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A HYBRID STRESS FINITE ELEMENT METHOD FOR
INTEGRO-DIFFERENTIAL EQUATIONS MODELLING
DYNAMIC FRACTIONAL ORDER VISCOELASTICITY

MENGHAN LIU AND XIAOPING XIE*

Abstract. We consider a semi-discrete finite element method for a dynamic model for lin-
ear viscoelastic materials based on the constitutive law of fractional order. The corresponding
integro-differential equation is of a Mittag-Leffler type convolution kernel. A 4-node hybrid stress
quadrilateral finite element is used for the spatial discretization. We show the existence and
uniqueness of the semi-discrete solution, then derive some error estimates. Finally, we provide
several numerical examples to verify the theoretical results.
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1. Introduction

Let Q C R? be a polygonal domain with boundary I', and let T be a positive
constant. We consider a hyperbolic type integro-differential system arising in the
theory of linear and fractional-order viscoelasticity:

puy — dive = f(x, 1), (x,t
o=0)— j;)t K(t—s)oo(-,s)ds,  (x,t
u =0, (x,t

u(x, 0) = QOO(X); llt(X, 0) = Qﬁl(X), €

(1)

Here p > 0 is the (constant) mass density, u(x,t) = (uy,us)” the displacement
field, o(x,t) = (04j)2x2 the symmetric stress tensor, f(x,t) the body force, and
©vo(x), ¢1(x) the initial data. oo(x,t) denotes the elastic stress tensor,

oo = 2ue(u) + tr(e(u))I,

1
with A, 4 > 0 being the Lamé constants, e(u) = i(Vu + (Vu)T) the strain tensor,

tr=tr(-) the trace of a matrix, and I the 2 x 2 identity. For 0 < v < 1,0 < a < 1,
the convolution kernel

0w () - ()

where 7 > 0 is the relaxation time, and

o]
Zk

Eop(2) = Zm

k=0
denotes the two-parameter Mittag-LefHler function.
Fractional order viscoelastic models are capable of accurately describing memory
and non-locality properties of viscoelastic materials [3, 4, 5, 6, 10, 12, 13, 15, 16, 21,
, 39]. In fact, the second equation of (1), which involves a convolution integral
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and is an explicit expression for the stress tensor in terms of the strain tensor,
originates from the fractional-order viscoelastic constitutive law

(3) o+ 1*Di¥c = (1 —v)oo+ 7" Doy,

where

Dy f(t) == F(ll—a)jt/o (t—s)"“f(s)ds.

denotes the left Riemann-Liouville operator of fractional differentiation of order a.
The explicit expression is obtained by using Laplace transform techniques on (3),
and the use of the convolution integral formulation avoids the difficulties concerning
the physical interpretation, justification and verification of fractional order initial
conditions; see [1, 11, 13, 14].

There are many works on the numerical analysis of related displacement models
of (1) where the stress tensor o does not appear as an independent variable; see,
e.g. [2,22,23,35,37,38]. Adolfsson et al. [2] and Saedpanah [35, 38] studied spatial
semi-discrete continuous Galerkin finite element methods and gave optimal a priori
error estimates. Larsson et al. [22] analyzed a temporal semi-discrete discontinuous
Galerkin method based on piecewise constant polynomials. In [23, 37] Larsson
and Saedpanah used the continuous space-time linear finite element method to
formulate the full discretizations, and derived optimal error estimates. We also refer
to [18, 19, 32, 33] for some literature on numerical treatment of linear viscoelasticity
problems with exponential kernels in the constitute equation.

In the numerical analysis of elasticity, the hybrid stress finite element method,

pioneered by Pian [28], is known to be an efficient approach to improve the per-
formance of the standard 4-node compatible displacement quadrilateral (bilinear)
element (cf. [28, 29, 30, 41, 42, 43, 45, 49, 50]). This method is based on the

domain-decomposed Hellinger-Reissner variational principle, which includes the dis-
placement and stress variables. Since the stress parameters can be eliminated at
the element level, only the unknowns of the displacements will remain in the re-
sulting final discrete system. In [30] Pian and Sumihara proposed a robust 4-node
hybrid stress quadrilateral element by using a rational choice of the 5-parameter
stress mode. In [43, 42, 47, 49] optimal stress modes were studied for two- and
three-dimensional hybrid stress elements. We refer to [24, 45, 50] for the stability
and convergence analysis of 4-node hybrid stress quadrilateral elements. In [44, 40]
and [40] semi-discrete and fully discrete hybrid stress methods were proposed and
analyzed for linear elastodynamic problems and Maxwell viscoelastic problems, re-
spectively.

In this paper, we apply the hybrid stress finite element method to discretize
the viscoelastic model (1) to obtain a spatial semi-discrete scheme. The standard
isoparametric bilinear interpolation is used for the displacement approximation, and
the Pian-Sumihara’s 5-parameters stress mode is used for the stress approximation.
We prove the existence and uniqueness of the semi-discrete solution, and derive
optimal error estimates.

The rest of the paper is organized as follows. Section 2 introduces notations
and weak formulations. Section 3 gives the semi-discrete hybrid stress scheme and
carries out the error analysis. Finally, Section 4 provides some numerical results.

2. Notations and weak formulations

Throughout this paper,we use H"(2) to denote the standard Sobolev spaces with
norm || - ||, and semi-norm |- |,. And H°(Q) = L?(2) is the space of square integral
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functions. We use (-, -) to denote the inner product of L2(£2). For a time dependent
function v(x,t), sometimes we simply write it as v or v(t).

For any Hilbert space X defined on 2, with norm || - ||x and semi-norm |- |x,
let C*([0,T]; X) be the space of k times continuously differentiable maps of [0, 7]
into X. For 1 < p < +o00, we set

£7([0,T]; X) := {v 0,7] = X5 [0l gy < oo} :

where

T » L \YP
_ (0 o5 ar) if 1< p < +oo,
HU”LP(X) = .
ess supyepo, 7y [[v( )] x  if p = +o00.

For convenience, we use the notation a < b to represent a < Cb, where C is a
generic positive constant independent of the spatial mesh size h.
For the Mittag-Leffler function E, g(z), we have the following lemma (cf. [20,

D)-

Lemma 2.1. (1) For 0 <a <2, €R and §7 < ¢ < min(r,an) , there holds

|Eap(2)] S (L +12)71 @ <larg(z)] < .
(2) For A > 0, > 0 and positive integer m € N, there holds
dm (0% a—m 67
dtimEaJ(i)\t ) == 7)\t Ea,a—m—i—l(*)\t ), t > 0
(3) For 0 < oo < 1, there holds Eq o(—t) >0 on R,.
The following lemma gives a convolution inequality (cf. [7]):

Lemma 2.2. If g € L?(0,T) and ¢ € L*(0,T) , then

¢ = g||L2(0,T) < H¢||L1(0,T) ||9||L2(0,T) ’

where .
6x9(t) = [ olt = riglriar
0
We also need the following two different versions of Gronwall’s inequality:

Lemma 2.3 ([17]). Let ¢ € L*°[0,T] be nonnegative almost everywhere satisfying

d(t) < co(t) +/O c1(s)p(s)ds, for a.e. t €0,T],

where ¢; € L'[0,T] and co € L*[0,T] are nonnegative almost everywhere. Then

t
o(t) < llcoll poe o, €xP (/0 cl(s)ds) , for a.e. t €[0,T].

Furthermore, if ¢y is non-decreasing, then

6(1) < co(t) exp (/Ot cl(s)d5>  for ace. t € [0,T].

We introduce two spaces as follows:

V= (H () = {u e (H(Q))? : ulp = 0},

Y= {‘r € LQ(Q;RinTQn);/ trrdx = O} ,
Q
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where L?(£2; R2X2) denotes the space of square-integrable symmetric tensors with

sym
the norm || - || defined by ||7'||0 (1,7), and tr7 := 711 + Too represents the trace
of tensor 7 .

The weak problem of the model (1) reads: For f € C([0,T]; (H(Q))?),
vo(x),p1(x) € (H}(Q))?, find (o,u) € C([0,T]; %) x C?([0,T7; V) such that for
any t € (0,71,

a(a(t), )+ b(T,u(t)) fo (t—s)b(T,u(s))ds =0, Vrex,
4) plup(t),v) —blo(t),v) = (f(t),v)7 Vv eV,
11(0) ¥o, ut(o) = ¥1,
where
1
alo,7) = — (0, T) — ———=(lro,trr),
(0.7) 1= gl 7) = st trr)
b(T,v) := —(7,¢e(v)).
Introduce an energy norm || - ||, on 2, with || - |2 := a(-,-). Then it holds for any
TEY,
(5) S — NeTT kall
T 7|, < Ty,
2()\ + /J) 0 a 0
(© alr,m) = I 2 5 Il
’ CT2N )Y
It is easy to see that the following continuity conditions hold:
(7) la(o,T)| S lololTle, Vo, eX,
() b(r, V)| S ITllglvl,, VreX vveV.

3. Semi-discrete hybrid stress finite element method

3.1. Semi-discrete scheme. Let .9}, be a conventional quadrilateral mesh of the
polygonal domain Q. Let K € .9, be arbitrary quadrilateral with diameter h.
Denote h := maxge g, {hK} . Let Z;(x;,v:),1 <i <4 be four vertices of K (Figure
1) and T; denotes the sub-triangle of K with vertices Z;_1, Z; and Z; ;1 (the index
on Z; is module 4). Define

ox = min diameter of circle inscribed in T;.
1<i<4

Throughout the paper, we assume that the partition .7, satisfies the following
”shape-regularity” hypothesis [48]: there exists a constant § > 2, independent of h,
such that

hix < HQK, VK € %

Let ¥, C ¥ and V}, C V be two finite dimensional spaces for stress and displace-
ment approximations, respectively. Let ¢g r, 1,5 € Vi, be the approximations of ini-
tial data ¢g and @1, respectively. Then the corresponding semi-discrete scheme for
the problem (4) reads as follows: Find (o, (t), uxn(t)) € C([0,T]; 1) x C*([0,T7; Vi)
such that
(9)

a(on(t), Th) + b(Th,un(t fo (t — 8)b(7Th,un(s))ds =0, V15, € 3y,
p(upe(t), va) — blon(t )7 h) = (£(t), vn), Vi € Vi,
u,(0) = ¢o.n, une(0) = 1.
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FiGURE 1. The mapping Fk.
Let Fi : K = [-1,1]> — K be the isoparametric bilinear mapping (cf. Figure
1) given by
4
x > i1 2iNi (¢ m)
10 = FK C? n) = ( it )
(10 ( Y ) () S viNi (Cm)
where —1 < (,n < 1 are the local isoparametric coordinates, and
1 1
N1Zz(1*o(1*77), N2:Z(1+C)(1*77),
1 1
N3:1(1+C)(1+71), N421(1—<)(1+77)-
For the Pian-Sumihara (PS) element [30], the isoparametric bilinear interpola-

tion is used for the displacement approximation, i.e. the displacement space V}, is
chosen as

Vi, = {v €V :¥v =v|goFx € span{l,(,n,(n}? for all K € %}
The 5-parameters stress mode on K for the PS element takes the form
(11) T = Py forv:=(y1,...,75)" € R®,

where )
10 0 n 3¢
2
P=|[o0 1 0 ’;—n ¢ s
b
0 0 1 an 42
and for simplicity the symmetric stress tensor 7 = (7;;)2x2 is abbreviated as T =
(711, Ta2, 7'12)T. Then the corresponding stress space for the PS element is

Yhi={r€X T =7|goFkisof form (11) for all K € F,}.

From [15] there holds the following inf-sup inequality for the stress and displacement
approximation spaces Xp, and Vj.

Lemma 3.1. For any vy € Vy, there holds

iy £ sup )
0#TLES, ”ThHo

Theorem 3.1. The semi-discrete scheme (9) admits a unique solution (o, up).
Proof. For any K € 9, let

uy ()| = N0k (t), O (t) := (0 (1), 05 (1)),

on(t)lx = Pyx(t), yx(t):= (1), 75 ()7,
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and
N Ny 0 No 0 N3 0 Ny O
T 0 Ny O Ny O N3 0 Ny )’

where P is given in (11) and N;(i = 1,--- ,4) are the same as in (10).
Taking 71| = Pyx with an arbitrary 45 € R® in the first equation of (9), we
obtain

/ PTC ' Pdxyk(t) — / PTe(N)dx0 (t)
K K

¢
+ / PTe(N)dx | K(t—s)0x(s)ds =0,
K 0
where ¢(N) is the strain on N. Denote
By = —/ PT¢(N)dx, Ak ::/ PTC™'Pdx,
K K

then the above relation yields

(12) () = AR Bl (1) — ARt By /0 K(t — 5)0x(s)ds.

Let {v;}"; and {w;}]_; be the basis functions of the finite element spaces V}
and Xj, respectively. We write

uh(t) = (1)1, T ,’Um)g(t), Uh(t) = (w17 T va)’Y(t)a

where 0(t) := (01(¢), - ,0m ()T, 7(t) := (71 (t), -+, (t))T. Then the system (9)
can be written as the following matrix forms:

(13) Avy(t) +BO(t) — /t K(t —s)Bf(s)ds =0,

0
(14) DOy (t) — B (1) = F(1),
where

A = [a(wi, w))]rxr, B = [b(wj, vi)]rxm, D = [p(vi; V) mxm, F(t) == [(£(£), v;)]mx1-

Since A is symmetric positive definite, we can eliminate y(¢) from (13)- (14) to get
t
DOy (t) + BT ATIBO(t) — / K(t —s)BTAT'BO(s)ds = F(t),
0

which can be rewritten as a linear system of first order:

(15) 6,(t) + D™'GA(t) — DG i K(t — s)0(s)ds = D™IF(¢),
where
0=l B =l 2[5 p]
G:= [BTIS_lB _OD} : G:= [BTIS_WB 8] '

Integrate (15) with respect to ¢ and interchange the order of integrals for the con-
volution term, then we have

0= [ = (—G - K- s)dr(@) dopas+ [ "B (s)ds + 6(0).
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Denote

K(t,s) :=D1 <G+ tK(rs)er), F(t):= /tﬁnlﬁ(s)ds+§(0),
s 0

then we get the following linear Volterra equation of second kind:

(16) i(t) = /Ot K(t,s)0(s)ds + F(t), te[0.T).

Since K(t,s) is continuous, by using the Picards method [8, Theorem 2.1.1.], we
know that the system (16) has a unique solution 6(t). Hence, we obtain the
existence and uniqueness of 6(t). And the existence and uniqueness of ~(t) follow
from (13). This completes the proof. |

3.2. Error estimation. To derive error estimates for the semi-discrete problem
(9), we first define the “elliptic projection” of o and u as follows: For u(t) € V and
o(t) €%, te0,T], find (,(t),ur(t)) € X x V3 such that

(17) a(&z(t)? Th) + b(Th7 ﬁ;(t)) = a(a(t), Th) + b(Tha ll(t)), v'Th S Eha
b(an(t),va) = b(a(t), va), Vv, € Vi
From [46], we have the following error estimates.

Lemma 3.2. Let (o(t),u(t)) and (o, (t),un(t)) be the solutions to the weak problem
(4) and the discrete “elliptic projection” problem (17), respectively. If u(t) €
(H2(Q2)2N (H{ ()%, 0(t) € (HY(Q))**2 for t € [0,T), then there hold

(18) lo(®) = an®)lly + la(t) —an(®)ll, < hlle@ll; + Tu@)ll,),

(19) lu(t) = @ @®)lly < 2o @], + [u@)lly)-
Additionally, if uy(t) € (H*(Q))?,04(t) € (HY(Q))?*2 fort € [0,T], then

(20) o) =@ (@)]|, + |[uet) —wn (0], S Aloe@)ly + [lu(®)]l,),
(21) Jui(t) = @ o ()] S B>l + e (@)]l,).

and if uy(t) € (H2(Q))2, 04 (t) € (HY(Q))>*2 fort € [0,T), then

(22) |oe(t) = an )], + [[uet) — W (0], S hlew®)ll; + [ @)ll,),
(23) i (t) = @ w ()|, S P2 (loee (@)l + [ae(B)]],)-

By [36] the following lemma holds.

Lemma 3.3. Let K(t) be the convolution kernel given in (2), then the function
=v-— fo s)ds satisfies (1) and (2):

1 jtn()——K()<0 k(0)=v, 0<k(t)<w;
2) Kk 1is a positive type kernel, that is, for any T > 0 and ¢ € C([0,T1]),

(24) / / (t — 5)¢(t)(s)ds dt > 0.

Let Qn, : V — Vj, be the standard L? projection operator. We are now at a
position to state one main result of error estimation.
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Theorem 3.2. Let (o,(t), un(t)) be the solution to the semi-discrete scheme (9)
with the initial condition

(25) Po,n = ﬁ\h(()), Pi,h = Qnrer,
and (o(t),u(t)) be the solution to the weak problem (4). Suppose that o €
L=([0,T); (HY(Q))**?), 04, 0 € L*([0, T1; (H'(R2))**?) and

u e L*([0,T); (H2(2))2 N (HE(2))?), us, vy € L2([0,7T]; (H2(Q))?), then there
holds the following error estimate:

o = onll e ((r2)2xey + 0=l Lo ((1(0))2) S Cilo,w)h,
where
Ci(o,u) :=[a(0)l; + lleolly + lloe(O)lly + llerlly + ol Lo (1. (0))2x2)

F Ml g (r2y)2) + 10l 21 )22y + el L2 a2 0))2)

(26) ol poqm@yzxey + el 2 m2))2) -
Proof. Using the elliptic projection defined in (17), we write
ey :=u—u, = (u—1uy) — (u, — ) = v, — &,
€r =0 —op=(0c—0p)— (o —0p) =17, — &,

Since the estimates of ~, and 7, are known from Lemma 3.2, it is sufficient to
estimate &, and &,.
Note that (ey,es) satisfies that

ales(t), Th) + b(Th, eu(t / K(t — s)b(Th,eu(s))ds =0, V7, € Xy,
b(ea'(t)7vh) _p(eu,tt(t)avh>7 VVh S Vha

which, together with (17), imply that

a(€5(t), Th) + b(Th, & / K(s)b(Th, €, (t — 5))ds
(27a) =— /0 K(8)b(Th,vo(t — s))ds, V71, € Zp,
(27b) b(€5 (1), va) =p(&u st (t) = Yu,ue(t), Vi),  Vvh € Vi,

Differentiating (27a) with respect to ¢ and taking 7, = &€,(¢), we obtain

0(E (1), €5 (1)) + B(Es( / K(t - $)b(€, (1), €0 4(5))ds

Taking vy, = &, +(t) in (27b), we have

(29) b(£a<t)’£u,t(t)> = p(ﬁu,tt( ) gut( )) (’7u tt( ),gu,t(t))'
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Combining (28) with (29), using the Cauchy-Schwarz inequality and (8) yields
L2 eI + p€nr D) - / R~ ) (Ea(0), £ ()
2 dt o a P u,t P u,tt »Su,t
('Yu (1) £u t / K(t ’Yu w(t )7€u7t(8))d8
— K(t)b(€5(t), eu(0)) */0 K(t — s)b(€5 (1), Yu,(s))ds
t
Sp H’7u,tt||0 ng,tHO + P H’)Iu,ttHo/O K(t - S) HEu,t(S)HO dS

t
+ CE) I o lea®); +C € / K(t - 5) |ras(s)], ds,

where C' is a positive constant independent of h. Integrate the above inequality
from 0 to ¢, and we obtain

1€, (012 + p|€w D] — 20 / / K(r — 8)(Eq (1), €0 (s))dsdr
<€, )2 + p [[€a O + 20 / el ds + o / €02 ds

t t t
e / K(s) €, |2ds + C / K(s) [en(0)2ds + C / 1€, ds
0 0 0

c/ot (/OTK(TS) |'yu7t(s)|1ds) ar
(30) +p/0t (/OTK(T—S)H{u’t(s)HOds>2dr

For the last term on the right hand side of (30), using Lemma 2.2 we have

oy t ( R Hsu,8<s>|\0ds)2dr <IKOI o0 | o) ds.

On the other hand, recalling that K (r —s) = “Lx(r —s), £(0) = v from Lemma 3.3,
we apply integration by parts to the third term on the left hand side of (30) to
find that

2 / / K(r — 5) (€ a(r), €a.(s))dsdr

. / / (= 8) € (1), 1 (5)) sl

— o / £(0) (€ a (1), € o () + 2 / £() (€ in (1) £y ()

2 [ [ nlr = )€l unls)sar
= 0| O] + 250 € (8):£0,4(0)) = 25(0) €010
#2 [ K€ &urar +2 [ [ 5 = 9(Eun) €un(oDascr
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This equation, together with (31), (30), (24) and the Young inequality, gives
2
”éa’(t)”Z + p(l - V) Héu,t(t)H
pv 2 2 2
<77 [€ue®llg + 165 Oz + (1 + 30+ va) |60, (0o

t t
+Cvlea(O) +2p / el ds + €2 / | ds

/C )+ 12\ + ) €517 ds—l—p/(l—i—u + K(s ngtH ds.

€Ol + 0 —v g> &us Ol
<O +p(1+ 30+ va) €0, 0)

t t
+ovlenO+ 20 [ rwaljas+ 0 [ l;as

/c )+ DA+ ) €, 2 ds+p/(1+l/ + K (5)) |l ds.

By (25) it holds £,(0) = 0, then by (27a) we have £,(0) = 0. Moreover, from
Lemma 3.2 it follows that

leu(0)l1 = [u(0) = un(0)x < h(llo(0)]lx + llpoll2),
1€4,6(0)llo = [lun,1(0) — s ¢ (0)[lo
< [[un,e(0) = w(0)[|o + flue(0) — 1y ,(0)[lo
SE (o)1 + lleall2).
Then, using Lemmas 2.3 and 3.2 and the estimates (20) and (23), we have

€Ol +p(1 v~ g> l&ws s

<Claprrn (eaOF + 16, O + w3+ [ Trucalias + [ el as)
2 2
<h? (IIU(O)Hl + llolls + o O)1F + o1y + lloel 2z opyeey + el Z (e

2 2
+ HattHL?((Hl(Q))zX?) + ||uttHL2((H2(Q))2)) J
which plus (5) yields
(32) 1€5(®)llo + [[€u,c )]y < Cr(a,w)h

with C4 (o, u) being given in (26).
We now turn to estimate ||£,(¢)|;. From Lemma 3.1, (27a), and (5)- (8), it
follows that

—b
€u®)ll, S [€u)], S sup  —ATmEs)
o£rnesn  IThllo
= su a(&o’a Th) - f[;t K(t — S)b(Th7£u(5))d5 —+ f()t K(t _ S)b(‘rh,’)’u(s))ds
O¢Th122h ||ThH0

<[1Eu o + / (t = 97 (Fya(s)ly + [€a(s)],)ds,
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which, together with Lemma 2.3, (18) and (32), indicates

(33) 1€y S Ci(o,)h.
Finally, in view of Lemma 3.2, (32)- (33), and the triangle inequality, we obtain
the desired estimates. |

Remark 3.1. From the estimate (32) and Lemma 3.2, we can easily derive

||ut(t) - uh,t(t)HLoo((LZ(Q))z) ~ 02(0' u)h

where
Ca(o,u) :=|lo(0)]l; + lvolly + loe (), + lle1lly + ol Lo (0)252)
el oo (rrzyy2y + ot oo @)y2x2y + 1eell oo (12 (02))2) -
provided that v, € L>=([0,T]; (H*(Q))?) and oy € L>([0,T); (H(£2))?*2).

3.3. L°°(L?) error estimate of the displacement approximation. In Theo-
rem 3.2 we have obtained the estimate of [[u— upl| ;e ((z1(q))2)- We devote this
section to the estimation of the error [[u — up|| ;o ((12(q))2), and we have the follow-
ing theorem:

Theorem 3.3. Let (o, uy) be the solution to the semi-discrete scheme (9) with
the initial condition (25) and (o,u) be the solution to the weak problem (4),
and suppose that o,o, € L>([0,T]; (H'(2))**?) and u € L>=([0,T]; (H*(Q))? N
(HY(2)?),u;, € L>([0,T); (H?(£2))?). Then there holds the following error esti-
mate:

NS

u— UhHLoc((LZ(Q))2) < Cs(o,w)h?,
where

Cs(o,u) :=lo(0)]l; + lvolly + loll oo (a1 (2))2x2) + IIll Lo (2222
Flloell oo ())2x2) + el oo (2 (02))2) -

To prove this theorem, we follow [25] to introduce the extended mixed Ritz-
Volterra projection, (& (), @ (t)), of the continuous solution (o (), u(t)) € ¥ x V:
find (61(t), an(t)) € Xp, x V3, such that
(34)

a(Gp(t), Tr) + b(Th,ap(t)) — fot K(t — s)b(Th,an(s))ds =0, V15, € Xp,
b(r(t),vh) =b(a(t),vn), Vv, € V.

Lemma 3.4. The system ( 4) admits a unique solution (& (t) uy(t)). Moreover,

if u(t) € C([0,T) (H*(2))* N (H5())?),a(t) € C([0,T; (H'(2))**?), then there
hold that

(35) lo®) = an®)llo + ut) = @ @)l S hsup(llo(s)l, + [luls)ll,),

(36) lu(t) —an(®)lly < »* Sup(||0(8)||1 + [la(s)ll,)-

Proof. We first follow the same procedure as in the proof of Theorem 3.1 to show
the existence and uniqueness of the mixed Ritz-Volterra projection.
Let

’ah<t) = (vl? T 7Um)é(t)7 &h(t) = (wl, U 7wT)§/(t)'



232 M. LIU AND X. XIE

Then we rewrite (34) as a Volterra system:

(37) A(f) + Ba(t /Kt—s s)ds =0,
(38) —-B73(t) = F(t),

where the matrices A and B are as same as in the proof of Theorem 3.1 matrices,
and F is a vector associated with (o, u). We eliminate ¥(¢) from (37)- (38) to get

/ K(t —s)0(s)ds = GT'F(t),
with G = BTA~1B. Notice that
ot t\* k(t
KO = b (< (1)) = i
To T tl-o
Since k(t) is continuous, from [0, Theorem 1, p.46] it follows that 6(t) exists unique-
ly. And the existence and uniqueness of 4(t) follow from (37).

Next let us prove the estimate (35). Denote n,, := u(t) — @ (t) and n, =
o(t) — &(t), then the following error equations hold:

t

(39a)  a(mg,7h) + b(Th, 1) — / K(t— 8)b(rnma(s))ds = 0, Vry, € T,
0

(39b) b(’l]o.,Vh) =0, Vv, eV,

Let Iy, : V. — V}, be the standard isoparametric bilinear interpolation operator. We
rewrite 1, and 1, as

N, = (u—Ipu) — (a, — Ipu) =: 0, — py,
Mo = (0 —57) — (&n — 57) = 0 — Py

Because the estimates of 6, and 6, are known, it suffices to estimate p,, and p,.
Now rewrite (39a) as

(P ) + b(The py) / K (t = 5)b(r1, puls)ds
(40) =a(0,Th) + b(T1, 0 / K(t — s)b(Th,0u(s))ds, Y7, €%y,
and take 1), = p, to obtain
by Pg) = ~blpg. )+ [ K= )iy ()51

80 0) 400 00) [ K= 5l (1), 00(5).
Notice that by (39b) and (17) we have

b(Py, Pu) = b(0s, p,) = 0.
Thus,

WPy, po) = A(0,py) + b(po O /Kt—s (Do (1), 0u(s))ds,
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which, together with (5)- (8), yields
2 2
1Psllo < lPslla = alpe: po)

t
S ||pa||o||¢9a||o+||Pa||o|19u|1Jrllpallo/O K(t = 5)|Bu(s)], ds.

By Lemma 2.1, we have

t t
T d
/ K(t—s)ds = —1// —FEq1(—s")ds=v(l—Eq1(—(t/7)Y)) <v,
0 0 ds ’
and hence,
t
1M5llg S 105 1lo + 16ul; + sup Iﬁ’u(S)ll/0 K(t —s)ds

S hllle @l +sup [fuls)ll).

(41)

In order to estimate ||p,(t)||;, take v;, = p,(t) in Lemma 3.1 and apply (40),
(7)- (8), Lemma 2.1, the approximation property of projection Ij, and the estimate
of n, to arrive at

_bThvp
lou(®ll, Sloul)], < sup  —oTh:Pu)
ozrnes,  ITnllo

5/0 K(t—5)|0u(8)|1d8+/0 K(t =) [pu(s)ly ds + [ (8)]lo + [0u(t)]

t
Sh(lle (@), + sup [u(s)ll2) +/0 (t =) [puls)l; ds,
which plus Lemma 2.3 gives

(42) Pl S hsup(lo(s)y + [[uls)llz)-

Using (41)- (42) and the triangle inequality, we obtain the desired estimate (35).
We next use a duality argument to estimate 7, (t) = [[u(t) — a(t)||,. Consider
the auxiliary elliptic problem:

—div(Ce(¢) =m
=0 onl'.

Since 2 is a convex polygon, we have the following elliptic regularity result:

(43) [@lly + 1%l < llmally »
where 1) := Ce(¢). Clearly, there hold

(44) a(yp(t), )+ b(T,¢(t)) =0, VT e,
(45) b((t),v) + (n,(t),v) =0, VYveV.

Let P, : ¥ — ¥, be the L? projection operator. Take 7 = n,.(t) and v = n,(t) in
(44)- (45), respectively, and add the resulting equations to get

Ima(8)]l5 = =b(3b (1), m4(8)) — a($(t), ny () = b(ng (1), (1)
= _b(d) - Ph’l/), nu) - a(,l/J - Ph¢7 ncr) - b(na7 ¢) - Ih¢)
(46) - b<Ph1/)7 nu) - a’(Ph’l/)7 na'> - b(na?lh(b)
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Take 7, = Pt and vy, = I in (39a)- (39b), substitute them into (46), and use
(7)- (8), (43) and (35) to obtain

Ima(®)l5 = —b(p — Putp,m,) — a(sh — Putp,n,) — b(n,, ¢ — Ine)
- [ K= P (0. mu()as
< Wsup ()], + sup [u(s) ) ()],
(47) + [ K= A0, u)ds

Note that for fixed ¢, we have
[ w0 mslas
< [ K= s = P mu(oDias + [ K= 9o o)l
S~ Bl [ K= o) (o)l ds + vl [ G- 5) Iyl as
0 0
(1) S0l (226w lo )l +swplul) + [ 0= 9 nu(s)],ds )
Combining (47) and (48), we get
a0l S P2 (sup (o) +sup u(s) ) + [ (= 5) " [yl ds.

Finally, apply Lemma 2.3 to obtain

Ima(®)llg < B*(supllo(s)]l, +suplu(s)ll,),
s<t s<t

and this finishes the proof of (36).
]

The following lemma gives estimates for time derivatives of the Ritz-Volterra
projection errors.

Lemma 3.5. If u,(t) € L([0,T]; (H%(Q))?), o4(t) € L1 ([0, T); (H(Q))?*2), then
/0 (loe(t) = G )lly + [e() — T (B)],) s

t
§h(/0 (Iotlly + [hatlly) ds + o (0)y + llvoll2),

t t
/0 e () — e ()]l ds S hQ(/O (loelly + [haelly) ds + [l (0); + [leoll2)-
Proof. First, differentiate (40) with respect to ¢ to obtain
a’(po-,t77—h) + b(Th7pu,t) - K(t)b(Th7 pu / K t— S)b(Th7 pu s( ))ds

(49) = a(Ogs, 1) + b(Th, Bur) — K(£)b(rn, 0 /Kt—s (71, O (s))ds.
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Apply Lemma 2.1 and (5)- (8) to arrive at

0 + |6u,t

t
Hpcr,tHo S ||00,t 1t ot ‘nu(o)h +/0 K(t—s) |0u,8(5)|1 ds.

Thus,

0 + |0u,t

t
[ 5 na(0)], + / K(t— 5) [Bua(s)], ds
<h(loe ()], + )y + 127 o (O)]]; + 2 [lgoll,)
t
+h / K(t— 5) ua(s)], ds,
0

which implies
t t t
/0 74| ds §h(/0 ol ds +/O [utlly ds + lo(0)]l; + lleolly)
t t
+h/0 / K(r — ) [uy(s)]l, drds

t t
ih(/o ||a-tH1ds+/O [utlly ds + a0}y + llvoll2)-

In order to estimate Hnu,t(t)Hp take vi = p,,(t) in Lemma 3.1, then apply
(49), (7)- (8), Lemma 2.1, the approximation property of projection Ij, and the
estimate of 1, ; to get

_b(Thvpu t)
t < t < 7T e
Hpu7t( )||1 ~ |pu,t( )‘1 ~ 0¢7S-IJIE)Z;L HThHO

where
b, par) =K (DT 1 (0)) — a1 1) — b(Th Bur)
4 /O K (t— 5)b(rn, Ouo(s))ds — /0 K(t — 8)b(Th, p.y(s))ds
Slmnlly (27 10O + [[70ely + Buel)
7o / K(t - 5) |8us(5)], ds + / Kt~ 5) |pas(s)], ds),

which indicates

t
[Pu Oy St a0y + (160l + 7 lluell, + h/o (t =) u(s)], ds

t
+/0 (t—s)>t |pu’s(5)|1 ds.

Then, using Lemma 2.3 and the triangle inequality, we have

t
17 O[], St 1u(0)]y + (116 | + B llae ()], + h/o (t =) us(s)l, ds

t
0

—i—h/o (t —s)?! ||us(s)||2ds+/ (t—s)”‘_luna}t(s)Hods,
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and finally

t
[l as

t ¢ t e
SO+ [ mallgas+ [l dsn [ =9 (o)) dsar
t T t r
+h/ / (7'75)2‘171Hus(s)||2d5dr+/ / (rfs)afluna,t(s)nodsdr
0o Jo 0o Jo

t t
<h(lloO)ll; + llgoll, + / ool ds + / gl ds).

In order to show the estimate Hnth o Following the previous steps for deriving
the estimate of ||n,||,, we write, with the notation of Lemma 3.4 and using (49),

Hnu,t(t)Hi = _b(¢(t)7nu,t(t)) - a(1/7(t), na,t(t)) - b(na,t(tL Qb(t))
= —b(¢ — Py, nu,t) - a(¢ — P, na,t) - b(ncr,t7 ¢ — Ih¢)

- /O K(t = 5)b(Putp(t), My, (s))ds — K (£)b(Prtp (), 14(0)).
Using (7)- (8) shows
a0l

t
ShAB Iy (D, + 76,6l + 17 I0a(0)] +/O K(t = 5) [m,(s)], ds)

t
Bl |04l + ¢ [1divapllg 174 (0)]l + ||01iVi!f||o/0 K(t = s) |[na.(s)]], ds,

which, together with the elliptic regularity and Lemma 2.3 at the appropriate steps,
leads to

t
Inac®lly < 0masl, + [0all, + 2 a0 + / (t = 5)* [na.4(5)], ds)
t
1 (O]l + / (t — 5 [10.s(5)]], ds
t
S h(|'r’u,t|1 + Hna,tHO =+ tail |nu(0)|1 +/O (t - S)a71 |nu,t(5)|1 dS)

t
1 () + R / (t = )" mg.4(5)]], ds
t s
+/ (t—s)afl/ (5 — 1) ()], drds.
0 0

As a result,

t t t
/OHnthodSSh2(||0(0)||1+||<00||2+/0 Ho—tlllds+/0 gl ds),

i.e. the desired result follows. |
Proof of Theorem 3.3. Using the mixed Ritz-Volterra projection, we rewrite

u—up=(u—1uy)— (up — ) =Ny — Cus

oc—op=(c—6p) —(onh—6n) =1, —(,,
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where (o,u) and (o, up) are solutions of (4) and (9), respectively. Note that
(¢, ¢,) satisfies the following equations

(503‘) a(Ca( ) Th) + b(Tha Cu / K T}w Cu(t - 8))d5 - 0 VT}L € Eha
(50b) b(ccr(t)7 ) - p(Cu,tt( ) nu,tt( ),Vh), Vv, € Vi

After integrating (50b) with respect to ¢, we obtain the following system:

(51a) a(Cy(t), Th) + b(Th, Cyu(t) /Kt—s) (Th:Cu(s))ds =0, VT, € ¥y,

(51b) b(éo’( )7vh) - p(Cu,t( )’ ) - (Tlu,t( )7vh)’ VV}Z € Vh7

where C fo s)ds, and we have used in (51b) the fact that @1, = Qprep1.
Now take ’Th =<, (t) v, = —(,(t) and vy, = —(,(s) respectively in (51a), (51b)
and (51b), and add the three resulting equations, we then get

S 82+ plicas /Kt—s (Gt (1) Culs))ds
(s (1) / K(t = )1 (1), Cu(s))ds.
Integrate from 0 to t to deduce
PGl + Ieu®s =2 [ [ K= 9l Gulo)dsar
(52)  =[Ca(0)2+ / 21, Ca)ds — 2 / / K(r = 8)(Mus(r), Ca(s))dsdr.

Integration by parts yields

=7 t [ K= i), cuteasar
- / / $)(Can(r); Culs))dsdr

== [ICua(®l5 + 25(1) (Cu(t), €u(0) — 26(0) (1€ (O)5 + 2/0 K(5)(Cu(s): €u(0))ds

w2 [ [ 5= 9Cuelr) Curtosar

which, together with (52), the Cauchy-Schwarz inequality, the Young inequality,
Lemma 2.2 and (23), leads to

1) [I¢a ()]l
2 2 t
ICal)2 + (1420 + ) [ CalO)2 + 2 / Il [1Callo ds

—~

<

SN

+2 / K(5) [€a(8)llo [1Ca(O)p ds +2 / Gk / K(r — 8) [[Ca(s)]ly dsdr
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with the constant ¢ > % > 0. Thus,
14
L—v—=) ¢l
q
t
<142+ ) [CaO)]2 +2 / K(5) [1€a() o 1€a(0) o ds

t t T
2 [ el 1eallgds+2 [ el [ K= 1¢u)] s
Take ¢t = t* in the above inequality, with ¢* € [0, ¢] satisfying

[€a(t)llo = sup [ICu(s)lly,
0<s<t

and we obtain

.
v *
(1= = D)6t < (2+20) / [l s + (14 40 + @) [Cu (Ol
Therefore,

t
I€ua®llo < I€u(t)lo §/0 [70ello ds + 1€a (0o -

Finally, a use of the triangle inequality with Lemmas 3.4 and 3.5 concludes the
proof of Theorem 3.3. [ ]

4. Numerical tests

In this section, we first give a fully discrete scheme based on the semi-discrete
hybrid stress quadrilateral finite element scheme (9), then provide some numerical
results to verify the spatial accuracy of the proposed method.

4.1. A full discretization. Let M be a positive integer, and set At := % Take
t; = iAt for i = 0,1,2,...,M and t;,1 := LAl for j = 0,1,2,...,M — 1. For
any function ¢ of ¢, denote

" il no n+1 el n+1+2 L n—1
8" = (1), gt = SO gror = o FHOHOT
¢n+1 _ ¢n—1 i ¢n+1 _ ¢n ¢n+1 _ 2¢n + ¢n—1
A = AT = AZpn =
t(b IAL ) t¢ At ) t¢ (At)Q

Since the integral term fg K(t — s)b(Th,un(s))ds in (9) has the end point sin-
gularity, we apply the Navots quadrature formula [26, 27] for it:

(53)  Ju(9) =Y wnjk(tn —t;)o(t;) ~ / n(tn — 5)* k(ty, — 5)p(s)ds,
j=0 0

where

At _ o a1
7(tn—t0)°‘ L wnn = —(A)*C(1—a), wn; = At(t,—t;)* 1, j=1,--- ,n-1

Wno =

and ((x) is the Riemann Zeta function.
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2x2 4ocd 2x2 4x4

(a) Square meshes (b) Irregular meshes

FIGURE 2. Finite element meshes of the spatial domain 2.

TABLE 1. Numerical results with At = 0.005: Example 4.1 at
square meshes.

mxm a=0.1 order a=0.5 order a=0.8 order
2x2 | 1.6951e — 01 — 1.6953e — 01 — 1.6954e — 01 —
4 x4 |3.5000e—02 2.28 |3.5045e —02 2.27 | 3.5056e — 02 2.27

E9 | 8x8 |83925e—03 2.06 |84523e —03 2.05 |8.467le—03 2.05

16 x 16 | 2.1531e — 03  1.96 | 2.1924e — 03 1.95 | 2.2021e — 03 1.94

32 x 321 5.3469¢ — 04 2.01 | 5.4054e — 04 2.02 | 5.4218¢ — 04 2.02
2 X2 4.8821e — 01 — 4.8829¢ — 01 — 4.8832¢ — 01 —
4x4 |23148¢—01 1.08 | 2.3117e—01 1.08 | 2.3175¢ — 01 1.08

El] 8x8 |1.1379¢e—01 1.02 |1.1408e —01 1.02 | 1.1415¢ —01 1.02

16 x 16 | 5.5885e¢ — 02 1.03 | 5.6145e — 02 1.02 | 5.6210e — 02 1.02

32 x 3225179 — 02 1.15 | 2.5266e — 02 1.15 | 2.5290e — 02 1.15
2x2 |5.1353e — 01 — 5.1302e — 01 — 5.1294e — 01 —
4x4 |2539e—01 1.02 | 2.5348¢ —01 1.02 | 2.5341le —01 1.02
8x8 | 1.2516e —01 1.02 | 1.2485e¢ — 01 1.02 | 1.2480e — 01 1.02

16 x 16 | 6.0875e — 02 1.04 | 6.0785e —02 1.04 | 6.0774e — 02 1.04

32 x 32| 2.7306e —02 1.16 | 2.7266e — 02 1.16 | 2.7261le — 02 1.16

The corresponding fully discrete hybrid stress finite element scheme for the prob-
lem (4) reads: For n =0,1,--- , M, find (o}, u}) € Tj, x V}, such that

1 2
Pt vi) —blok i) = (1, vi) + 2L v, v e W,

(54) (a’h,‘rh) + b(Th,u}) — b(Th, Ju(un)) =0, V1 € B, n >0,
1
p(Atuh’vh) - b(o-h ’Vh) = (fn;%?vh% vVh S Vh7 n Z 17
w0 —
h = ¥0,h-

Remark 4.1. We mention that the same implicit second-order temporal discretiza-
tion as in the scheme above has been used in [44] to obtain a fully discrete hybrid
stress method for 2-dimensional linear elastodynamic problems.

4.2. Numerical results. We consider the problem (1) with Q = [0,1] x [0, 1],
T=1,v=057=10,p = 1000,A =1, p = 2 and o = 0.1,0.5,0.8, and give two
numerical examples. Figure 2 shows m X m square meshes and irregular meshes
of Q for m = 1,2. To investigate the spatial accuracy of the proposed method we
compute the scheme (54) at a fine time mesh with At = 0.005.

Example 4.1. The initial displacement and velocity are respectively given by

wo =0, ¢1 = (—sin(mz) sin(ry), — sin(rz) sin(7y)) ",
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TABLE 2. Numerical results with At = 0.005: Example 4.1 at

irregular meshes.
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mxXm a=0.1 order a=0.5 order a=0..-8 order
2 x 2 | 1.9495e — 01 — 1.9466e — 01 — 1.9459¢ — 01 —
4 x4 |4.0467e —02 2.27 | 4.0369e — 02 2.27 | 4.0349¢ — 02 2.27
EY | 8x8 [93777e —03 2.11 | 9.3819¢e — 03 2.11 | 9.3844e — 03 2.10
16 x 16 | 2.3507e — 03 2.00 | 2.3778¢ — 03 1.98 | 2.3848¢ — 03 1.98
32 x 321 5.9230e —04 1.99 | 5.9687e —04 1.99 | 5.9819¢ — 04 2.00
2x2 | 4.9868e — 01 — 4.9835e — 01 — 4.9827e — 01 -
4 x4 |24356e —01 1.03 | 2.4330e —01 1.03 | 2.4324e — 01 1.03
E}L 8 X8 1.1873e — 01 1.04 | 1.1872¢ — 01 1.04 | 1.1873e — 01 1.03
16 x 16 | 5.7982¢ — 02 1.03 | 5.8115e¢ — 02 1.03 | 5.8151e — 02 1.03
32 x 321 2.6110e —02 1.15 | 2.6157e—02 1.15 | 2.6171le—02 1.15
2x2 |5.4327e — 01 — 5.4268e — 01 — 5.4259% — 01 —
4x4 |2.6904e —01 1.01 | 2.6838¢ —01 1.02 | 2.6828¢ —01 1.02
EY | 8x8 |1.318e—01 1.03 | 1.3140e —01 1.03 | 1.3134e — 01 1.03
16 x 16 | 6.3934e — 02 1.04 | 6.3791e — 02 1.04 | 6.3772e — 02 1.04
32 x 32| 2.8657¢e — 02 1.16 | 2.8605e — 02 1.16 | 2.8598¢ — 02 1.16
TABLE 3. Numerical results with At = 0.005: Example 4.2 at
square meshes.
mxXm a=0.1 order a=05 order a=0.8 order
4 x4 |2.0947e — 01 — 2.0824e — 01 — 2.0800e — 01 —
E2 | 8x8 |4.2435¢—02 2.30 |4.162le —02 2.32 | 4.1460e — 02 2.33
16 x 16 | 8.4842e — 03 2.32 | 8.2846e — 03 2.33 | 8.2486e — 03  2.33
32 x 32| 1.8741le — 03 2.18 | 1.8612e — 03 2.15 | 1.8594e — 03 2.15
4 x4 |4.9362e — 01 — 4.9116e — 01 — 4.9067e — 01 —
EL| 8x8 [23758¢—01 1.06 |2.3464e —01 1.06 |2.3407e —01 1.07
16 x 16 | 1.1013e — 01  1.11 | 1.0867e¢ — 01 1.11 | 1.0840e — 01 1.11
32 x 32| 4.8630e — 02 1.18 | 4.8247e — 02 1.17 | 4.8180e — 02 1.17
4 x4 |5.3569 — 01 — 5.3283e — 01 — 5.3238¢ — 01 —
E% | 8x8 |26617e—01 1.01 |2.628% —01 1.02 |2.6238 —01 1.02
16 x 16 | 1.2535e — 01  1.09 | 1.2384e — 01 1.09 | 1.2363e — 01 1.09
32 x 32| 5.5765¢e — 02 1.17 | 5.5294e — 02 1.16 | 5.5225¢ — 02 1.16

and the body force £ = 0. Numerical results are listed in Tables 1 and 2.

Example 4.2. The initial displacement and velocity are respectively given by o9 =
0,1 = 0, and the body force

f(z,y,1) = (—(2% — 2)*(4y® — 6% + 2y)e ", —(y* — y)*(42° — 622 + 2x)e )"

Numerical results are listed in Tables 3 and 4.

We compute the following relative errors for the displacement and stress approx-

imations:

E

o _ lla(T) —un(T)[ly

Y Ja@lle

E! =

|@(T) — un(T)|x

[a(T)

E

o =

o _ 116(T) —an(D)l

(1) lo

)
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TABLE 4. Numerical results with At = 0.005: Example 4.2 at
irregular meshes.

mxXm a=0.1 order a=0.5 order a=0..-8 order
4 x4 |22129 — 01 — 2.2012e — 01 — 2.1989%e — 01 —
E0 | 8x8 |4.4849 — 02 2.30 | 4.4048¢ —02 2.32 | 4.3890e — 02 2.32
16 x 16 | 8.9932e — 03 2.32 | 8.7861e — 03 2.33 | 8.7485e¢ — 03  2.33
32 x 32| 1.9849¢ — 03 2.18 | 1.9715e — 03 2.16 | 1.9697e¢ — 03 2.15
4 x4 |5.1368¢e — 01 — 5.1132e — 01 — 5.1085e — 01 —
EL| 8x8 [24682 —01 1.06 | 2.4402¢ —01 1.07 |2.4347e —01 1.07
16 x 16 | 1.1467e — 01 1.11 | 1.1321e—01 1.11 | 1.1294e — 01 1.11
32 x 32| 5.0679¢ — 02 1.18 | 5.0202¢e — 02 1.17 | 5.0136e — 02 1.17
4 x4 | 54168 — 01 — 5.3883e — 01 — 5.3839%e — 01 -
EY | 8x8 |26873¢—01 1.01 |2.6549e —01 1.02 | 2.6500e — 01 1.02
16 x 16 | 1.2659¢ — 01  1.09 | 1.2502¢ — 01 1.09 | 1.2480e — 01 1.09
32 x 32| 5.6236e — 02 1.17 | 5.5751le— 02 1.17 | 5.5681e — 02 1.16

where @ and & are the referential solutions obtained by the full discretization (54)
at a fine mesh with h = 276 At = 0.005. From Tables 1, 2, 3 and 4 we have the
following observations:

e For both of the examples with different choices of o, E2 is of O(h?) spatial
convergence rate, and EL, ES are both of O(h) spatial convergence rate.
These are conformable to the theoretical results in Theorems 3.2 and 3.3.
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