fully-discrete cases, we need to deal with the memory term. Therefore, we introduce
a new projection here with the memory term known as mixed R.V.projection. Given
(p(t),σ(t)) ∈ Q × V for t ∈ (0, T ], define mixed R.V. projection (p̃(t), σ̃(t)) ∈
Qk

h × V k
h , as:

ah(σ̃,χh)+

∫ t

0

Kh(t, s; σ̃(s),χh)ds+ (∇ · χh, p̃)

= (µσ,χh) +

∫ t

0

(K(t, s)σ(s),χh)ds+ (∇ · χh, p) ∀χh ∈ V k
h ,

(∇ · (σ − σ̃), ϕh) = 0 ∀ϕh ∈ Qk
h.

(13)

Since (13) is a linear system. To prove the existence and uniqueness of the mixed
R.V. projection, it is sufficient to prove that the associated homogenous system
(14)-(15) has only a trivial solution.

ah(σ̃,χh) +

∫ t

0

Kh(t, s; σ̃(s),χh)ds+ (∇ · χh, p̃) = 0 ∀χh ∈ V k
h ,(14)

(∇ · σ̃, ϕh) = 0 ∀ϕh ∈ Qk
h.(15)

Put ϕh = ∇ · σ̃ in (15) to arrive at ∇ · σ̃ = 0. Substitute χh = σ̃ in (14) and by
using (10), we arrive at the following:

µ1∥σ̃∥2 ≤ −
∫ t

0

Kh(t, s; σ̃(s), σ̃)ds

∥σ̃∥ ≤ C

∫ t

0

∥σ̃(s)∥ds

Using Grönwall’s lemma, we have ∥σ̃∥ = 0 Now, we use the inf -sup condition
mentioned in [4], [8], which is:

∃ β > 0 such that inf
q∈Qk

h

sup
v∈V k

h

(∇ · v, q)
∥q∥Q∥v∥V

≥ β > 0.

So,

∥p̃∥ ≤ c sup
v∈V k

h

(∇ · χh, p̃)

∥χh∥V
≤ C

(
∥σ̃∥+

∫ t

0

∥σ̃(s)∥ds
)
.

We arrive at ∥p̃∥ = 0. Hence, p̃ = 0 and σ̃ = 0.
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Below, we present the estimates for R.V. projection:

Theorem 1. Under the assumptions H.1-H.3, σ and p ∈ Xk+1
∞ , ∃ a unique solu-

tion (p̃, σ̃) ∈ Qk
h × V k

h , which satisfies (13). Furthermore, the following estimates
hold true:

(16) ∥σ − σ̃∥X0
∞

≤ Chk+1

(
|σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
,

(17) ∥p− p̃∥X0
∞

≤ Chk+1

(
|p|k+1 + |σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
.

Proof. In order to prove (16) and (17), we proceed by considering ϑ = σ − σ̃,
ψh = ΠF

hσ− σ̃, ρ = p− p̃, and τh = Π0
kp− p̃ ∈ Qk

h . Now, By the definition of the
mixed R.V. projection (13):

ah(Ψh,χh) +

∫ t

0

Kh(t, s;Ψh(s),χh)ds

= (∇ · χh, p̃− p) +

(∫ t

0

Kh(t, s;Π
F
hσ(s),χh)ds−

∫ t

0

(K(t, s)σ(s),χh)ds

)
+
(
ah(Π

F
hσ,χh)− (µσ,χh)

)
.

(18)

For solving the third term in the right-hand side of (18), we use Lemma 1, (10)
and Cauchy-Schwarz inequality as:

ah(Π
F
hσ,χh)− (µσ,χh)

= ah(Π
F
hσ −Π0

kσ,χh) + ah(Π
0
kσ,χh)− (µ(σ −Π0

kσ),χh)− (µΠ0
kσ,χh)

≤ C(∥σ −Π0
kσ∥+ ∥ΠF

hσ −Π0
kσ∥+ hk+1|σ|k+1)∥χh∥ [By using (5) and (6)]

≤ Chk+1|σ|k+1∥χh∥.

(19)

In a similar manner, one can address the solution of the second term on the right-
hand side of equation (18) as:∫ t

0

Kh(t, s;Π
F
hσ(s),χh)ds−

∫ t

0

(K(t, s)σ(s),χh)ds

≤Chk+1∥χh∥
∫ t

0

|σ(s)|k+1ds.(20)

By using (13), (19), (20), ΠF
h , ∥∇ · ψh∥ = 0 and by considering χh = ψh in (18),

we arrive at the following:

ah(ψh,ψh) ≤ Chk+1

(
|σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
∥ψh∥ −

∫ t

0

Kh(t, s;ψh(s),ψh)ds.

Use of boundedness of Kh(t, s; ·, ·) see [17], coercivity of ah(ψh,ψh) and (10), fol-
lowed by Grönwall’s lemma, yields:

∥ψh∥ ≤ Chk+1

(
|σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
.

Now, the use of triangle inequality completes the proof of (16):

(21) ∥ϑ∥ ≤ Chk+1

(
|σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
.
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To prove (17), we proceed by using the definition of mixed R.V. projection (13) as:

(µϑ,χh) + (∇ · χh, τh) = F(χh) ∀χh ∈ V k
h ,

(∇ · ϑ, ϕh) = 0 ∀qh ∈ Qk
h,

(22)

where

F(χh) =ah(σ̃,χh)− (µσ̃,χh) +

∫ t

0

Kh(t, s; σ̃(s),χh)ds

−
∫ t

0

(K(t, s)σ(s),χh)ds.

(23)

Let ξ ∈ H2(D) ∩H1
0 (D) be the solution of the dual problem:

(24) −∇ · (a∇ξ) = τh, ξ = 0 on ∂D,

and satisfy the following regularity condition:

(25) ∥ξ∥2 ≤ ∥τh∥.

Consider Φ = a∇ξ, then (24) will satisfy:

(µΦ,χ) + (∇ · χ, ξ) = 0 ∀χ ∈ V,
−(∇ ·Φ, ϕ) = (τh, ϕ) ∀ϕ ∈ Q.

(26)

Now, put ϕ = τh in (26) to get:

∥τh∥2 = (τh,−∇ · (ΠF
h a∇ξ))

= (µϑ,ΠF
h (a∇ξ))−F(ΠF

h (a∇ξ)) [ By using (22) ].
(27)

Now, from (23), we can rewrite F(ΠF
h (a∇ξ)) as:

F(ΠF
h (a∇ξ))

= (ah(σ̃ −Π0
kσ,Π

F
h (a∇ξ))− (µ(σ̃ −Π0

kσ),Π
F
h (a∇ξ)))

+ (ah(Π
0
kσ,Π

F
h (a∇ξ))− (µΠ0

kσ,Π
F
h (a∇ξ)))−

(∫ t

0

(K(t, s)(ϑ)(s),ΠF
h (a∇ξ))

)
+

(∫ t

0

Kh(t, s; (σ̃ −Π0
kσ)(s),Π

F
h (a∇ξ))ds

−
∫ t

0

(K(t, s)(σ̃ −Π0
kσ)(s),Π

F
h (a∇ξ))

)
+

(∫ t

0

Kh(t, s;Π
0
kσ(s),Π

F
h (a∇ξ))ds−

∫ t

0

(K(t, s)Π0
kσ(s),Π

F
h (a∇ξ))ds

)
.

(28)

The first and fourth terms on the right-hand side of (28) can be solved in a similar
way as (12). We apply Lemma 1 to deal with the second and last terms whereas we
use Cauchy-Schwarz inequality and (21) for the third term. Therefore, we arrive at
the following:

(29) F(ΠF
h (a∇ξ)) ≤ Chk+1

(
|σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
∥ξ∥1,

whereas

(30) (µϑ,ΠF
h (a∇ξ)) ≤ C∥ϑ∥∥ξ∥1.
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Using (29), (30), (21) and (25) in (27), we arrive at:

(31) ∥τh∥ ≤ Chk+1

(
|σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
.

We get our desired estimates by using a triangle inequality and (5). �

3.2. Super Convergence property of τh. As evident from the equation (31), it
is clear that τh exhibits convergence of order O(hk+1). We can potentially enhance
the convergence order of τh, by utilizing the dual norm approach, resulting in an
order of O(hk+2). This can be shown by rewriting (27) as:

(32) ∥τh∥2 = (µϑ,ΠF
h (a∇ξ)− a∇ξ) + (∇ · ϑ,Π0

kξ − ξ)−F(ΠF
h (a∇ξ)).

Now, by using (5) and (6) , we arrive at:

(33) (µϑ,ΠF
h (a∇ξ)− a∇ξ) ≤ Ch∥ϑ∥∥ξ∥2,

(34) (∇ · ϑ,Π0
kξ − ξ) ≤ Ch2∥∇ · ϑ∥∥ξ∥2.

Now, (28), can be rewritten as:

F(ΠF
h (a∇ξ))

= (ah(σ̃ −Π0
kσ,Π

F
h (a∇ξ))− (µ(σ̃ −Π0

kσ),Π
F
h (a∇ξ)))

+ (ah(Π
0
kσ,Π

F
h (a∇ξ))− (µΠ0

kσ,Π
F
h (a∇ξ)))

+

(∫ t

0

Kh(t, s; (σ̃ −Π0
kσ)(s),Π

F
h (a∇ξ))ds

−
∫ t

0

(K(t, s)(σ̃ −Π0
kσ)(s),Π

F
h (a∇ξ))

)
+

(∫ t

0

Kh(t, s;Π
0
kσ(s),Π

F
h (a∇ξ))ds−

∫ t

0

(K(t, s)Π0
kσ(s),Π

F
h (a∇ξ))ds

)
−
∫ t

0

(K(t, s)(ϑ)(s),ΠF
h (a∇ξ)− a∇ξ)−

∫ t

0

(K(t, s)(ϑ)(s), a∇ξ).

For the last term in the right-hand side of (35), we will use the dual norm approach,
whereas all the remaining terms can be solved similarly to (28) by considering the
higher regularity of ξ, i.e., ∥ξ∥2 as:
(35)

F((ΠF
h (a∇ξ)) ≤ Chk+2

(
|σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
∥ξ∥2 +

∫ t

0

∥ϑ(s)∥−1∥a∇ξ∥1.

The term in the (33) can be bounded by using (21) and for (34), we proceed as:

∥∇ · ϑ∥2 = (∇ · ϑ,∇ · (σ−ΠF
hσ))

≤ ∥∇ · ϑ∥∥∇ · (σ−ΠF
hσ)∥

⇒ ∥∇ · ϑ∥ ≤ Chk|∇ · σ|k.
(36)
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For the estimate of ∥ϑ∥−1 in (35), let κκκ ∈ (H1(D))2, then:

(µϑ,κκκ) =ah(σ̃,Π
0
kκκκ)− (µσ̃,Π0

kκκκ)

+

∫ t

0

Kh(σ̃(s),Π
0
kκκκ)ds−

∫ t

0

(Kσ̃(s),Π0
kκκκ)ds

+ (µϑ,κκκ −Π0
kκκκ)−

∫ t

0

(Kϑ(s),Π0
kκκκ)ds− (∇ ·Π0

kκκκ, τh).

Solving all these terms and using Grönwall’s lemma, we get the following:

(37) ∥ϑ∥−1 ≤ Chk+2

(
|σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
+ ∥τh∥.

Using (37), (35), (34) and (36) in (32) followed by Grönwall’s lemma:

∥Π0
kp− p̃∥ ≤ Chk+2

(
|σ|k+1 + |∇ · σ|k +

∫ t

0

|σ(s)|k+1ds

)
.

To prove the super convergence of Π0
kp− ph, we must estimate Π0

kpt − p̃t. First we
differentiate (13) and then follow the similar steps as above, we get the following:

∥τh,t∥ ≤ Chk+2

(
|σt|k+1 + |∇ · σt|k + |σ|k+1 +

∫ t

0

(|σ(s)|k+1 + |∇ · σ(s)|k)ds
)
.

Lemma 2. Under all the assumptions of Theorem 1 and σt, pt ∈ Xk+1
∞ , where pt,

σt and p̃t, σ̃t be the time derivative of p, σ and p̃, σ̃ respectively, the following
estimates hold true:

∥σt − σ̃t∥X0
∞

≤ Chk+1

(
|σt|k+1 + |σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
,

∥pt − p̃t∥X0
∞

≤ Chk+1

(
|pt|k+1 + |σt|k+1 + |σ|k+1 +

∫ t

0

|σ(s)|k+1ds

)
.

Theorem 2. Let p, σ and ph, σh be the solution of continuous problem (8) and
semi-discrete formulation (9), respectively. Under all the assumptions of Lemma
2, the following estimates hold true:

(38) ∥p− ph∥2X0
∞

≤ C

(
∥ρh(·, 0)∥2 + h2(k+1)

(
|p|2k+1 + |σ|2k+1 +

∫ T

0

g(s)ds

))
,

(39) ∥σ − σh∥2X0
∞

≤ C

(
|ϑh(·, 0)|2 + Ch2(k+1)

(
|σ|2k+1 +

∫ T

0

g(s)ds

))
,

where g(s) = |pt(s)|2k+1 + |σt(s)|2k+1 + |σ(s)|2k+1.

Proof. Writing p − ph = ρ + ρh and σ − σh = ϑ + ϑh where ρh = (p̃ − ph) and
ϑh = (σ̃ − σh). Since, we already have the estimates of ∥ρ∥ and ∥ϑ∥, we need to
find ∥ρh∥ and ∥ϑh∥. Use (8) and (9) to have the error equation as:

(40) (pt, ϕh)− (ph,t, ϕh)− (∇ · (σ − σh), ϕh) = 0 ∀ϕh ∈ Qk
h,

(µσ,χh)− ah(σh,χh) +

∫ t

0

[(K(t, s)σ(s),χh)−Kh(t, s;σh(s),χh)]ds

= (∇ · χh, ph − p) ∀χh ∈ V k
h .

(41)

Again rewrite (40) and (41) as:

(42) (ρh,t, ϕh)− (∇ · ϑh, ϕh) = −(ρt, ϕh),
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(43) ah(ϑh,χh) +

∫ t

0

Kh(t, s;ϑh(s),χh)ds+ (∇ · χh, ρh) = 0.

Putting ϕh = ρh in (42) and χh = ϑh in (43), then adding these equations, we get:

(ρh,t, ρh) + ah(ϑh,ϑh) = −(ρt, ρh)−
∫ t

0

Kh(t, s;ϑh(s),ϑh)ds.

By utilizing (10), along with the Cauchy-Schwarz inequality, Young’s inequality,
and employing the Kickback argument, we reach at the following result:

(44)
1

2

d

dt
∥ρh∥2 + Cµ1,K′∥ϑh∥2 ≤ Cϵ∥ρt∥2 + Cϵ′∥ρh∥2 + CK

∫ t

0

∥ϑh(s)∥2ds.

Integrating (44) from 0 to t, and then using Grönwall’s lemma, we get:

∥ρh∥2 +
∫ t

0

∥ϑh(s)∥2ds ≤ C

(
∥ρh(·, 0∥2 +

∫ t

0

∥ρt(s)∥2ds
)

∥ρh∥2 ≤ C

(
∥ρh(·, 0)∥2 + h2(k+1)

∫ t

0

g(s)ds

)
.

Now, using a triangle inequality and (17):

∥p− ph∥2 ≤ C

(
∥ρh(·, 0)∥2 + h2(k+1)

(
|p|2k+1 + |σ|2k+1 +

∫ t

0

g(s)ds

))
.

For the proof of (39), differentiate (43), and then put χh = ϑh and, ϕh = ρh,t in
(42) to get:

(ρh,t, ρh,t) + ah(ϑh,t,ϑh) +Kh(t, t;ϑh,ϑh)−
∫ t

0

kh,t(t, s;ϑh(s),ϑh)ds

= −(ρt, ρh,t)∥ρh,t∥2 +
µ1

2

d

dt
∥ϑh∥2

≤ CK∥ϑh∥2 + CKt∥ϑh∥
∫ t

0

∥ϑh(s)∥ds+ Cϵ∥ρt∥2 + Cϵ′∥ρh,t∥2.

Using the Kickback argument followed by the integration from 0 to t, we arrive at
the following:∫ t

0

∥ρh,s(s)∥2ds+ ∥ϑh∥2 ≤ C1

(
∥ϑh(·, 0)∥2 +

∫ t

0

(
∥ϑh(s)∥2 + ∥ρt(s)∥2

)
ds

)
.

Now, using Grönwall’s lemma:

∥ϑh∥2 ≤ C

(
∥ϑh(·, 0)∥2 +

∫ t

0

∥ρt(s)∥2ds
)
.

Using a triangle inequality and (16), we arrive at:

∥σ − σh∥2 ≤ C

(
∥ϑh(·, 0)∥2 + Ch2(k+1)

(
|σ|2k+1 +

∫ t

0

g(s)ds

))
.

�

Remark 2. The estimate (38) and (39) involve the term ρh(·, 0) and ϑh(·, 0) re-
spectively. We need to choose ph(·, 0) and σh(·, 0) in such a way that ρh(·, 0) and
ϑh(·, 0) is of O(hk+1).
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3.3. Super Convergence Analysis.

Theorem 3. Let p and ph be the solution of continuous problem (8) and semi-
discrete formulation (9), respectively. In accordance with all the presumptions out-
lined in Theorem 2, the following assertion remains valid:

∥Π0
kp− ph∥X0

∞
≤ O(hk+2).

Proof. As shown in Section 3.2, the convergence of τh can be extended to O(hk+2).
Here we will analyze the super convergence properties of Π0

kp− ph by considering

Π0
kp− ph = Π0

kp− p̃+ p̃− ph = τh + ρh.

Since we know the estimate of τh (32) so our aim is to find the estimate for ρh and
for that, we will proceed by using the fact that ϕh ∈ Qk

h and ∇ · χh ∈ Pk(E) and
use the definition of Π0

k projection, we write (8) and (9)as:

(45) (Π0
kpt, ϕh)− (ph,t, ϕh)− (∇ · (σ − σh), ϕh) = 0 ∀ϕh ∈ Qk

h,

(µσ,χh)−ah(σh,χh) +

∫ t

0

[(K(t, s)σ(s),χh)−Kh(t, s;σh(s),χh)]ds

= (ph −Π0
kp,∇ · χh) ∀χh ∈ V k

h .

(46)

Rewriting (45) and (46) as:

(47) (δh,t, ϕh)− (∇ · ϑh, ϕh) = −(Ψh,t, ϕh),

(48) ah(ϑh,χh) +

∫ t

0

Kh(ϑh(s),χh)ds+ (∇ · χh, ρh) = 0.

Put ϕh = ρh in (47) and χh = ϑh in (48), followed by the similar steps as in
Theorem 2, we get:

∥ρh∥2 ≤C∥ρh(·, 0)∥2

+ Ch2(k+2)

∫ t

0

(|σt(s)|2k+1 + |∇ · σt(s)|2k + |∇ · σ(s)|2k + |σ(s)|2k+1)ds.

�

4. Fully-Discrete Scheme

The error produced by a fully discrete scheme has two ingredients in theory:
the error caused by spatial discretization, which is dependent on h, and the error
caused by the time discretization, which is dependent on time phase size τ .
Now, we’ll discretize our problem in time. To discretize in time, we use the Euler
backward process. Divide the time interval into N distinct points that are evenly
spaced, let tn = nτ and the sequence {Pn} and {σn} be generated as:

Pn ≈ ph(·, tn), σn ≈ σh(·, tn), n = 0, 1, 2, ..., N,

τ = T/N.

Define ∂̄tΦ
n = Φ(tn)−Φ(tn−1)

τ and the left rectangular rule for the partitioning of
the integral term for any function Φ(t) as:∫ tn

0

Φ(s)ds ≈ τ

n−1∑
j=0

Φ(tj).
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Therefore, the fully discrete scheme is defined as:(
∂̄tP

n, ϕh

)
− (∇ · σn, ϕh) = (f(tn), ϕh),

ah(σn,χh) + τ
n−1∑
j=0

Kh(tn, tj ;σj ,χh) + (∇ · χh, Pn) = 0.
(49)

Theorem 4. Let p(·, tn) and Pn be the solution of continuous problem (8) and
fully-discrete formulation (49) at time t = tn respectively. In accordance with all
the presumptions outlined in Theorem 2 and ptt ∈ X0

2 , the following assertion
remains valid:

∥Pn − p(·, tn)∥ ≤ O(hk+1 + τ), ∀n = 1, 2, · · ·, N,

∥σn − σ(·, tn)∥ ≤ O(hk+1 + τ) ∀n = 1, 2, · · ·, N.

Proof. Let us write,

Pn − p(·, tn) = Pn − p̃(·, tn) + p̃(·, tn)− p(·, tn) = ρnh + ρn,

σn − σ(·, tn) = σn − σ̃(·, tn) + σ̃(·, tn)− σ(·, tn) = ϑn
h + ϑn.

Since, we know the estimates for ρn and ϑn, we need to find ∥ρnh∥ and ∥ϑn
h∥ and

for that, we proceed by rewriting (49) and using (8) as:(
∂̄tρ

n
h, ϕh

)
− (∇ · ϑn

h, ϕh) =
(
pt(·, tn)− ∂̄tp̃

n, ϕh

)
,(50)

ah(ϑ
n
h,χh) + τ

n−1∑
j=0

Kh(tn, tj ;ϑ
j
h,χh) + (∇ · χh, ρ

n
h)

= (∇ · χh, p(·, tn)− p̃(·, tn))

+

∫ tn

0

(K(t, s)σ(s),χh)ds− τ
n−1∑
j=0

Kh(tn, tj ; σ̃(·, tj),χh)

+ (µσ(·, tn),χh)− ah(σ̃(·, tn),χh).

(51)

Add (50) and (51), after putting ϕh = ρnh and χh = ϑn
h, and then use the definition

of mixed Ritz Volterra projection to obtain:(
∂̄tρ

n
h, ρ

n
h

)
+ ah(ϑ

n
h,ϑ

n
h) + τ

n−1∑
j=0

Kh(tn, tj ;ϑ
j
h,ϑ

n
h)

=

∫ tn

0

Kh(tn, s; σ̃(s),ϑ
n
h)ds− τ

n−1∑
j=0

Kh(tn, tj ; σ̃(·, tj),ϑn
h) +

(
pt(·, tn)− ∂̄tp̃

n, ρnh
)
.

Using (10) and boundedness of Kh(tn, tj ; ·, ·), we arrive at:

1

2

(
∥ρnh∥2 − ∥ρn−1

h ∥2

τ
+

∥ρnh − ρn−1
h ∥2

τ

)
+ µ1∥ϑn

h∥2

≤(In1 , ρ
n
h) + (In2 ,ϑ

n
h) + Cτ

n−1∑
j=0

∥ϑj
h∥ϑ

n
h∥,

(52)

where

(In1 , ρ
n
h) =

(
pt(·, tn)− ∂̄tp̃

n, ρnh
)

≤(
∥∥pt(·, tn)− ∂̄tp

n
∥∥+ ∥∥∂̄tpn − ∂̄tp̃

n
∥∥)∥ρnh∥.
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(In1 , ρ
n
h) ≤C

(∫ tn

tn−1

∥ptt(s)∥ds+
hk+1

τ

∫ tn

tn−1

(|pt(s)|k+1 + |σt(s)|k+1 + |σ(s)|k+1

+

∫ s

0

|σ(z)|k+1dz)ds

)
∥ρnh∥.

(53)

where the term (In2 ,ϑ
n
h) can be solved as:

(In2 ,ϑ
n
h) =

∫ tn

0

Kh(tn, s; σ̃(s),ϑ
n
h)ds− τ

n−1∑
j=0

Kh(tn, tj ; σ̃(·, tj),ϑn
h)

≤ Cτ

∫ tn

0

∣∣∣∣ ∂∂s (Kh(tn, s; σ̃(s),ϑ
n
h)ds

∣∣∣∣
≤ Cτ

∫ tn

0

(∥σ̃(s)− σ(s)∥+ ∥σ(s)∥+ ∥σ̃t(s)− σt(s)∥+ ∥σt(s)∥)ds∥ϑn
h∥,

and

(In2 ,ϑ
n
h) ≤ Cτ

∫ tn

0

(∥σ(s)∥+ ∥σt(s)∥+ hk+1(|σ(s)|k+1 + |σt(s)|k+1

+

∫ s

0

|σ(z)|k+1dz))ds∥ϑn
h∥.

(54)

Using (53) and (54) in (52), we get the following:

1

2

(
∥ρnh∥2 − ∥ρn−1

h ∥2

τ

)
+ µ1∥ϑn

h∥2

≤ C

((
τ

∫ tn

0

(∥σ(s)∥+ ∥σt(s)∥+ hk+1(|σ(s)|k+1 + |σt(s)|k+1))ds

+τ
n−1∑
j=0

∥ϑj
h∥

 ∥ϑn
h∥+

(∫ tn

tn−1

∥ptt(s)∥ds+
hk+1

τ

∫ tn

tn−1

(|pt(s)|k+1

+|σt(s)|k+1 + |σ(s)|k+1 +

∫ s

0

|σ(z)|k+1dz)ds

)
∥ρnh∥

)
.

Applying Young’s inequality and subsequently employing the Kickback argument
leads us to the following:

1

2

(
∥ρnh∥2 − ∥ρn−1

h ∥2

τ

)
+ C1∥ϑn

h∥2

≤ C2

τ

n−1∑
j=0

∥ϑj
h∥

2 + ∥ρnh∥2 + τ

∫ tn

tn−1

∥ptt(s)∥2ds.

+ τ2
∫ tn

0

(∥σ(s)∥2 + ∥σt(s)∥2 + h2(k+1)(|σ(s)|2k+1 + |σt(s)|2k+1))ds

+
h2(k+1)

τ

∫ tn

tn−1

(
g(s) +

∫ s

0

|σ(z)|2k+1dz

)
ds

)
.

(55)
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Multiplying (55) by 2τ and summing from 1 to m, with 1 ≤ m ≤ N gives:

∥ρmh ∥2 + 2τC1

m∑
n=1

∥ϑn
h∥2

≤ ∥ρ(·, 0)∥2 + 2C2

τ2
m∑

n=1

n−1∑
j=0

∥ϑj
h∥

2 + τ
m∑

n=1

∥ρnh∥2

+ τ2
∫ T

0

(∥σ(s)∥2 + ∥σt(s)∥2)ds+ τ2
∫ T

0

∥ptt(s)∥2ds

+h2(k+1)

∫ T

0

g(s)ds+ τ2h2(k+1)

∫ T

0

(|σ(s)|2k+1 + |σt(s)|2k+1)ds

)
.

Using Grönwall’s lemma and replacing m by n, we get our desired result:

∥ρnh∥ ≤ O(hk+1 + τ).

For the estimate of ϑn
h, we proceed by rewriting (51) as:

ah(ϑ
n
h,χh) + τ

n−1∑
j=0

Kh(tn, tj ;ϑ
j
h,χh) + (∇ · χh, ρ

n
h)

=

∫ tn

0

Kh(tn, s; σ̃(s),χh)ds− τ

n−1∑
j=0

Kh(tn, tj ; σ̃(tj),χh).(56)

Again considering (56) at time step t = tn−1, we obtain:

ah(ϑ
n−1
h ,χh) + τ

n−2∑
j=0

Kh(tn−1, tj ;ϑ
j
h,χh) + (∇ · χh, ρ

n−1
h )

=

∫ tn−1

0

Kh(tn−1, s; σ̃(s),χh)ds− τ

n−2∑
j=0

Kh(tn−1, tj ; σ̃(tj),χh).(57)

Now, subtracting (57) from(56), and then dividing by τ , we arrive at:

ah
(
∂̄tϑ

n
h,χh

)
+

n−1∑
j=0

Kh(tn, tj ;ϑ
j
h,χh)

−
n−2∑
j=0

Kh(tn−1, tj ;ϑ
j
h,χh) +

(
∇ · χh, ∂̄tρ

n
h

)

=
1

τ

∫ tn

0

Kh(tn, s; σ̃(s),χh)ds− τ
n−1∑
j=0

Kh(tn, tj ; σ̃(tj),χh)


− 1

τ

∫ tn−1

0

Kh(tn−1, s; σ̃(s),χh)ds− τ
n−2∑
j=0

Kh(tn−1, tj ; σ̃(tj),χh)

 .

(58)
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Put ϕh = ∂̄tρ
n
h in (50) and χh = ϑn

h in (58) and then add, we obtain:

∥∂̄tρnh∥2 + ah
(
∂̄tϑ

n
h,ϑ

n
h

)
+

n−1∑
j=0

Kh(tn, tj ;ϑ
j
h,ϑ

n
h)−

n−2∑
j=0

Kh(tn−1, tj ;ϑ
j
h,ϑ

n
h)

=
(
pt(·, tn)− ∂̄tp̃

n, ∂̄tρ
n
h

)
+

1

τ

∫ tn

0

Kh(tn, s; σ̃(s),ϑ
n
h)ds− τ

n−1∑
j=0

Kh(tn, tj ; σ̃(tj),ϑ
n
h)


− 1

τ

∫ tn−1

0

Kh(tn−1, s; σ̃(s),ϑ
n
h)ds− τ

n−2∑
j=0

Kh(tn−1, tj ; σ̃(tj),ϑ
n
h)


and

∥∂̄tρnh∥2 + ah
(
∂̄tϑ

n
h,ϑ

n
h

)
+

n−1∑
j=0

Kh(tn, tj ;ϑ
j
h,ϑ

n
h)−

n−2∑
j=0

Kh(tn−1, tj ;ϑ
j
h,ϑ

n
h)

=(In1 , ∂̄tρ
n
h) +

1

τ
(In3 ,ϑ

n
h),(59)

where

(In1 , ∂̄tρ
n
h) ≤ Cϵ

(
τ

∫ tn

tn−1

∥ptt(s)∥2ds+
h2k+2

τ

∫ tn

tn−1

(
g(s) +

∫ s

0

|σ(z)|2k+1dz

)
ds

)
+ Cϵ′∥∂̄tρnh∥2,

(60)

and

(In3 ,ϑ
n
h) =

∫ tn

0

Kh(tn, s; σ̃(s),ϑ
n
h)ds− τ

n−1∑
j=0

Kh(tn, tj ; σ̃(tj),ϑ
n
h)


−

∫ tn−1

0

Kh(tn−1, s; σ̃(s),ϑ
n
h)ds− τ

n−2∑
j=0

Kh(tn−1, tj ; σ̃(tj),ϑ
n
h)


=

∫ tn−1

0

(Kh(tn, s; σ̃(s),ϑ
n
h)−Kh(tn−1, s; σ̃(s),ϑ

n
h)) ds

− τ

n−2∑
j=0

(Kh(tn, tj ; σ̃(tj),ϑ
n
h)−Kh(tn−1, tj ; σ̃(tj),ϑ

n
h))

+

∫ tn

tn−1

Kh(tn, s; σ̃(s),ϑ
n
h)ds− τKh(tn, tn−1, σ̃(tn−1),ϑ

n
h)

(In3 ,ϑ
n
h) ≤τ2

∫ tn−1

0

∣∣∣∣ ∂∂s (Kh,t(tn∗ , s; σ̃(s),ϑn
h))

∣∣∣∣ ds
+ τ

∫ tn

tn−1

∣∣∣∣ ∂∂s (Kh(t, s; σ̃(s),ϑ
n
h))

∣∣∣∣ ds,
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where tn∗ ∈ (tn−1, tn).

1

τ
(In3 ,ϑ

n
h)

≤τ

∫ tn−1

0

∣∣∣∣ ∂ds (Kh,t(tn∗ , s; σ̃(s),ϑn
h))

∣∣∣∣ ds+ ∫ tn

tn−1

∣∣∣∣ ∂ds (Kh(t, s; σ̃(s),ϑ
n
h))

∣∣∣∣ ds
≤C

(
τ2
∫ tn−1

0

(∥σ(s)∥2 + ∥σt(s)∥2)ds+ τ

∫ tn

tn−1

(∥σ(s)∥2 + ∥σt(s)∥2)ds

+ τ2h2(k+1)

∫ tn−1

0

(
|σ(s)|2k+1 + |σt(s)|2k+1 +

∫ s

0

|σ(z)|2k+1dz

)
ds

+τh2(k+1)

∫ tn

tn−1

(
|σ(s)|2k+1 + |σt(s)|2k+1 +

∫ s

0

|σ(z)|2k+1dz

)
ds+ ∥ϑn

h∥2
)
.

(61)

Put (60) and (61) in (59), to arrive at:

∥∂̄tρnh∥2 + µ1

(
∥ϑn

h∥2 − ∥ϑn−1
h ∥2

2τ

)
≤ −τ

n−2∑
j=0

Kh,t(tn∗ , tj ;ϑ
j
h,ϑ

n
h)−Kh(tn, tn−1;ϑ

n−1
h ,ϑn

h) + C
(
∥∂̄tρnh∥2 + ∥ϑn

h∥2

+
h2k+2

τ

∫ tn

tn−1

(
g(s) +

∫ s

0

∥σ(z)∥2k+1dz

)
ds

+ τ2
∫ tn−1

0

(∥σ(s)∥2 + ∥σt(s)∥2)ds+ τ

∫ tn

tn−1

(∥σ(s)∥2 + ∥σt(s)∥2)ds

+ τ2h2(k+1)

∫ tn−1

0

(
|σ(s)|2k+1 + |σt(s)|2k+1 +

∫ s

0

|σ(z)|2k+1dz

)
ds

+τ

∫ tn

tn−1

(
∥ptt(s)∥2 + h2(k+1)

(
|σ(s)|2k+1 + |σt(s)|2k+1 +

∫ s

0

|σ(z)|2k+1dz

))
ds

)
.

(62)

Multiplying (62) by 2τ , using kickback argument and then summing from n = 1 to
m, we obtain:

∥ϑm
h ∥2 ≤C1τ

m∑
n=1

∥ϑn
h∥2 + C2

(
τ2
∫ T

0

(∥ptt(s)∥2 + ∥σ(s)∥2 + ∥σt(s)∥2)ds

+∥ϑh(·, 0)∥2 + h2k+2

∫ T

0

g(s)ds

)
.

By using Grönwall’s lemma, we may replace m by n to get our desired estimate:

∥ϑn
h∥ ≤ O(hk+1 + τ).

�

5. Numerical Results

Within this section, we are set to conduct numerical experiments aimed at val-
idating the effectiveness of the introduced mixed virtual element scheme for the
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Figure 1. An illustration of polygonal meshes: on the left Q1/12,
and on the right, H1/12.
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Figure 2. An illustration of Voronoi mesh V1/6.
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Figure 3. Order of convergence for Example 1 on the quadrilat-
eral mesh.

PIDE (1). Our investigation encompasses distinct mesh types: a quadrilateral
mesh, a hexagonal mesh, voronoi mesh as illustrated in Figure 1 and Figure 2.
Here, we consider the domain D the unit square in R2. Before presenting the nu-
merical results, it is important for us to have a better understanding of both the
spaces, dofs, and how bilinear forms can be computed on these spaces. All the dis-
crete forms are already explained in Section-2.2. In (49) the bilinear forms (Pn, ϕh)
and (f(tn), ϕh) involves multiplication with polynomials so, can be done by using
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Figure 4. Order of convergence for Example 1 on the hexagonal mesh.
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Figure 5. Order of convergence for Π0
kp−ph on the quadrilateral

mesh. The left-hand panel pertains to Example 1, while the right-
hand panel pertains to Example 2.

any quadrature rule of appropriate order, whereas for the discrete forms aEh (·, ·),
KE

h (·, ·) and (∇·σn, ϕh)E , dofs of V
k
h (E) will be needed (as defined in section-2.1).

For more details about the implementation, we refer to [5].
We use the backward Euler approach for time discretization coupled with mixed

VEM discretization to tackle the fully discrete problem, for the polygonal mesh
sequences.

Example 1 Consider the linear PIDE (1), with coefficients a(x) = x, b(x; t, s) =

xe(t−s), exact solution p(x, t) = t sin(2πx) sin(2πy) whereas K(x; t, s) = e2(t−s)

x . No-
tably, the load term f , boundary data, and initial data u0 are all determined using
the exact solution as a reference point.

Example 2 Consider the linear PIDE (1), with cofficients a(x) = x, b(x; t, s) =

x
(

2+cos(s)
2+cos(t)

)
, exact solution p(x, t) = tex+t(x − x2) sin(2πy) whereas K(x; t, s) =(

2+cos(s)
x(2+cos(t))

)
e(t−s). Notably, the load term f , boundary data, and initial data u0

are all determined using the exact solution as a reference point.

Example 3 Consider the linear PIDE (1), with coefficients a(x) = 1, b(x; t, s) = ts,
exact solution p(x, t) = t(x−x2)(y−y2). Here K(x; t, s) is approximated by the first



524 M. SUTHAR AND S. YADAV

1 1.2 1.4 1.6 1.8 2 2.2
3

4

5

6

7

8

9

10

11

12

1

1

1

2

3

4

1 1.2 1.4 1.6 1.8 2 2.2
3

4

5

6

7

8

9

10

11

12

1

1

1

2

3

4

Figure 6. Order of convergence for Example 2 on the quadrilat-
eral mesh.
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Figure 7. Order of convergence for Example 3 on the quadrilat-
eral mesh in case of k=1, 2 and 3.
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Figure 8. Order of convergence for Example 1 and Example 2 on
the Voronoi mesh in case of k=1.

five terms of the series generated using (7). Notably, the load term f , boundary
data, and initial data u0 are all determined using the exact solution as a reference
point.
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Figure 9. Order of convergence for Example 1 and Example 2 on
the Voronoi mesh in case of k=0.

Below, we present a numerical example showing that even if we don’t know the
explicit form of a resolvent kernel our formulation still works by truncating the
series of resolvent kernel after a few steps. In the example presented below, the
resolvent kernel comes out to be in a series so here, we have considered the first
five terms of the resolvent kernel and find out that numerical results are still in
accordance with the theoretical results.

Fig. 3 and 4 depict the order of convergence for both ph and σh for Example 1 in
case of k = 1, 2 and 3 on quadrilateral and hexagonal mesh respectively. Both the
figures show that these orders of convergence are accomplished in perfect accordance
with theory while Fig. 5 shows the super convergence results for both Example 1
and Example 2 in the case of k= 1, 2, and 3 on the quadrilateral mesh whereas
in Fig 6 shows the order of convergence for Example 2 on the quadrilateral mesh.
Fig 7 shows the convergence corresponding to Example 3. Figure 8 displays the
convergence of Example 1 and Example 2 on the Voronoi mesh. From all the figures
and Table, we can see that our theory is well according to our numerical results.

Remark 3. From Remark 6.3 of [8], we can see that the lowest order Raviart
Thomas element can be constructed for k = 0 with the usual convention P−1(E) = 0.

Remark 4. Whenever we are unable to find the explicit form of the resolvent
kernel, we can use the first few terms of the series to achieve the optimal order of
convergence, as shown in example 3.

6. Conclusions

Considering the advantages of VEM and mixed methods, we applied a mixed
VEM approach to address both the semi-discrete and fully-discrete schemes to
solve the PIDE (1). In this article, we have introduced a novel projection known as
mixed R.V. projection, which helps in handling the integral term. The semi-discrete
scheme and error estimates presented in this work align with those obtained in the
previous study [18]. This research marks a significant contribution to the litera-
ture [35, 17, 18] only with semidiscrete formulation while here, we represent the
first comprehensive examination of the fully discrete scheme within this formula-
tion. Furthermore, a step-by-step analysis is proposed for the super convergence
of the discrete solution of order O(hk+2). Several computational experiments are
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discussed to validate the proposed schemes computational efficiency and support
the theoretical conclusions.
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