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RICHARDSON EXTRAPOLATION OF THE CRANK-NICOLSON

SCHEME FOR BACKWARD STOCHASTIC DIFFERENTIAL

EQUATIONS

YAFEI XU AND WEIDONG ZHAO∗

Abstract. In this work, we consider Richardson extrapolation of the Crank-Nicolson (CN)
scheme for backward stochastic differential equations (BSDEs). First, applying the Adomian

decomposition to the nonlinear generator of BSDEs, we introduce a new system of BSDEs. Then

we theoretically prove that the solution of the CN scheme for BSDEs admits an asymptotic
expansion with its coefficients the solutions of the new system of BSDEs. Based on the expansion,

we propose Richardson extrapolation algorithms for solving BSDEs. Finally, some numerical tests

are carried out to verify our theoretical conclusions and to show the stability, efficiency and high
accuracy of the algorithms.

Key words. Backward stochastic differential equations, Crank-Nicolson scheme, Adomian de-
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1. Introduction

This paper is concerned with the numerical solution of the following BSDE de-
fined on a filtered complete probability space (Ω, F , F, P) with the natural fil-
tration F = {Ft}0≤t≤T generated by a standard d1-dimensional Brownian motion

Wt = (W 1
t ,W

2
t , · · · ,W

d1
t )>, 0 ≤ t ≤ T .

(1) Yt =ϕ(XT ) +

∫ T

t

f(s,Xs, Ys, Zs) ds−
∫ T

t

Zs dWs,

where T is a deterministic terminal time instant; ϕ : Rd −→ Rq and f : [0, T ] ×
Rd×Rq×Rq×d1 −→ Rq are the terminal condition and the generator of BSDE (1),
respectively. Note that the stochastic integral with respect to Wt is of Itô’s type,
and Xt is a diffusion process. In this paper, we only consider the case where

(2) Xt = X0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs, 0 ≤ t ≤ T,

where the functions b : [0, T ]× Rd −→ Rd and σ : [0, T ]× Rd −→ Rd×d1 are called
the drift and the diffusion coefficients of the SDE (2). A pair of processes (Yt, Zt)
is called an L2-adapted solution of (1) if it is Ft-adapted, square integrable, and
satisfies BSDE (1).

In 1990, the existence and uniqueness of the solution of BSDEs were proved by
Pardoux and Peng [28]. Since then, lots of efforts have been devoted to the study of
BSDEs due to their applications in various important fields such as mathematical
finance, stochastic optimal control, risk measure, game theory, and so on (see, e.g.,
[12, 32, 26, 29] and references therein).

As BSDEs seldom admit explicitly closed-form solutions, numerical method-
s have played an important role in applications. In recent years, great efforts
have been made for designing efficient numerical schemes for BSDEs and forward
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backward stochastic differential equations (FBSDEs). There are two main types
of numerical schemes: the first one is based on numerical solution of a parabolic
PDE which is related to a FBSDE [11, 25], while the second type of schemes focus
on discretizing FBSDEs directly [3, 5, 10, 18, 24, 33, 40]. From the temporal dis-
cretization point of view, popular strategies include Euler-type methods [15, 16, 38],
θ-schemes [34, 43], Runge-Kutta schemes [8], multistep schemes [7, 14, 41, 44, 45],
and strong stability preserving multistep (SSPM) schemes [13], to name a few. For
fully coupled FBSDEs, there exist only few numerical studies and satisfactory re-
sults [27, 41]. We mention the work in [41], where a class of multistep type schemes
are proposed, which turns out to be effective in obtaining highly accurate solution-
s of FBSDEs, and the work in [35], where the classical deferred correction (DC)
method is adopted to design highly accurate numerical methods for fully coupled
FBSDEs.

In this paper, we will approximate the solution of BSDE (1) based on the
Richardson extrapolation (RiE) method. It is well known that Richardson extrap-
olation method, which was established by Richardson [31], is an efficient procedure
for increasing the accuracy of approximations of many problems in numerical anal-
ysis. For example, the applications of the RiE to ordinary differential equations
(ODEs) based on one-step schemes, e.g., Runge-Kutta methods are described in
[6, 17]. In addition, this method has been well demonstrated in its applications to
finite element and mixed finite element methods for elliptic partial differential equa-
tions [4], Sobolev- and viscoelasticity-type equations [22], partial integro-differential
equations [23], Fredholm and Volterra integral equations of the second kind [20],
Volterra integro-differential equations [39], and to collocation methods in [21], etc.
As for the applications of the RiE to BSDEs, we mention the work in [9], where an
explicit error expansion for the solution of BSDEs is obtained by using the cubature
on Wiener spaces method.

In this work, we will design highly accurate Richardson extrapolation algorithms
with the solutions of the Crank-Nicolson scheme for BSDE (1). To this end, we
first introduce a new system of BSDEs by applying the Adomian decomposition to
the nonlinear generator of BSDEs. Then we theoretically prove that the solution
of the Crank-Nicolson scheme for BSDEs admits an asymptotic expansion with its
coefficients being the solutions of the new system of BSDEs. Finally, based on
the expansion, we propose the Richardson extrapolation algorithms of the Crank-
Nicolson scheme (RiE-CN, for short) for solving BSDEs. The RiE-CN algorithms
are very easy in use. We can obtain accurate solutions with high order rate of
convergence only by combining linearly the numerical solutions of the CN scheme
with different time step sizes. Moreover, our numerical tests verify our theoretical
conclusions, and show that the RiE-CN algorithms are stable, very efficient and
high accurate.

The rest of the paper is organized as follows. In Section 2, we recall the non-
linear Feynman-Kac formula, the generator of a diffusion process, the Adomian
decomposition and the Richardson extrapolation method in brief. We present the
asymptotic error expansion of the solution of the Crank-Nicolson scheme for BSDEs
in Section 3. The construction of the RiE-CN algorithms for BSDEs is presented
in Section 4. And in Section 5, numerical tests are carried out to support the
theoretical results. Finally, some concluding remarks are given in Section 6.
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2. Preliminaries

In this Section, we will recall the non-linear Feynman-Kac formula, the generator
of a diffusion process, the Adomian decomposition and the Richardson extrapola-
tion method in brief.

2.1. The nonlinear Feynman-Kac formula. Let u ∈ C1,2([0, T ] × Rd;Rq) be
the solution of the parabolic partial differential equation (PDE)

(3) L0u(t, x) + f(t, x, u(t, x),∇xu(t, x)σ(t, x)) = 0, (t, x) ∈ [0, T )× Rd

with the terminal condition u(T, x) = ϕ(x), where L0 is a second order differential
operator defined by

(4) L0 :=
∂

∂t
+

1

2

d∑
i,j=1

d1∑
l=1

(σilσjl)(t, x)
∂2

∂xi∂xj
+

d∑
i=1

bi(t, x)
∂

∂xi
.

Here Ck1,k2 refers to the set of functions g(t, x) with continuous partial deriva-
tives up to k1 with respect to t, and up to k2 with respect to x. And we denote

by Ck1,k2b the space that consists of all functions (t, x) 7→ g(t, x) with bounded
continuous partial derivatives up to the orders k1 and k2 with respect to t ∈ [0, T ]
and x ∈ Rd, respectively.

In 1991, Peng [30] proved that under certain regularity conditions, the solution
u of the PDE (3) can be expressed as

(5) u(t,Xt) = Yt, ∇xu(t,Xt)σ(t,Xt) = Zt, t ∈ [0, T ).

The first formula in (5) is known as the nonlinear Feynman-Kac formula.

2.2. The diffusion process generator.

Definition 1. Let Xt be a diffusion process in Rd satisfying (2). Then the generator
Dx
t of Xt on g : [0, T ]× Rd is defined by

(6) Dx
t g(t, x) = lim

s↓t

Ext [g(s,Xs)]− g(t, x)

s− t
, x ∈ Rd

if the limit exists, where Ext [·] is the conditional expectation E[·|Ft, Xt = x] for (t,
x) ∈ [0, T ]× Rd.

Note that Dx
t g(t, x) = L0g(t, x) when g ∈ C1,2([0, T ] × Rd). By Definition 1,

Itô’s formula and the tower rule of conditional expectations, we have the following
Lemma.

Lemma 2 ([41]). Let t ∈ [0, s] be a fixed time. If

g ∈ C1,2
b ([0, T ]× Rd), and Ext [L0g(s,Xs)] < +∞,

then for s ∈ [t, T ) we have the identity

dExt [g(s,Xs)]

ds
= Ext [L0g(s,Xs)].

Proof. By Definition 1, we have

(7) L0g(s,Xs) = lim
r↓s

EXss [g(r,Xr)]− g(s,Xs)

r − s
.

Taking the conditional expectation Ext [·] on both sides of (7), we have

(8) Ext [L0g(s,Xs)] = Ext
[
lim
r↓s

EXss [g(r,Xr)]− g(s,Xs)

r − s

]
.
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Note that we can exchange the order of the limit and the conditional expectation
in (8) on account of the condition g ∈ C1,2

b ([0, T ]× Rd). Then we have

(9)

Ext [L0g(s,Xs)] =Ext
[
lim
r↓s

EXss [g(r,Xr)]− g(s,Xs)

r − s

]
= lim
r↓s

Ext [EXss [g(r,Xr)]]− Ext [g(s,Xs)]

r − s

= lim
r↓s

Ext [g(r,Xr)]− Ext [g(s,Xs)]

r − s

=
dExt [g(s,Xs)]

ds
.

The proof ends. �

As a direct corollary of Lemma 2, we have

Corollary 3. If g ∈ Ck,2kb ([0, T ] × Rd), and Ext [(L0)(k)g(s,Xs)] < +∞, then for
t ∈ [0, s] we have

dkExt [g(s,Xs)]

dsk
= Ext [(L0)(k)g(s,Xs)],

where (L0)(k) = L0 ◦ · · · ◦ L0︸ ︷︷ ︸
k times

.

2.3. Adomian decomposition. Let G : X → Y be a nonlinear operator, where
X and Y are two Banach spaces, and u ∈ X have the series form u =

∑∞
j=0 uj .

Then Gu can be decomposed into an infinite series of the form

(10) Gu =

∞∑
j=0

AGj ,

where AGj are the so-called Adomian polynomials of u0, u1, · · · , uj and are calcu-
lated by

(11) AGj =
1

j!

[
dj

dλj
G(

∞∑
i=0

λiui)

]
λ=0

, j = 0, 1, 2, · · · .

Note that the polynomials AGj are generated for the nonlinearity so that each AGj
depends only on u0,u1, · · · ,uj for j ≥ 0. We call (10) the Adomian decomposition
of Gu. The Adomian decomposition was proposed by Adomian [1, 2] initially
with the aims to solve frontier nonlinear problems in physics, biology and chemical
reactions, etc. To show the use of the Adomian decomposition in solving nonlinear
problems, we choose the nonlinear equation as

(12) Gu = Lu + Fu = 0,

where Lu is the linear term, Fu is the nonlinear term, and u = (u, v).
Assume the inverse L−1 of the linear operator L exist. Taking L−1 in both sides

of (12) gives

(13) u = −L−1Fu.

Assume u(t) =
∑∞
j=0 uj(t) =

(∑∞
j=0 uj(t),

∑∞
j=0 vj(t)

)
. Then by applying the

Adomian decomposition to Fu = F (t,u(t)), we have

(14)

∞∑
j=0

uj = −L−1
∞∑
j=0

AFj ,
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where AFj are calculated by

AFj (t) =
1

j!

[
dj

dλj
F

(
t,

∞∑
i=0

λiui(t),

∞∑
i=0

λivi(t)

)]
λ=0

, j = 0, 1, 2, · · · .

Here we list the first few Adomian polynomials AFj (t), j = 0, 1, 2, 3 which are

(15)

AF0 (t) =F0,0,

AF1 (t) =u1(t)F1,0 + v1(t)F0,1,

AF2 (t) =u2(t)F1,0 + v2(t)F0,1 + (u2
1(t)/2!)F2,0

+ u1(t)v1(t)F1,1 + (v21(t)/2!)F0,2,

AF3 (t) =u3(t)F1,0 + v3(t)F0,1 + u1(t)u2(t)F2,0

+ [u1(t)v2(t) + u2(t)v1(t)]F1,1 + v1(t)v2(t)F0,2

+ (u3
1(t)/3!)F3,0 + (u2

1(t)/2!)v1(t)F2,1

+ u1(t)(v21(t)/2!)F1,2 + (v31(t)/3!)F0,3,

where Fµ,ν = ∂µ+ν

∂uµ∂vν F (t, u0(t), v0(t)). It is worthy of noting that in (15), AF0 (t) =

F (t, u0(t), v0(t)), and for j ≥ 1, AFj is linear with respect to uj and vj .
Given u0, we solve the uj(j = 1, 2, · · · ) by

(16) uj = −L−1AFj−1.

We call the procedure (14), (15) and (16) the Adomian decomposition method for
solving the nonlinear problem (12).

2.4. Richardson extrapolation. Consider a problem with exact solution y(t),
where t ∈ [0, T ], and T is a positive real number. Let ỹ(t; ∆t) be a numerical
solution of y(t) on a uniform grid πN := {tn|tn = n∆t,∆t = T

N , n = 0, 1, · · · , N},
where ∆t is the step size, N is a positive integer. Assume that the exact solution
y(t) is smooth enough on the domain [0, T ] such that ỹ(t; ∆t) admits the asymptotic
expansion on πN

(17) ỹ(t; ∆t)− y(t) =

K−1∑
j=1

ej(t)(∆t)
aj + EK(t)(∆t)aK ,

where the ej(t) are independent of ∆t with ej(t0) = 0, and EK(t) is bounded, and
the sequence {aj}Kj=1 is monotonically increasing.

Now we choose a sequence of positive integers

(18) 1 = N0 < N1 < N2 < · · · ,

and define the corresponding uniform grids πN,i(i = 0, 1, · · · ,K − 1) by

(19) πN,i = {tn|tn = n∆ti,∆ti =
T

N ·Ni
, n = 0, 1, · · · , N ·Ni}.

Note that πN,0 = πN , and all the πN,i, i = 0, 1, · · · ,K − 1 have the common grid
points in πN,0. Then for any tn ∈ πN,0 (Sometimes we also say n ∈ πN,0 which
means n is a nonnegative integer such that tn ∈ πN,0), and 1 ≤ p ≤ m ≤ K − 1, by
(17), we have

(20) ỹ(tn; ∆ti)− y(tn) =

p∑
j=1

ej(tn)(∆ti)
aj +O ((∆ti)

ap+1) .
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By multiplying ci ∈ R on both sides of (20) and adding the derived equations up
from i = m− p to m, we obtain

(21)

m∑
i=m−p

ciỹ(tn; ∆ti)−

(
m∑

i=m−p

ci

)
y(tn)

=

m∑
i=m−p

p∑
j=1

ciej(tn)(∆ti)
aj +O

(
(∆tm−p)

ap+1

m∑
i=m−p

ci

)

=

p∑
j=1

(
m∑

i=m−p

ci

N
aj
i

)
ej(tn)(∆t)aj +O

(
(∆t)ap+1

m∑
i=m−p

ci

)
.

Since Ni 6= Nj for i 6= j, the system of equations (22)

(22)


1 · · · 1

N−a1m−p · · · N−a1m
...

. . .
...

N
−ap
m−p · · · N

−ap
m




cm−p
cm−p+1

...
cm

 =


1
0
...
0


has a unique solution c = (cm−p, cm−p+1, · · · , cm)>. Then from (21), we have

(23)

m∑
i=m−p

ciỹ(tn; ∆ti)− y(tn) = O ((∆t)ap+1) .

Let Tni,0 = ỹ(tn; ∆ti), and define Tnm,p =
∑m
i=m−p ciT

n
i,0, 1 ≤ p ≤ m ≤ K − 1. All

Tnm,p, 0 ≤ p ≤ m ≤ K − 1 can be arranged in the form

(24)

Tn0,0
Tn1,0 Tn1,1
Tn2,0 Tn2,1 Tn2,2

...
...

...
. . .

TnK−1,0 TnK−1,1 TnK−1,2 · · · TnK−1,K−1

The procedure of obtaining Tnm,p =
∑m
i=m−p ciT

n
i,0, 1 ≤ p ≤ m ≤ K − 1 from Tni,0

is called the Richardson extrapolation. And we call Tnm,p, 1 ≤ p ≤ m ≤ K − 1
the extrapolation solutions of ỹ(tn; ∆ti). It is worthy of mentioning that all the
values Tn·,p located in the pth column in (24) are the approximations to the exact
solution y(tn) with error O ((∆t)ap+1). In particular, the entry TnK−1,K−1 is an

approximation to y(tn) with error O ((∆t)aK ).
If aj = k · j in (17), where k is a positive integer, we can recursively realize the

Richardson extrapolation by the following Aitken-Neville algorithm.

(25)

Tnm,0 =ỹ(tn; ∆tm),

Tnm,p =Tnm,p−1 +
Tnm,p−1 − Tnm−1,p−1(

Nm
Nm−p

)k
− 1

.

Note that different Ni, i = 0, 1, · · · in (18) lead to different step-number sequences.
Here we list two of them that are frequently used as follows.

• Romberg sequence: Ni = 2i, i = 0, 1, · · · .

1, 2, 4, 8, 16, 32, 64, · · · .
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• Bulirsch sequence: Ni =


1, i = 0,

2(i+1)/2, i is odd,

1.5 · 2i/2, i is even.

1, 2, 3, 4, 6, 8, 12, · · · .

The above two sequences have the same first two elements 1 and 2. And for i ≥ 2,
the Ni in the Romberg sequence is larger than the one in the Bulirsch sequence.

3. Asymptotic expansion of the Crank-Nicolson Scheme for BSDEs

We outline this Section as follows. In Subsection 3.1, we give a brief review of
the Crank-Nicolson scheme for BSDEs. And then the asymptotic expansion of this
scheme is carefully derived in Subsection 3.2, which is the foundation to investiga-
tion of the Richardson extrapolation approximations. Without loss of generality,
we only consider the case of one-dimensional BSDEs (i.e., d1 = d = q = 1). Howev-
er we remark that all results obtained in the sequel also hold for multidimensional
BSDEs.

3.1. Review of the Crank-Nicolson Scheme. To begin with, we introduce a
regular time partition on the time interval [0, T ] as

(26) πN := {tn : tn = n∆t, n = 0, 1, · · · , N, ∆t =
T

N
},

where N is a positive integer. Then we introduce some notations. By ∆Wr,s the
increment Ws − Wr of the Brownian motion Wt for s ≥ r. For simplicity, we
represent Wtn+1 −Wtn by ∆Wn+1 for 0 ≤ n ≤ N − 1. Note that the increment
∆Wn+1 admits the Gaussian distribution with mean zero and variance ∆t.

It follows from (1) that

(27) Ytn = Ytn+1 +

∫ tn+1

tn

fs ds−
∫ tn+1

tn

Zs dWs,

where fs = f(s,Xs, Ys, Zs).
For fixed x ∈ R, taking the conditional expectation Extn [·] on (27), we obtain

(28) Ytn = Extn [Ytn+1
] +

∫ tn+1

tn

Extn [fs] ds.

We use the following CN scheme to approximate the integral in (28):

(29)

∫ tn+1

tn

Extn [fs] ds =
1

2
∆tftn +

1

2
∆tExtn [ftn+1

] +Rny ,

where

(30) Rny =

∫ tn+1

tn

(
Extn [fs]−

1

2
ftn −

1

2
Extn [ftn+1

]

)
ds.

Inserting (29) into (28) leads to the following reference equation

(31) Ytn = Extn [Ytn+1
] +

1

2
∆tftn +

1

2
∆tExtn [ftn+1

] +Rny .

By multiplying ∆Wn+1 on both sides of (27), taking conditional expectation Extn [·]
and then using the isometry property of Itô’s integral, we obtain

(32) 0 = Extn [Ytn+1
∆Wn+1] +

∫ tn+1

tn

Extn [fs∆Wtn,s] ds−
∫ tn+1

tn

Extn [Zs] ds.
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We rewrite the two standard integrals on the right-hand side of (32) in the following
forms.

(33)

∫ tn+1

tn

Extn [fs∆Wtn,s] ds =
1

2
∆tExtn [ftn+1

∆Wn+1] +Rnz1,

(34) −
∫ tn+1

tn

Extn [Zs] ds = −1

2
∆tExtn [Ztn+1

]− 1

2
∆tZtn +Rnz2,

where

Rnz1 =

∫ tn+1

tn

Extn [fs∆Wtn,s] ds− 1

2
∆tExtn [ftn+1

∆Wn+1],

Rnz2 = −
∫ tn+1

tn

Extn [Zs] ds+
1

2
∆tExtn [Ztn+1

] +
1

2
∆tZtn .

From (32), (33) and (34), we obtain

(35)

1

2
∆tZtn =Extn [Ytn+1

∆Wn+1] +
1

2
∆tExtn [ftn+1

∆Wn+1]

− 1

2
∆tExtn [Ztn+1

] +Rnz ,

where Rnz = Rnz1 +Rnz2.
For the temporal semi-discretizations, we use (Y n, Zn) to represent the ap-

proximate value of the solution (Yt, Zt) of BSDE (1) at the time level t = tn,
n = N,N − 1, · · · , 0. Based on the two reference equations (31) and (35), we
obtain the following Crank-Nicolson scheme for solving BSDEs.

Scheme 4 (Crank-Nicolson scheme). Given Y N and ZN , for n = N − 1, · · · , 0,
solve random variables Y n and Zn by

(36)

Y n =Extn [Y n+1] +
1

2
∆tf(tn, x, Y

n, Zn)

+
1

2
∆tExtn [f(tn+1, Xtn+1 , Y

n+1, Zn+1)],

1

2
∆tZn =Extn [Y n+1∆Wn+1]− 1

2
∆tExtn [Zn+1]

+
1

2
∆tExtn [f(tn+1, Xtn+1

, Y n+1, Zn+1)∆Wn+1].

We call {(Y n, Zn)}N−1
n=0 with the terminal conditions Y N and ZN the CN solution

of BSDE (1).

The above Scheme 4 is a special case of the generalized θ-scheme proposed in [43]
and its error estimates were presented in [42]. It was proved in [42] that Scheme
4 possesses convergence rate of 2 for sufficiently small time step ∆t under certain
regularity condistions on f and ϕ. In this paper, we pay attention to improve the
accuracy of the CN solutions of BSDEs by the Richardson extrapolation method.
To this end, we shall give the asymptotic error expansions of the CN solutions which
are the theoretical basis for the discussions of Richardson extrapolation method.
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3.2. Asymptotic expansions of Scheme 4. The purpose of this Subsection is
to deduce the asymptotic expansion of the CN Scheme 4. To this end, we first
derive the asymptotic expansions of the truncation errors Rny and Rnz of the CN
scheme in Subsection 3.2.1. Then in Subsection 3.2.2, we define two processes

Y n,[K] and Zn,[K] with given processes e
y,[j]
t and e

z,[j]
t , 1 ≤ j ≤ K, and introduce

two truncation errors R
n,[K]
y and R

n,[K]
z , which have the expansions (51) and (52),

respectively. When the e
y,[j]
t and e

z,[j]
t are defined by the BSDE system (70), the

R
n,[K]
y and R

n,[K]
z have the estimates given in Theorem 14. Finally by using the CN

scheme and Theorem 14, we obtain the asymptotic expansion of the CN Scheme in
Theorem 15.

In our analysis below, we shall need the following Assumption.

Assumption 5. The functions ϕ and f in (1) are bounded and smooth enough
with bounded derivatives.

Remark 6. Assumption 5 guarantees the smoothness of solution of BSDE (1). It
is just for the simplicity in the derivation of the asymptotic expansion of the CN
scheme for BSDEs.

3.2.1. Asymptotic expansions of Rny and Rnz . For the sake of simplicity, we
define the functions

(37)
U(t) =Extn [Yt], F (t) =Extn [ft], V (t) = Extn [Zt],

Ū(t) =Extn [YtWtn,t], F̄ (t) =Extn [ftWtn,t].

Note that U , V , F , Ū and F̄ depend on t, tn and x.
Under Assumption 5, the Feynman-Kac formula (5) implies that U , V , F , Ū

and F̄ are all deterministic functions satisfying

(38) U
′
(t) = −F (t), Ū(tn) = 0, F̄ (tn) = 0, Ū

′
(tn) = V (tn), V (t) = Ū

′
(t) + F̄ (t),

and by taking the jth derivative with respect to t on both sides of the first and the
fourth equations in (37), and taking the limit t→ t+n , one obtains

(39) U (j)(tn) =
djExtn [Yt]

dtj

∣∣∣∣
t→t+n

,

(40) Ū (j)(tn) =
djExtn [Yt∆Wtn,t]

dtj

∣∣∣∣
t→t+n

.

On Rny and Rnz in (31) and (35), respectively, we have the following Lemma.

Lemma 7. Under Assumption 5, the local truncation errors Rny and Rnz defined in
(31) and (35), respectively, have the asymptotic expansions

(41)


Rny =

2K+2∑
j=3

γtn,j(∆t)
j +O

(
(∆t)2K+3

)
,

Rnz =

2K+2∑
j=3

ζtn,j(∆t)
j +O

(
(∆t)2K+3

)
,

where γtn,j = (j−2)U(j)(tn)
2·j! and ζtn,j = (j−2)Ū(j)(tn)

2·j! .

Proof. By (31), (35) and (37), we obtain

(42) Rny =U(tn)− U(tn+1)− 1

2
∆tF (tn)− 1

2
∆tF (tn+1),
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(43) Rnz =
1

2
∆tV (tn)− Ū(tn+1) +

1

2
∆tV (tn+1)− 1

2
∆tF̄ (tn+1).

Then taking Taylor’s expansion on U , V , Ū , F and F̄ at t = tn and using (38), we
deduce

(44)

Rny =−
2K+2∑
j=1

U (j)(tn)

j!
(∆t)j − 1

2
∆t

(
2F (tn) +

2K+1∑
j=1

F (j)(tn)

j!
(∆t)j

)
+O(∆t)2K+3

=

2K+2∑
j=3

(j − 2)U (j)(tn)

2 · j! (∆t)j +O(∆t)2K+3

and

(45)

Rnz =
1

2
∆t

(
2V (tn) +

2K+1∑
j=1

V (j)(tn)

j!
(∆t)j

)
−

2K+2∑
j=1

Ū (j)(tn)

j!
(∆t)j

− 1

2
∆t

2K+1∑
j=1

F̄ (j)(tn)

j!
(∆t)j +O(∆t)2K+3

=

2K+2∑
j=3

(j − 2)Ū (j)(tn)

2 · j! (∆t)j +O(∆t)2K+3.

The proof ends. �

3.2.2. Asymptotic expansion of the Crank-Nicolson Scheme 4. Define
Y n,[K] and Zn,[K] as

(46) Y n,[K] =Y n −
K∑
j=1

e
y,[j]
tn

(∆t)2j , Zn,[K] = Zn −
K∑
j=1

e
z,[j]
tn

(∆t)2j ,

where e
y,[j]
t and e

z,[j]
t , 1 ≤ j ≤ K are undetermined processes. By the Crank-

Nicolson Scheme 4, we have the two identities

(47)

Y n,[K] =Extn [Y n+1,[K]] +

K∑
j=1

(
Ey,[j](tn+1)− Ey,[j](tn)

)
(∆t)2j

+
1

2
∆tf [K]

(
tn, x, Y

n,[K], Zn,[K]
)

+
1

2
∆tExtn

[
f [K]

(
tn+1, Xtn+1 , Y

n+1,[K], Zn+1,[K]
)]
,

1

2
∆tZn,[K] =Extn [Y n+1,[K]∆Wn+1]− 1

2
∆tExtn [Zn+1,[K]]

+
K∑
j=1

(
Ēy,[j](tn+1)− 1

2
∆tEz,[j](tn)− 1

2
∆tEz,[j](tn+1)

)
(∆t)2j

+
1

2
∆tExtn

[
f [K]

(
tn+1, Xtn+1 , Y

n+1,[K], Zn+1,[K]
)

∆Wn+1

]
,

where

(48) Ey,[j](t) =Extn [e
y,[j]
t ], Ez,[j](t) = Extn [e

z,[j]
t ], Ēy,[j](t) = Extn [e

y,[j]
t ∆Wtn,t]

and

(49) f [K](t, x, y, z) = f
(
t, x, y +

K∑
j=1

Ey,[j](t)(∆t)2j , z +

K∑
j=1

Ez,[j](t)(∆t)2j
)
.
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Now we define local truncation errors R
n,[K]
y and R

n,[K]
z as

(50)

Rn,[K]
y =Ytn − Extn [Ytn+1

]−
K∑
j=1

(
Ey,[j](tn+1)− Ey,[j](tn)

)
(∆t)2j

− 1

2
∆tf [K] (tn, x, Ytn , Ztn)

− 1

2
∆tExtn

[
f [K]

(
tn+1, Xtn+1 , Ytn+1 , Ztn+1

)]
,

Rn,[K]
z =

1

2
∆tZtn − Extn [Ytn+1∆Wn+1] +

1

2
∆tExtn [Ztn+1 ]

−
K∑
j=1

(
Ēy,[j](tn+1)− 1

2
∆tEz,[j](tn)− 1

2
∆tEz,[j](tn+1)

)
(∆t)2j

− 1

2
∆tExtn

[
f [K]

(
tn+1, Xtn+1 , Ytn+1 , Ztn+1

)
∆Wn+1

]
,

where (Yt, Zt) is the solution of BSDE (1). About R
n,[K]
y and R

n,[K]
z , we have the

following Lemma.

Lemma 8. Under Assumption 5, we have

(51) Rn,[K]
y =

2K+2∑
j=3

Ajy(∆t)j +O
(
(∆t)2K+3

)
,

(52) Rn,[K]
z =

2K+2∑
j=3

Ajz(∆t)j +O
(
(∆t)2K+3

)
,

where Ajy and Ajz are defined by

Ajy =

{
Ajy,o, j is odd,

Ajy,e, j is even,
Ajz =

{
Ajz,o, j is odd,

Ajz,e, j is even

with

(53)

Ajy,o =
j − 2

2 · j!
djExtn [Yt]

dtj

∣∣∣∣
t→t+n

−
j−3∑
l=2

I{l is even}
1

2 · l!B
(l)
j−l−1

2

(tn)

− B j−1
2

(tn)−
j−2∑
l=1

I{l is odd}
1

l!

dlExtn [e
y,[ j−l

2
]

t ]

dtl

∣∣∣∣∣∣
t→t+n

,

(54)

Ajz,o =
j − 2

2 · j!
djExtn [Yt∆Wtn,t]

dtj

∣∣∣∣
t→t+n

−
j−3∑
l=2

I{l is even}
1

2 · l!

B̄(l)
j−l−1

2

(tn) −
dlExtn [e

z,[ j−l−1
2

]

t ]

dtl

∣∣∣∣∣∣
t→t+n


+ e

z,[ j−1
2

]

tn
−
j−2∑
l=1

I{l is odd}
1

l!

dlExtn [e
y,[ j−l

2
]

t ∆Wtn,t]

dtl

∣∣∣∣∣∣
t→t+n

,
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(55)

Ajy,e =
j − 2

2 · j!
djExtn [Yt]

dtj

∣∣∣∣
t→t+n

−
j−3∑
l=1

I{l is odd}
1

2 · l!B
(l)
j−l−1

2

(tn)

−
j−2∑
l=2

I{l is even}
1

l!

dlExtn [e
y,[ j−l

2
]

t ]

dtl

∣∣∣∣∣∣
t→t+n

and

(56)

Ajz,e =
j − 2

2 · j!
djExtn [Yt∆Wtn,t]

dtj

∣∣∣∣
t→t+n

−
j−3∑
l=1

I{l is odd}
1

2 · l!

B̄(l)
j−l−1

2

(tn) −
dlExtn [e

z,[ j−l−1
2

]

t ]

dtl

∣∣∣∣∣∣
t→t+n


−
j−2∑
l=2

I{l is even}
1

l!

dlExtn [e
y,[ j−l

2
]

t ∆Wtn,t]

dtl

∣∣∣∣∣∣
t→t+n

,

where B(l)
j (tn) =

dlExtn [Bj(t)]

dtl

∣∣∣∣
t→t+n

, B̄(l)
j (tn) =

dlExtn [Bj(t)∆Wtn,t]]

dtl

∣∣∣∣
t→t+n

. In particu-

lar, Bj(t) = Extn [Bj(t)], B̄j(t) = Extn [Bj(t)∆Wtn,t] with

(57) Bj(t) =
1

j!

[
dj

dγj
f

(
t,Xt, Yt +

K∑
i=1

γie
y,[i]
t (∆t)2i, Zt +

K∑
i=1

γie
z,[i]
t (∆t)2i

)]
γ=0

.

Proof. By (37) and (50), we have

(58)

Rn,[K]
y =U(tn)− U(tn+1)− 1

2
∆tF [K](tn)− 1

2
∆tF [K](tn+1)

−
K∑
j=1

(
Ey,[j](tn+1)− Ey,[j](tn)

)
(∆t)2j ,

(59)

Rn,[K]
z =

1

2
∆tV (tn) +

1

2
∆tV (tn+1)− Ū(tn+1)− 1

2
∆tF̄ [K](tn+1)

−
K∑
j=1

(
Ēy,[j](tn+1)− 1

2
∆tEz,[j](tn)− 1

2
∆tEz,[j](tn+1)

)
(∆t)2j ,

where F [K](t) = Extn
[
f [K] (t,Xt, Yt, Zt)

]
and F̄ [K](t) = Extn

[
f [K] (t,Xt, Yt, Zt) ∆Wtn,t

]
.

By using the Adomian decomposition to f [K] defined by (49) in (58) and (59), we deduce

(60) f [K](tn, x, Ytn , Ztn) =

K∑
j=0

Bj(tn)(∆t)2j +O
(

(∆t)2(K+1)
)
,

(61) f [K](tn+1, Xtn+1 , Ytn+1 , Ztn+1) =

K∑
j=0

Bj(tn+1)(∆t)2j +O
(

(∆t)2(K+1)
)
,

where the function Bj(t) is defined by (57). Inserting (60) and (61) into (58), and then
by (31) and (37), we obtain

(62)

Rn,[K]
y =Rny −

1

2
∆t

K∑
j=1

Bj(tn)(∆t)2j − 1

2
∆t

K∑
j=1

Bj(tn+1)(∆t)2j

−
K∑
j=1

(
Ey,[j](tn+1)− Ey,[j](tn)

)
(∆t)2j +O

(
(∆t)2K+3

)
.
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Substituting (61) into (59), and then by (35) and (37), we deduce

(63)

Rn,[K]
z =Rnz −

1

2
∆t

K∑
j=1

B̄j(tn+1)(∆t)2j

−
K∑
j=1

(
Ēy,[j](tn+1)− 1

2
∆tEz,[j](tn)− 1

2
∆tEz,[j](tn+1)

)
(∆t)2j

+O
(

(∆t)2K+3
)
.

By Taylor’s expansions of Bj(tn+1) and B̄j(tn+1) at t = tn, respectively, we have

(64) Bj(tn+1) =

2K−2j+1∑
l=0

1

l!
B(l)
j (tn)(∆t)l +O

(
(∆t)2K−2j+2

)
.

(65) B̄j(tn+1) =

2K−2j+1∑
l=1

1

l!
B̄(l)
j (tn)(∆t)l +O

(
(∆t)2K−2j+2

)
.

By the definitions of Ey,[j], Ēy,[j] and Ez,[j] in (48), and Taylor’s expansions again, we
obtain

(66)

Ey,[j](tn+1)− Ey,[j](tn)

=

2K−2j+2∑
l=1

1

l!
(Ey,[j])(l)(tn)(∆t)l +O

(
(∆t)2K−2j+3

)

=

2K−2j+2∑
l=1

1

l!

dlExtn [e
y,[j]
t ]

dtl

∣∣∣∣∣
t→t+n

(∆t)l +O
(

(∆t)2K−2j+3
)
,

(67)

Ēy,[j](tn+1)− 1

2
∆tEz,[j](tn)− 1

2
∆tEz,[j](tn+1)

=

2K−2j+2∑
l=1

 dlExtn [e
y,[j]
t ∆Wtn,t]

dtl

∣∣∣∣∣
t→t+n

− ∆t

2 · l!
dlExtn [e

z,[j]
t ]

dtl

∣∣∣∣∣
t→t+n

 (∆t)l

−∆te
z,[j]
tn

+O
(

(∆t)2K−2j+3
)
.

Substituting (64) and (66) into (62), and by (44), we deduce

(68)

Rn,[K]
y =Rny −

1

2
∆t

K∑
j=1

Bj(tn)(∆t)2j

− 1

2
∆t

K∑
j=1

(
2K−2j+1∑

l=0

1

l!
B(l)
j (tn)(∆t)l

)
(∆t)2j

−
K∑
j=1

2K−2j+2∑
l=1

1

l!

dlExtn [e
y,[j]
t ]

dtl

∣∣∣∣∣
t→t+n

(∆t)l

 (∆t)2j +O
(

(∆t)2K+3
)

=

2K+2∑
j=3

Ajy(∆t)j +O
(

(∆t)2K+3
)
.
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Inserting (65) and (67) into (63), and by (45), we obtain

(69)

Rn,[K]
z =Rnz −

1

2
∆t

K∑
j=1

(
2K−2j+1∑

l=1

1

l!
B̄(l)
j (tn)(∆t)l

)
(∆t)2j

−
K∑
j=1

2K−2j+2∑
l=1

 dlExtn [e
y,[j]
t ∆Wtn,t]

dtl

∣∣∣∣∣
t→t+n

− ∆t

2 · l!
dlExtn [e

z,[j]
t ]

dtl

∣∣∣∣∣
t→t+n

 (∆t)l −∆te
z,[j]
tn

 (∆t)2j +O
(

(∆t)2K+3
)

=

2K+2∑
j=3

Ajz(∆t)j +O
(

(∆t)2K+3
)
.

The proof ends. �

Now, we introduce Ft-adapted stochastic processes (e
y,[ j−1

2 ]
t , e

z,[ j−1
2 ]

t ), j ∈ IK :=
{2i+ 1|i = 1, 2, · · · ,K}, t ∈ [0, T ], which are the solutions of the following system
of BSDEs (70). These processes will be used in our asymptotic expansion of the
solution of the Crank-Nicolson scheme for BSDE (1).

(70)

e
y,[ j−1

2 ]
t =

∫ T

t

(
λ
y,[ j−1

2 ]
s + λyse

y,[ j−1
2 ]

s + λzse
z,[ j−1

2 ]
s

)
ds

−
∫ T

t

(
e
z,[ j−1

2 ]
s + λ

z,[ j−1
2 ]

s

)
dWs,

where λys , λzs , λ
y,[ j−1

2 ]
s and λ

z,[ j−1
2 ]

s are defined by

(71)

λys =
∂f

∂y
(s,Xs, Ys, Zs), λ

z
s =

∂f

∂z
(s,Xs, Ys, Zs),

λ
y,[ j−1

2
]

s =− (j − 2)Y
〈j〉
s

2 · j! +B j−1
2

(s)− λyse
y,[ j−1

2
]

s − λzse
z,[ j−1

2
]

s

+

j−3∑
l=2

I{l is even}
1

2 · l!B
〈l〉
j−l−1

2

(s) +

j−2∑
l=1

I{l is odd}
1

l!
(e
y,[ j−l

2
]

s )〈l〉,

λ
z,[ j−1

2
]

s =
(j − 2)Ȳ

〈j〉
s

2 · j! −
j−3∑
l=2

I{l is even}
1

2 · l!

(
B̄
〈l〉
j−l−1

2

(s)− (e
z,[ j−l−1

2
]

s )〈l〉
)

−
j−2∑
l=1

I{l is odd}
1

l!
(ē
y,[ j−l

2
]

s )〈l〉

with

(72)

Y 〈j〉s =(L0)(j)u(s,Xs), Ȳ
〈j〉
s = (L0)(j)ũ(s,∆Wt,s),

(e
y,[ j−l

2
]

s )〈l〉 =(L0)(l)u[ j−l
2

](s,Xs), B̄ j−l−1
2

(s) = B j−l−1
2

(s)∆Wt,s

(e
z,[ j−l−1

2
]

s )〈l〉 =(L0)(l)
(
∇xu[ j−l−1

2
](s,Xs)− λ

z,[ j−l−1
2

]
s

)
,

(ē
y,[ j−l

2
]

s )〈l〉 =(L0)(l)ũ[ j−l
2

](s,∆Wt,s).

Here ũ(s,∆Wt,s) = u(s,Xs)∆Wt,s, ũ
[ j−l2 ](s,∆Wt,s) = u[ j−l2 ](s,Xs)∆Wt,s, L

0 is

defined in (4), and (L0)(k) is defined in Corollary 3, where the u : [0, T ] × R → R
is the solution of the PDE

L0u(t, x) + f(t, u(t, x),∇xu(t, x)) = 0, (t, x) ∈ [0, T )× R
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with the terminal condition u(T, x) = ϕ(x), and u[ j−l2 ] : [0, T ] × R → R, are the
solutions of the PDEs

L0u[ j−l2 ](t, x) + λ
y,[ j−l2 ]
t − λztλ

z,[ j−l2 ]
t

+ λyt u
[ j−l2 ](t, x) + λzt∇xu[ j−l2 ](t, x) = 0, (t, x) ∈ [0, T )× R

with the terminal conditions u[ j−l2 ](T, x) = 0, 1 ≤ l ≤ j − 2, j ∈ IK .

Remark 9. Let ẽ
z,[ j−1

2 ]
s = e

z,[ j−1
2 ]

s + λ
z,[ j−1

2 ]
s , then for all t ∈ [0, T ], (70) can be

written as

(73)

e
y,[ j−1

2 ]
t =

∫ T

t

(
λ
y,[ j−1

2 ]
s − λzsλ

z,[ j−1
2 ]

s + λyse
y,[ j−1

2 ]
s + λzs ẽ

z,[ j−1
2 ]

s

)
ds

−
∫ T

t

ẽ
z,[ j−1

2 ]
s dWs, j ∈ IK .

Note that the BSDEs (73) are linear with unknown (e
y,[ j−1

2 ]
t , ẽ

z,[ j−1
2 ]

t ) and the unique
solvability of (73) can be guaranteed by Assumption 5 which implies that the BSDEs

(70) have the unique solutions (e
y,[ j−1

2 ]
t , e

z,[ j−1
2 ]

t ), j ∈ IK .

Taking the conditional expectation Ext [·] on Y
〈j〉
s , Ȳ

〈j〉
s , (e

y,[ j−l2 ]
s )〈l〉, (e

z,[ j−l−1
2 ]

s )〈l〉

and (ē
y,[ j−l2 ]
s )〈l〉 defined in (72), then for t ≤ s ≤ T , by Corollary 3, we have the

identities

(74)

Ext [Y 〈j〉s ] =
djExt [Ys]

dsj
, Ext [Ȳ 〈j〉s ] =

djExt [Ys∆Wt,s]

dsj
,

Ext [(e
y,[ j−l

2
]

s )〈l〉] =
dlExt [e

y,[ j−l
2

]
s ]

dsl
, Ext [(ē

y,[ j−l
2

]
s )〈l〉] =

dlExt [e
y,[ j−l

2
]

s ∆Wt,s]

dsl
,

Ext [(e
z,[ j−l−1

2
]

s )〈l〉] =
dlExt [e

z,[ j−l−1
2

]
s ]

dsl
.

We claim that all the coefficients Ajy and Ajz in (51) and (52) are equal to zeros

if the process e
y,[j]
t and e

z,[j]
t , 1 ≤ j ≤ K in (46) are the solutions of the system of

BSDEs (70). We shall show this conclusion in Lemmas 10 and 13 below.

Lemma 10. Under Assumption 5, let (e
y,[ j−1

2 ]
t , e

z,[ j−1
2 ]

t ), j ∈ IK , be the solutions
of BSDEs (70). Then all the Ajy in (51) and Ajz in (52) are zeros for j ∈ IK .

Proof. For t ∈ [tn, T ] and any j ∈ IK , by (73), we obtain

(75)

e
y,[ j−1

2
]

tn
= e

y,[ j−1
2

]

t +

∫ t

tn

(
λ
y,[ j−1

2
]

s − λzsλ
z,[ j−1

2
]

s + λyse
y,[ j−1

2
]

s + λzs ẽ
z,[ j−1

2
]

s

)
ds

−
∫ t

tn

ẽ
z,[ j−1

2
]

s dWs.

For fixed x ∈ R, taking the conditional expectation Extn [·] on (75), we obtain

(76)

e
y,[ j−1

2
]

tn
=Extn [e

y,[ j−1
2

]

t ]

+

∫ t

tn

Extn

[
λ
y,[ j−1

2
]

s − λzsλ
z,[ j−1

2
]

s + λyse
y,[ j−1

2
]

s + λzs ẽ
z,[ j−1

2
]

s

]
ds.
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By taking the derivative with respect to t on both sides of (76), and taking the
limit t→ t+n , one obtains
(77)

dExtn [e
y,[ j−1

2
]

t ]

dt

∣∣∣∣∣∣
t→t+n

= Extn

[
−λy,[

j−1
2

]

t + λztλ
z,[ j−1

2
]

t − λyt e
y,[ j−1

2
]

t − λzt ẽ
z,[ j−1

2
]

t

]∣∣∣∣
t→t+n

,

= Extn

[
−λy,[

j−1
2

]

t − λyt e
y,[ j−1

2
]

t − λzt e
z,[ j−1

2
]

t

]∣∣∣∣
t→t+n

.

Then, by (71) and (74), we deduce

(78)

Ajy =
j − 2

2 · j!
djExtn [Yt]

dtj

∣∣∣∣
t→t+n

−
j−3∑
l=2

I{l is even}
1

2 · l!
B(l)
j−l−1

2

(tn)

−B j−1
2

(tn)−
j−2∑
l=1

I{l is odd}
1

l!

dlExtn [e
y,[ j−l2 ]
t ]

dtl

∣∣∣∣∣∣
t→t+n

= 0.

By multiplying ∆Wtn,t on both sides of (75), taking conditional expectation Extn [·]
and then using Itô’s isometry property, we have

(79)

− Extn [e
y,[ j−1

2
]

t ∆Wtn,t]

=

∫ t

tn

Extn [(λ
y,[ j−1

2
]

s − λzsλ
z,[ j−1

2
]

s + λyse
y,[ j−1

2
]

s + λzs ẽ
z,[ j−1

2
]

s )∆Wtn,s] ds

−
∫ t

tn

Extn [ẽ
z,[ j−1

2
]

s ] ds.

Similarly, by (71) and (74), taking the derivative with respect to t on both sides of
(79), and taking the limit t→ t+n , we deduce

(80)

Ajz =
j − 2

2 · j!
djExtn [Yt∆Wtn,t]

dtj

∣∣∣∣
t→t+n

−
j−3∑
l=2

I{l is even}
1

2 · l!

B̄(l)
j−l−1

2

(tn) −
dlExtn [e

z,[ j−l−1
2

]

t ]

dtl

∣∣∣∣∣∣
t→t+n

+ e
z,[ j−1

2
]

tn

−
j−2∑
l=1

I{l is odd}
1

l!

dlExtn [e
y,[ j−l

2
]

t ∆Wtn,t]

dtl

∣∣∣∣∣∣
t→t+n

= 0, j ∈ IK .

The proof ends. �

And further, we will show that all the coefficients Ajy and Ajz, j ∈ ĪK := {2i+2|i =

1, 2, · · · ,K} in (51) and (51), respectively, are also equal to zeros if the process e
y,[j]
t

and e
z,[j]
t , 1 ≤ j ≤ K in (46) are the solutions of (70). To this end, we make the

following Assumption.
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Table 1. The solution of the system of equation (81).

K = 1 K = 2 K = 3 K = 4 K = 5
α3

1
2

1
2

1
2

1
2

1
2

α5 (− 1
4! ,

1
2 ) (− 1

4! ,
1
2 ) (− 1

4! ,
1
2 ) (− 1

4! ,
1
2 )

α7 ( 3
6! ,−

1
4! ,

1
2 ) ( 3

6! ,−
1
4! ,

1
2 ) ( 3

6! ,−
1
4! ,

1
2 )

α9 (− 17
8! ,

3
6! ,−

1
4! ,

1
2 ) (− 17

8! ,
3
6! ,−

1
4! ,

1
2 )

α11 ( 155
10! ,−

17
8! ,

3
6! ,−

1
4! ,

1
2 )

Assumption 11. Let K be a fixed positive integer. For any fixed j ∈ IK , define
Ij = {2`+ 1|` = 1, 2, · · · , j−1

2 }. Assume that for j ∈ IK the equations

(81)



∑
i∈Ij

αj,i
i− 2

2 · i!
=

j − 1

2 · (j + 1)!
,

∑
i∈Ij

αj,i

( I{i≥k+3}
2 · (i− k − 1)!

)
+ αj,k+1 =

1

2 · (j − k)!
, k = 2, 4, · · · , j − 3,

∑
i∈Ij

αj,i
I{i≥k+2}

(i− k − 1)!
=

1

(j − k)!
, k = 1, 3, · · · , j − 2,

αj,j =
1

2

has a unique solution αj = (αj,3, αj,5, · · · , αj,j)>.

Remark 12. For generic positive integer K, we are not able to prove the solvability
of the system (81) now, but for each K, 1 ≤ K ≤ 5, the system (81) has unique
solutions αj. We list αj , j ∈ IK , 1 ≤ K ≤ 5 in Table 1.

Lemma 13. Under Assumption 5 and Assumption 11, let (e
y,[ j−1

2 ]
t , e

z,[ j−1
2 ]

t ), j ∈
IK , be the solutions of BSDEs (70). Then all the Ajy in (51) and Ajz in (52), j ∈ ĪK ,
are equal to zeros.

Proof. Note that the set {j − 1|j ∈ ĪK} is identical to the set IK . Now we give the
proof in two steps.
• Step 1: The proof of Ajy = 0, j ∈ ĪK . Given any j ∈ ĪK , for i ∈ Ij−1,

similar to (76), we have

(82)

e
y,[ i−1

2 ]
tn =Extn [e

y,[ i−1
2 ]

t ]

+

∫ t

tn

Extn
[
λ
y,[ i−1

2 ]
s − λzsλ

z,[ i−1
2 ]

s + λyse
y,[ i−1

2 ]
s + λzs ẽ

z,[ i−1
2 ]

s

]
ds.

By taking the (j − i+ 1)th derivative with respect to t on both sides of (82), and
taking the limit t→ t+n , we deduce

(83)

0 =
i− 2

2 · i!
djExtn [Yt]

dtj

∣∣∣∣
t→t+n

−
i−3∑
l=2

I{l is even}
1

2 · l!B
(j−i+l)
i−l−1

2

(tn)

− B(j−i)
i−1
2

(tn)−
i−2∑
l=1

I{l is odd}
1

l!

dj−i+lExtn [e
y,[ i−l

2
]

t ]

dtj−i+l

∣∣∣∣∣∣
t→t+n
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=
i− 2

2 · i!
djExtn [Yt]

dtj

∣∣∣∣
t→t+n

−
i−2∑
l=3

I{l is odd}
1

2 · (l − 1)!
B(j−i+l−1)
i−l
2

(tn)

− B(j−i)
i−1
2

(tn)−
i−1∑
l=2

I{l is even}
1

(l − 1)!

dj−i+l−1Extn [e
y,[ i−l+1

2
]

t ]

dtj−i+l−1

∣∣∣∣∣∣
t→t+n

.

By multiplying αj−1,i ∈ R on both sides of (83) and adding the derived equations
up for all i ∈ Ij−1, we obtain

(84)

0 =
∑

i∈Ij−1

αj−1,i
i− 2

2 · i!
djExtn [Yt]

dtj

∣∣∣∣
t→t+n

−
∑

i∈Ij−1

αj−1,iB(j−i)
i−1
2

(tn)

−
∑

i∈Ij−1

αj−1,i

i−2∑
l=3

I{l is odd}
1

2 · (l − 1)!
B(j−i+l−1)
i−l
2

(tn)

−
∑

i∈Ij−1

αj−1,i

i−1∑
l=2

I{l is even}
1

(l − 1)!

dj−i+l−1Extn [e
y,[ i−l+1

2
]

t ]

dtj−i+l−1

∣∣∣∣∣∣
t→t+n

=

 ∑
i∈Ij−1

αj−1,i
i− 2

2 · i!

 djExtn [Yt]

dtj

∣∣∣∣
t→t+n

− αj−1,j−1B(1)
j−2
2

(tn)

−
j−4∑
k=2

I{k is even}

 ∑
i∈Ij−1

αj−1,i

(
I{i≥k+3}

2 · (i− k − 1)!

)
+ αj−1,k+1


B(j−k−1)
k
2

(tn)−
j−3∑
k=1

I{k is odd}

 ∑
i∈Ij−1

αj−1,i

(
I{i≥k+2}

(i− k − 1)!

)
dj−k−1Extn [e

y,[ k+1
2

]

t ]

dtj−k−1

∣∣∣∣∣∣
t→t+n

.

Then letting αj−1, j− 1 ∈ IK be the solutions of the equations (81) in Assumption
11, we deduce

(85)

0 =
j − 2

2 · j!
djExtn [Yt]

dtj

∣∣∣∣
t→t+n

−
j−4∑
k=2

I{k is even}
1

2 · (j − k − 1)!
B(j−k−1)
k
2

(tn)− 1

2
B(1)
j−2
2

(tn)

−
j−3∑
k=1

I{k is odd}
1

(j − k − 1)!

dj−k−1Extn [e
y,[ k+1

2
]

t ]

dtj−k−1

∣∣∣∣∣∣
t→t+n

,

or equivalently

(86)

0 =
j − 2

2 · j!
djExtn [Yt]

dtj

∣∣∣∣
t→t+n

−
j−3∑
l=1

I{l is odd}
1

2 · l!B
(l)
j−l−1

2

(tn)

−
j−2∑
l=2

I{l is even}
1

l!

dlExtn [e
y,[ j−l

2
]

t ]

dtl

∣∣∣∣∣∣
t→t+n

, j ∈ ĪK .

By the definition of Ajy, we deduce Ajy = 0 for j ∈ ĪK .
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• Step 2: The proof of Ajz = 0, j ∈ ĪK . Given any j ∈ ĪK , for i ∈ Ij−1, from
(75), we have

(87)

e
y,[ i−1

2 ]
tn = e

y,[ i−1
2 ]

t +

∫ t

tn

(
λ
y,[ i−1

2 ]
s − λzsλ

z,[ i−1
2 ]

s + λyse
y,[ i−1

2 ]
s + λzs ẽ

z,[ i−1
2 ]

s

)
ds

−
∫ t

tn

ẽ
z,[ i−1

2 ]
s dWs.

By multiplying ∆Wtn,t on both sides of the equation (87), taking conditional ex-
pectation Extn [·] and then using the isometry property of Itô’s integral, we have

(88)

− Extn [e
y,[ i−1

2 ]
t ∆Wtn,t]

=

∫ t

tn

Extn [(λ
y,[ i−1

2 ]
s − λzsλ

z,[ i−1
2 ]

s + λyse
y,[ i−1

2 ]
s + λzs ẽ

z,[ i−1
2 ]

s )∆Wtn,s] ds

−
∫ t

tn

Extn [ẽ
z,[ i−1

2 ]
s ] ds.

Taking the (j− i+ 1)th derivative with respect to t on both sides of (88), and then
taking the limit t→ t+n , we deduce

(89)

0 =
i− 2

2 · i!
djExtn [Yt∆Wtn,t]

dtj

∣∣∣∣
t→t+n

−
i−3∑
l=2

I{l is even}
1

2 · l!

(
B̄(j−i+l)
i−l−1

2

(tn)

−
dj−i+lExtn [e

z,[ i−l−1
2 ]

t ]

dtj−i+l

∣∣∣∣∣∣
t→t+n

+
dj−iExtn [e

z,[ i−1
2 ]

t ]

dtj−i

∣∣∣∣∣∣
t→t+n

+ B̄(j−i)
i−1
2

(tn)

−
i−2∑
l=1

I{l is odd}
1

l!

dj−i+lExtn [e
y,[ i−l2 ]
t ∆Wtn,t]

dtj−i+l

∣∣∣∣∣∣
t→t+n

=
i− 2

2 · i!
djExtn [Yt∆Wtn,t]

dtj

∣∣∣∣
t→t+n

−
i−2∑
l=3

I{l is odd}
1

2 · (l − 1)!

(
B̄(j−i+l−1)
i−l
2

(tn)

−
dj−i+l−1Extn [e

z,[ i−l2 ]
t ]

dtj−i+l−1

∣∣∣∣∣∣
t→t+n

+
dj−iExtn [e

z,[ i−1
2 ]

t ]

dtj−i

∣∣∣∣∣∣
t→t+n

+ B̄(j−i)
i−1
2

(tn)

−
i−1∑
l=2

I{l is even}
1

(l − 1)!

dj−i+l−1Extn [e
y,[ i−l+1

2 ]
t ∆Wtn,t]

dtj−i+l−1

∣∣∣∣∣∣
t→t+n

.

By multiplying βj−1,i ∈ R on both sides of (89) and adding the derived equations
up for all i ∈ Ij−1, we obtain

(90)

0 =
∑

i∈Ij−1

βj−1,i
i− 2

2 · i!
djExtn [Yt∆Wtn,t]

dtj

∣∣∣∣
t→t+n

+
∑

i∈Ij−1

βj−1,iB̄(j−i)
i−1
2

(tn)

−
∑

i∈Ij−1

βj−1,i

i−2∑
l=3

I{l is odd}
1

2 · (l − 1)!

(
B̄(j−i+l−1)
i−l
2

(tn)

−
dj−i+l−1Extn [e

z,[ i−l2 ]
t ]

dtj−i+l−1

∣∣∣∣∣∣
t→t+n

+
∑

i∈Ij−1

βj−1,i

dj−iExtn [e
z,[ i−1

2 ]
t ]

dtj−i

∣∣∣∣∣∣
t→t+n
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−
∑

i∈Ij−1

βj−1,i

i−1∑
l=2

I{l is even}
1

(l − 1)!

dj−i+l−1Extn [e
y,[ i−l+1

2 ]
t ∆Wtn,t]

dtj−i+l−1

∣∣∣∣∣∣
t→t+n

.

Then by some elementary calculation, (90) becomes

(91)

0 =
∑

i∈Ij−1

βj−1,i
i− 2

2 · i!
djExtn [Yt∆Wtn,t]

dtj

∣∣∣∣
t→t+n

+ βj−1,j−1

dExtn [e
z,[ j−2

2 ]
t ]

dt

∣∣∣∣∣∣
t→t+n

−
j−4∑
k=2

I{k is even}

 ∑
i∈Ij−1

βj−1,i

I{i≥k+3}

2 · (i− k − 1)!
+ βj−1,k+1

 B̄(j−k−1)
k
2

(tn)

+

j−4∑
k=2

I{k is even}

 ∑
i∈Ij−1

βj−1,i

I{i≥k+3}

2 · (i− k − 1)!
+ βj−1,k+1


dj−k−1Extn [e

z,[ k2 ]
t ]

dtj−k−1

∣∣∣∣∣∣
t→t+n

−
j−3∑
k=1

I{k is odd}
∑

i∈Ij−1

βj−1,i

I{i≥k+2}

(i− k − 1)!

dj−k−1Extn [e
y,[ k+1

2 ]
t ∆Wtn,t]

dtj−k−1

∣∣∣∣∣∣
t→t+n

+ βj−1,j−1B̄(1)
j−2
2

(tn).

Similar to Step 1, letting βj−1, j − 1 ∈ IK be the solutions of the equations (81),
we deduce

(92)

0 =
j − 2

2 · j!
djExtn [Yt∆Wtn,t]

dtj

∣∣∣∣
t→t+n

+
1

2

 dExtn [e
z,[ j−2

2
]

t ]

dt

∣∣∣∣∣∣
t→t+n

− B̄(1)
j−2
2

(tn)


−
j−4∑
k=2

I{k is even}
1

2 · (j − k − 1)!

B̄(j−k−1)
k
2

(tn)−
dj−k−1Extn [e

z,[ k
2
]

t ]

dtj−k−1

∣∣∣∣∣∣
t→t+n


−
j−3∑
k=1

I{k is odd}
1

(j − k − 1)!

dj−k−1Extn [e
y,[ k+1

2
]

t ∆Wtn,t]

dtj−k−1

∣∣∣∣∣∣
t→t+n

,

or equivalently

(93)

0 =
j − 2

2 · j!
djExtn [Yt∆Wtn,t]

dtj

∣∣∣∣
t→t+n

−
j−3∑
l=1

I{l is odd}
1

2 · l!

B̄(l)
j−l−1

2

(tn) −
dlExtn [e

z,[ j−l−1
2

]

t ]

dtl

∣∣∣∣∣∣
t→t+n


−
j−2∑
l=2

I{l is even}
1

l!

dlExtn [e
y,[ j−l

2
]

t ∆Wtn,t]

dtl

∣∣∣∣∣∣
t→t+n

, j ∈ ĪK ,

from which we deduce Ajz = 0 for j ∈ ĪK by the definition of Ajz. �

Combining Lemmas 8, 10 and 13, we have the following Theorem.

Theorem 14. Under Assumption 5 and Assumption 11, let (e
y,[ j−1

2 ]
t , e

z,[ j−1
2 ]

t ), j ∈
IK , be the solutions of BSDEs (70). Then

Rn,[K]
y = O

(
(∆t)2K+3

)
and Rn,[K]

z = O
(
(∆t)2K+3

)
.
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Now we state our asymptotic expansion results for the Crank-Nicolson Scheme
4 in the following Theorem.

Theorem 15. Under Assumption 5 and Assumption 11, and if E[|Y N − YtN |2] =
O
(
(∆t)4K+4

)
, E[|ZN − ZtN |2] = O

(
(∆t)4K+4

)
, the numerical solutions Y n and

Zn of the Crank-Nicolson Scheme 4 have the expansions

(94) Y n = Ytn +

K∑
j=1

e
y,[j]
tn

(∆t)2j + η
y,[K]
tn

, Zn = Ztn +

K∑
j=1

e
z,[j]
tn

(∆t)2j + η
z,[K]
tn

with the estimate

(95) E[|ηy,[K]
tn
|2] + ∆t

N−1∑
i=n

E[|ηz,[K]
ti
|2] ≤ C(∆t)4K+4,

where (e
y,[j]
t , e

z,[j]
t ) are the solutions of the BSDEs (70), and C is a positive constant

depending only on T , f , and ϕ.

Proof. We define η
y,[K]
tn and η

z,[K]
tn by

(96) η
y,[K]
tn =Y n,[K] − Ytn and η

z,[K]
tn = Zn,[K] − Ztn ,

where Y n,[K] and Zn,[K] are defined by (46). Then we have

(97) Y n = Ytn +

K∑
j=1

e
y,[j]
tn

(∆t)2j + η
y,[K]
tn

, Zn = Ztn +

K∑
j=1

e
z,[j]
tn

(∆t)2j + η
z,[K]
tn

.

By (47) and (50), we deduce

(98)

η
y,[K]
tn

=Extn [η
y,[K+1]
tn+1

]

+
1

2
∆t
(
f [K]

(
tn, x, Y

n,[K], Zn,[K]
)
− f [K] (tn, x, Ytn , Ztn)

)
+

1

2
∆tExtn

[
f [K]

(
tn+1, Xtn+1 , Y

n+1,[K], Zn+1,[K]
)

−f [K] (tn+1, Xtn+1 , Ytn+1 , Ztn+1

)]
−Rn,[K]

y

and

(99)

1

2
∆tη

z,[K]
tn

=Extn [η
y,[K+1]
tn+1

∆Wn+1]− 1

2
∆tExtn [η

z,[K+1]
tn+1

]

+
1

2
∆tExtn

[
f [K]

(
tn+1, Xtn+1 , Y

n+1,[K], Zn+1,[K]
)

∆Wn+1

]
− 1

2
∆tExtn

[
f [K] (tn+1, Xtn+1 , Ytn+1 , Ztn+1

)
∆Wn+1

]
−Rn,[K]

z .

Based on Theorem 14 and the above two equations, following the proof of the error
estimates of the Crank-Nicolson Scheme in [42], we can prove the estimate (95). �

4. Extrapolation algorithms of the Crank-Nicolson Scheme for BSDEs

In this Section, based on the asymptotic expansions (94) in Theorem 15, we will
apply the Richardson extrapolation to the solutions of the Crank-Nicolson Scheme
4 to obtain much accurate approximations to the solution of BSDE (1). To this
end, we shall construct our Richardson extrapolation algorithms for BSDEs.

For any tn ∈ πN , let (Yni,0,Zni,0) be the numerical approximations of the exact
solution (Ytn , Ztn) of BSDE (1) by (4) with time step sizes ∆ti, i = 0, 1, · · · ,K−1.
Then we define the extrapolation solutions of (Yni,0,Zni,0) by Ynm,p =

∑m
i=m−p ciYni,0

and Znm,p =
∑m
i=m−p ciZni,0, 1 ≤ p ≤ m ≤ K − 1. Here πN , ∆ti and ci are defined

in Subsection 2.4.
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All the extrapolation solutions Ynm,p and Znm,p, 1 ≤ p ≤ m ≤ K − 1 can be
obtained by the Aitken-Neville algorithm in Subsection 2.4 with k = 2.

(100)

Ynm,p =Ynm,p−1 +
Ynm,p−1 − Ynm−1,p−1(

Nm
Nm−p

)2

− 1
,

Znm,p =Znm,p−1 +
Znm,p−1 −Znm−1,p−1(

Nm
Nm−p

)2

− 1
.

We summarize our Richardson extrapolation algorithms for solving BSDE (1) in
the following Algorithm.

Algorithm 4.1 Richardson extrapolation of the solution of the Crank-Nicolson
Scheme for BSDEs

1: Input: n0 ∈ πN,0, K, {Nm}K−1
m=0, Xn0 , Y NK−1 ;

2: for m = 0, 1, · · · ,K − 1 do
3: Let N = N ∗Nm; Solve {(Y n, Zn)}N−1

n=n0
by Scheme 4 on πN,m; Let Yn0

m,0 =
Y n0 , Zn0

m,0 = Zn0 ;
4: end for
5: for m = 1, 2, · · · ,K − 1 do
6: for p = 1, 2, · · · ,m do

7: Yn0
m,p = Yn0

m,p−1 +
Yn0
m,p−1−Y

n0
m−1,p−1(

Nm
Nm−p

)2
−1

;

8: Zn0
m,p = Zn0

m,p−1 +
Zn0
m,p−1−Z

n0
m−1,p−1(

Nm
Nm−p

)2
−1

;

9: end for
10: end for
11: return Yn0

K−1,K−1, Zn0

K−1,K−1.

Remark 16. Algorithm 4.1 has the following features including that

(1) Algorithm 4.1 returns the CN solution when K = 1;
(2) (Y0

m,p, Z0
m,p) is an approximation to the exact solution (Yt0 , Zt0) of BSDE

(1) with error O
(
(∆t)2p+2

)
;

(3) the Nm,m = 0, 1, · · · ,K − 1 are the first K elements of any step-number

sequence for Richardson extrapolation, and different {Nm}K−1
m=0 lead to dif-

ferent extrapolation algorithms;
(4) compared with other high order multistep methods [41, 45], the RiE-CN algo-

rithms are self-starting ones. So they can be used to give the initializations
of numerical solutions of other multistep schemes.

For Algorithm 4.1, we have the following conclusion.

Theorem 17. Under Assumption 5 and Assumption 11, and if E[|Y N − YtN |2] =
O
(
(∆t)4K+4

)
, E[|ZN −ZtN |2] = O

(
(∆t)4K+4

)
, the numerical solutions Yn0

K−1,K−1

and Zn0

K−1,K−1 of Algorithm 4.1 have the estimates

(101) E[|Yn0
K−1,K−1 − Y0|2] ≤ C(∆t)4K+4, E[|Zn0

K−1,K−1 − Z0|2] ≤ C(∆t)4K+4,

where (Y0, Z0) refers to the exact solution of BSDE (1) at t = 0.

Based on the asymptotic expansion (94) in Theorem 15, the estimates (101) can
be obtained by the convergence result of the Aitken-Neville algorithm [19].
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Table 2. Errors and convergence rates of the RiE-CN algorithm
using Romberg sequence for (102) with T = 1.0.

N = 8 N = 10 N = 12 N = 14 N = 16 C.R.

K = 1
|Y0 − Y0

0,0| 1.692E-02 1.080E-02 7.494E-03 5.502E-03 4.210E-03 2.007

|Z0 − Z0
0,0| 5.590E-03 3.597E-03 2.505E-03 1.843E-03 1.413E-03 1.984

K = 2
|Y0 − Y0

1,1| 2.749E-05 1.119E-05 5.380E-06 2.899E-06 1.697E-06 4.017

|Z0 − Z0
1,1| 2.058E-05 8.467E-06 4.091E-06 2.211E-06 1.297E-06 3.988

K = 3
|Y0 − Y0

2,2| 2.188E-08 5.395E-09 1.797E-09 7.118E-10 3.069E-10 6.131

|Z0 − Z0
2,2| 1.154E-08 2.945E-09 1.001E-09 4.000E-10 1.833E-10 5.973

K = 4
|Y0 − Y0

3,3| 1.953E-12 3.355E-13 7.350E-14 2.043E-14 8.660E-15 7.932

|Z0 − Z0
3,3| 9.182E-12 1.429E-12 2.138E-13 4.041E-14 5.551E-15 10.563

Table 3. Errors and convergence rates of the RiE-CN algorithm
using Bulirsch sequence for (102) with T = 1.0.

N = 8 N = 10 N = 12 N = 14 N = 16 C.R.

K = 1
|Y0 − Y0

0,0| 1.692E-02 1.080E-02 7.494E-03 5.502E-03 4.210E-03 2.007

|Z0 − Z0
0,0| 5.590E-03 3.597E-03 2.505E-03 1.843E-03 1.413E-03 1.984

K = 2
|Y0 − Y0

1,1| 2.749E-05 1.119E-05 5.380E-06 2.899E-06 1.697E-06 4.017

|Z0 − Z0
1,1| 2.058E-05 8.467E-06 4.091E-06 2.211E-06 1.297E-06 3.988

K = 3
|Y0 − Y0

2,2| 3.904E-08 9.595E-09 3.195E-09 1.266E-09 5.677E-10 6.093

|Z0 − Z0
2,2| 2.052E-08 5.228E-09 1.778E-09 7.107E-10 3.200E-10 5.992

K = 4
|Y0 − Y0

3,3| 1.387E-11 2.326E-12 5.571E-13 1.488E-13 3.908E-14 8.377

|Z0 − Z0
3,3| 7.022E-11 1.109E-11 1.636E-12 2.890E-13 8.410E-14 9.890

5. Numerical tests

In this Section, we will provide several numerical tests to verify our theoretical
conclusions and show the effectiveness, efficiency and high-order convergence rate
of the proposed RiE-CN algorithms. For simplicity, the 2K-order extrapolation
algorithm is denoted by RiE-CN(K). The conditional mathematical expectations
Extn [·] in Scheme 4 are evaluated by the Sinc quadrature rule. For more details
about the Sinc quadrature rule for Extn [·], readers may refer to [37] and [36].

The tested BSDE from [44] is the equation (1) with

(102)
ϕ(x) = exp (T 2) ln (sinx+ 3),

f(t, x, y, z) =
1

2

[
exp (t2)− 4ty − 3 exp (t2 − y exp (−t2)) + z2 exp (−t2)

]
.

The analytic solution is Yt = exp (t2) ln (sinXt + 3), Zt = exp (t2) cosXt
sinXt+3 .

To show the accuracy and the efficiency of the RiE-CN algorithms, we will report
the errors

∣∣Y0 − Y0
K−1,K−1

∣∣ and
∣∣Z0 − Z0

K−1,K−1

∣∣ between the numerical solution

(YnK−1,K−1, ZnK−1,K−1) of the RiE-CN algorithms at n = 0 and the exact solution

(Yt, Zt) at t = 0, and the associated running times (R.T.). In all the tests, if
not specified, we take X0 = 0.5 and T = 1.0. The time convergence rates (C.R.)
are obtained by linear square fitting. All the numerical tests are implemented in
Python 3.9.16 on a laptop with Intel Core i5-12500H 12-Core Processor (2.5GHz),
and 16 GB DDR5 RAM (4800MHz).

5.1. Accuracy tests. In this Subsection, we shall verify the convergence rate with
respect to ∆t and the high accuracy of the RiE-CN algorithms.

We adopt Algorithm 4.1 with K = 1, 2, 3, 4 to solve the BSDE (102). Specifically,
we calculate the numerical solutions of the BSDE (102) with various time step sizes
by the RiE-CN algorithms with the Romberg sequence and Bulirsch sequence and
list the absolute errors and the convergence rates in Tables 2 and 3. And we use the
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Table 4. Errors and convergence rates of the RiE-CN algorithm
using Romberg sequence for (102) with T = 2.0.

N = 16 N = 20 N = 24 N = 28 N = 32 C.R.

K = 1
|Y0 − Y0

0,0| 1.367E-01 1.240E-01 8.682E-02 6.030E-02 4.382E-02 1.697

|Z0 − Z0
0,0| 6.381E-01 3.730E-01 2.323E-01 1.559E-01 1.123E-01 2.522

K = 2
|Y0 − Y0

1,1| 1.625E-02 6.535E-03 3.126E-03 1.680E-03 9.823E-04 4.047

|Z0 − Z0
1,1| 4.602E-03 2.131E-03 1.099E-03 6.182E-04 3.722E-04 3.630

K = 3
|Y0 − Y0

2,2| 3.528E-05 7.642E-06 2.247E-06 8.137E-07 3.421E-07 6.690

|Z0 − Z0
2,2| 9.030E-05 2.585E-05 9.103E-06 3.725E-06 1.707E-06 5.727

K = 4
|Y0 − Y0

3,3| 2.125E-07 3.756E-08 8.986E-09 2.663E-09 9.254E-10 7.844

|Z0 − Z0
3,3| 3.005E-07 5.570E-08 1.371E-08 4.141E-09 1.457E-09 7.690

Table 5. Errors and convergence rates of the RiE-CN algorithm
using Bulirsch sequence for (102) with T = 2.0.

N = 16 N = 20 N = 24 N = 28 N = 32 C.R.

K = 1
|Y0 − Y0

0,0| 1.367E-01 1.240E-01 8.682E-02 6.030E-02 4.382E-02 1.697

|Z0 − Z0
0,0| 6.381E-01 3.730E-01 2.323E-01 1.559E-01 1.123E-01 2.522

K = 2
|Y0 − Y0

1,1| 1.625E-02 6.535E-03 3.126E-03 1.680E-03 9.823E-04 4.047

|Z0 − Z0
1,1| 4.602E-03 2.131E-03 1.099E-03 6.182E-04 3.722E-04 3.630

K = 3
|Y0 − Y0

2,2| 6.387E-05 1.379E-05 4.044E-06 1.461E-06 6.133E-07 6.704

|Z0 − Z0
2,2| 1.589E-04 4.565E-05 1.611E-05 6.599E-06 3.026E-06 5.715

K = 4
|Y0 − Y0

3,3| 1.494E-06 2.652E-07 6.360E-08 1.887E-08 6.563E-09 7.832

|Z0 − Z0
3,3| 2.092E-06 3.903E-07 9.652E-08 2.922E-08 1.030E-08 7.667

same time step sizes to solve the BSDE (102) to T = 2.0 and list the experiment
results in Tables 4 and 5.

Tables 2-5 show that

(1) RiE-CN(K) are stable and enjoy the 2K-order time convergence rates for
1 ≤ K ≤ 4 for both Romberg and Bulirsch sequences. Such results are
consistent with our theoretical results.

(2) for the same time step size ∆t = T
N , the RiE-CN(K), K = 1, 2, with

Romberg and Bulirsch step-number sequences are the same algorithm, the
RiE-CN(K), K = 3, 4, with Romberg sequence are more accurate than the
ones with Bulirsch sequence. Such results are consistent with the discus-
sions of the Richardson extrapolation algorithm described in Subsection
2.4.

5.2. Efficiency Tests. In this Subsection, we are concerned about the efficiency
of the RiE-CN algorithms.

We first compare the RiE-CN(2) with the Crank-Nicolson Scheme. And then we
compare the RiE-CN(K), where the Bulirsch step-number sequence is used, with
the multistep schemes proposed in [41], and use DM(K) to denote the K-step Kth-
order one. All the numerical results are listed in Tables 6-8. In all the tables, Y 0

K

and Z0
K is the numerical solution at n = 0 by the DM(K) scheme.

To compare the RiE-CN(2) with the Crank-Nicolson Scheme, we calculate the
numerical solutions of the BSDE (102) with various time step sizes by the Crank-
Nicolson Scheme and the RiE-CN(2), respectively, and list the absolute errors and
the runing times in Table 6. The errors and running times in Table 6 show that
to achieve the same or smaller errors, the RiE-CN(2) which enjoys theoretical time
convergence rate 4 costs less time than the Crank-Nicolson Scheme, which means
that the RiE-CN(2) is more efficient than the Crank-Nicolson Scheme.

To compare the efficiency of the RiE-CN(K) algorithms with the DM(K) scheme,
we numerically solve the BSDE (102) with various time step sizes by the DM(K)
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Table 6. Errors and running times of the Crank-Nicolson Scheme
and the RiE-CN(2).

CN(K = 1)

N = 112 N = 120 N = 128 N = 136 N = 144
|Y0 − Y0

0,0| 8.363E-05 7.523E-05 6.612E-05 5.857E-05 5.224E-05

|Z0 − Z0
0,0| 4.194E-05 3.653E-05 3.211E-05 2.844E-05 2.537E-05

R.T.(s) 1.477 1.710 1.944 2.200 2.473

RiE-CN(2)

N = 8 N = 10 N = 12 N = 14 N = 16
|Y0 − Y0

1,1| 2.271E-05 9.227E-06 4.432E-06 2.387E-06 1.397E-06

|Z0 − Z0
1,1| 1.963E-05 8.078E-06 3.901E-06 2.107E-06 1.235E-06

R.T.(s) 0.0198 0.0326 0.0336 0.0498 0.0698

Table 7. Errors and running times the DM(4) scheme and the
RiE-CN(2).

DM(4)

N = 50 N = 55 N = 60 N = 65 N = 70
|Y0 − Y 0

4 | 4.007E-06 2.816E-06 2.036E-06 1.508E-06 1.141E-06
|Z0 − Z0

4 | 2.581E-07 1.791E-07 1.282E-07 9.414E-08 7.067E-08
R.T.(s) 0.782 0.895 1.024 1.193 1.378

RiE-CN(2)

N = 26 N = 28 N = 30 N = 32 N = 34
|Y0 − Y0

1,1| 1.988E-07 1.485E-07 1.126E-07 8.700E-08 6.826E-08

|Z0 − Z0
1,1| 1.772E-07 1.318E-07 9.998E-08 7.723E-08 6.060E-08

R.T.(s) 0.329 0.383 0.451 0.504 0.598

Table 8. Errors and running times the DM(6) scheme and the
RiE-CN(3).

DM(6)

N = 65 N = 70 N = 75 N = 80 N = 85
|Y0 − Y 0

6 | 3.331E-09 2.252E-09 1.546E-09 1.082E-09 7.728E-10
|Z0 − Z0

6 | 9.845E-11 5.987E-11 4.026E-11 2.827E-11 2.025E-11
R.T.(s) 1.804 2.104 2.385 2.724 3.158

RiE-CN(3)

N = 16 N = 18 N = 20 N = 22 N = 24
|Y0 − Y0

2,2| 6.044E-10 2.980E-10 1.583E-10 8.930E-11 5.299E-11

|Z0 − Z0
2,2| 4.014E-11 1.660E-11 8.010E-12 4.277E-12 2.454E-12

R.T.(s) 0.327 0.449 0.542 0.687 0.845

scheme and the RiE-CN(K), and list the absolute errors and the running times in
Tables 7 and 8. The errors and the running times in Tables 7 and 8 show that to
achieve the same or smaller errors the RiE-CN(K) cost less time than the DM(2K)
schemes for the same rates of convergence 4 and 6. So the RiE-CN algorithms with
the Bulirsch sequence are more efficient than DM(K) schemes.

All the above numerical tests show that

(1) the RiE-CN(K) algorithms enjoy 2K-order convergence in time discretiza-
tion for solving BSDEs for 1 ≤ K ≤ 4 which is consistent with our theoret-
ical conclusions;

(2) the RiE-CN(K) algorithms are stable and very efficient.

6. Conclusions

In this work, by the theory of backward stochastic differential equations and the
Adomian decomposition, we theoretically proved that the solution of the Crank-
Nicolson scheme for solving BSDEs admits an asymptotic expansion with its co-
efficients the solutions of the new system of BSDEs we introduced. Then based
on the expansion, we proposed Richardson extrapolation algorithms for solving B-
SDEs which are very easy in use. Some numerical tests were carried out. The
numerical results of the tests verified our theoretical conclusions, and showed that
the algorithms are stable, very efficient and high accurate.
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