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DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR
QUASI-STATIC POROELASTICITY PROBLEMS

FAN CHEN, MING CUI, AND CHENGUANG ZHOU*

Abstract. This paper is devoted to a discontinuous Galerkin (DG) method for nonlinear quasi-
static poroelasticity problems. The fully implicit nonlinear numerical scheme is constructed by
utilizing DG method for the spatial approximation and the backward Euler method for the tem-
poral discretization. The existence and uniqueness of the numerical solution is proved. Then we
derive the optimal convergence order estimates in a discrete H! norm for the displacement and
in H! and L? norms for the pressure. Finally, numerical experiments are supplied to validate the
theoretical error estimates of our proposed method.
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1. Introduction

Poroelasticity refers to the movement of Darcy flow within a deformable and
porous medium. It is widely used in many practical problems, such as materi-
als science [34], biomechanics [30], and reservoir engineering [16]. Poroelasticity
theory is also called Biot’s consolidation model when the porous media is linear
elastic, homogeneous, isotropic and saturated by incompressible Newtonian fluid.
The original Biot’s model can retrospect to the contribution of Terzaghi and Biot.
Terzaghi [33] analyzes the one-dimensional case and then finds the relevant theory
based on the consolidation of a soil column. Biot [7] generalizes Terzaghi’s the-
ory and research to the three-dimensional situation. Up to now, many complex
mathematical models based on the Biot’s model have been proposed and studied,
including various nonlinear models, where, for example, the permeability is taken
as a nonlinear function of the fluid content [18, 19, 17].

In this paper, we are concerned with a nonlinear quasi-static poroelasticity prob-
lem. The linear type of this problem (the permeability is a constant) is studied by
Showalter [29] on the well-posedness of solutions of porous elastic systems. And var-
ious numerical methods have been applied to the linear model, such as finite volume
method [23, 24], finite difference method [12], finite element method [22, 21]. The
nonlinear model, where the permeability depending nonlinearly on the dilatation
of the medium, is firstly introduced in [15] for the simulation of paper production.
In [9], Cao et al. establish the variational formulation of the nonlinear model and
firstly discuss the existence and uniqueness of the solution by the modified Rothe’s
method. In [8], Bociu et al. extend the theoretical results of [9] to the case of
more general boundary conditions. Compared with the development of numerical
methods of the linear model, the existing results mainly make use of finite element
based methods for spatial discretization of the nonlinear model. Cao et al. [9]
respectively adopt the linear conforming finite element approximation to the dis-
placement and pressure of the nonlinear model, and derive optimal error estimates.
Subsequently, they utilize the conforming finite element method [10] and the hybrid
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finite element method [11] for the static case of the nonlinear problem and obtain a
priori error estimates. In [39], Zhang et al. investigate a variant formulation of the
steady nonlinear problem, use weak Galerkin-finite element method for the spatial
discretization of the displacement, pressure and volumetric stress and derive the
optimal convergence order estimates.

DG method is one of the important numerical methods for solving partial dif-
ferential equations. The method is first proposed by Reed and Hill [27] for solving
the neutron transport equation. DG method solves the differential equations by
piecewise polynomial functions over a finite element space without any requirement
on inter-element continuity. Continuity on inter-element boundaries together with
boundary conditions is weakly enforced through the bilinear form. DG method has
many advantages that make it very attractive for practical numerical simulations,
such as good mesh flexibility, local mass conservation, convenience for hp-adaptivity.
At present, DG method has been widely used to solve various partial differential
equations [3, 32, 25, 36, 37, 38, 20, 26]. For the nonlinear poroelasticity model, Wen
et al. [35] consider the four-field mixed formulation by introducing two additional
variables, construct a linearized fully discrete DG scheme and analyze a priori error
esimates.

In this paper, we propose an interior penalty DG method for solving nonlinear
quasi-static poroelasticity problems. It is well-known that the fully implicit non-
linear numerical scheme is stable and can preserve the physical properties of the
original problem. Based on this, we consider the original two-field model and estab-
lish the fully implicit nonlinear DG scheme by the backward Euler method for time
discretization, which is different from [35]. The existence and uniqueness of the
numerical solution is proved and the optimal error estimates for the displacement
and pressure are obtained. Finally, numerical experiments are given to verify the
theoretical results of our proposed method.

The outline of this paper goes as follows. In Section 2, we present the nonlinear
quasi-static poroelastic model and the corresponding variational formulation. The
fully discrete DG scheme is provided in Section 3, and we prove the existence and
uniqueness of the numerical solution. In Section 4, the optimal convergence order
estimates for the DG scheme are derived. We supply numerical experiments to
validate our theoretical findings in Section 5. And finally, some conclusions are
made in Section 6.

2. Mathematical model and variational formulation

In this section, we firstly present the mathematical model of nonlinear quasi-
static poroelasticity problems. Then we establish the corresponding variational
formulation after introducing some necessary notations and definitions.

Let © be a convex polygonal or polyhedral domain in R? (d = 2,3) with Lipschitz
boundary 02 = I', p UT', v with I', p nonempty, and 7' > 0 is the final time. In
this paper, we concentrate on the following nonlinear quasi-static poroelasticity
problems [9]: Seeking the displacement of porous solid media wu(t) : Q@ — R¢ and
the pore pressure of fluid p(t) : @ — R, such that

(1) —A+)V(V-u)—plhu+aVp=f, inQ, te(0,7],

(2) %(CopqLaVu)fV(/i(Vu)Vp):g, in Qa te (OvT]a
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with the boundary conditions

(3) u =0, on 0,
(4) p=0, onl,p,
(5) K(V-u)Vp-n=+, onl,ny,
and the initial conditions

(6) u(-,0) =u’, inQ,

(7) p(-,0) =p° inQ.

Here f(t) : Q — R? is the body force, g(t) :  — R is the volumetric fluid source
(or sink), and (t) : @ — R denotes the prescribed discharge on the boundary. A
and p are Lamé constants, a is the Biot-Willis parameter, and ¢y > 0 represents
the constrained specific storage coefficient. k denotes the hydraulic conductivity
(permeability), which is related to the dilatation V - u, that is, kK = k(V - u). n is
the unit outward normal vector on I'p n.

Assume that x(+) is a continuous function and that there exist positive constants
Kmin and Kmax, such that

Kmin < H(Z) < Kmax, Vo € R.

In [9], the existence and uniqueness of the solution of the system (1)-(7) is derived,
and especially for the proof of the uniqueness, the result is obtained based on the
assumptions: The hydraulic conductivity x is Lipschitz continuous with Lipschitz
constant kp, i.e.,

(8) |k(x) = K(y)| < krlz —yl,

Vp € L () and ¢ is strictly positive.

In what follows, for simplicity, we assume that « = 1. If a # 1, one may reduce
the model to the one with o« = 1 by rescaling the equations. In addition, the letter
C' (with or without subscripts) denotes a generic positive constant which may be
different at its different occurrences throughout this paper.

Let 7, be a shape-regular triangulation of the domain Q. Denote by hg the
partition diameter of the element K € 7; and h = Irfnea%i hxk. Additionally, we

denote by I' the set of all edges in 7j, and by e an edge of I'. Because of the
polygonal or polyhedral domain €2, it is obtained that I' = T'; U 09, where I’y
represents the set of all inner edges, and we denote 'y p =I'y UL, p.

In this paper, we utilize the standard definition of Sobolev space H?*(2) with
s > 0 (cf. [1]). The associated inner-product and norm in H*({2) are denoted
by (-,-)s and || - ||s, respectively. When s = 0, H°(Q) coincides with the space of
square-integrable functions L?(€). In this case, the subscript s is suppressed from
the notation of inner product and norm. Denote by HE () the subspace of H!()
consisting of the functions with vanishing trace on 92, and by || - ||cc the norm on
L>(Q).

Define the spaces V and Q for the displacement and pressure, respectively, by

V= {ve (LX) v|x e (H(K)) VK € Tp},
Q={qeL*Q): qlx € H\(K), VK € Tp}.

We use discontinuous piecewise polynomials to approximate the displacement
and pressure. Denote by Py (K) the set of polynomials with degree no more than
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a positive integer kK > 1 on each K € 7Tj,. Define the discontinuous finite element
spaces
Vi, ={ve (L*(0)?: v|k € (P1(K))? VK € Th},
Qn={q€L*(Q): qlx € Pi(K), VK € T}

Next, we define the jump and average operators that are required for the DG
method. Let K; and K, (¢ > j) be two adjacent elements of 7, which share a
common edge e, i.e., an interior edge e = 0K; N OK; C I';. We assume that the
unit normal vector n. is oriented from K; to K; on e. The jump and average of v
on e are given by

1
v] = vk, —v|K;, {v}= §(U|Ki +vlk; )

If e C OK; N 0N, then
[v] = vle, {v} =]
Furthermore, v can be some scalar-, vector-, and matrix-valued functions.

Now, we can define the general DG variational formulation of (1)-(2) as follows:
For any t € (0,71, seek (u(t);p(t)) € V x @ such that

(9) a(u,v) —b(v,p) = (f,v), ¥Wv eV,
(10) o9k, q) +b(0ru,q) +e(V-w;p,q) = (9,9) + (v, O)r, ~, Y7 € Q,
with the initial conditions (6) and (7). Here,

avw) = () (Vv T W = (A4 AT - vinewlds

i1 5 oS (51 i
+e(A+p) gp JAV - win[vlds + e ;F JAVW} - n.[v]ds
+o1 ;F J. he Hv][wlds,
b(p,v) = KEZTh(p, V- vk — eeFELD JAp}n. - [vlds
= - KGZTh/(Vp, V) + eGFZLD J AV} - ne[plds,
e(¢;p,q) = K%)Th(ﬂ(@Vp, Va)k — ee;p [ Ak(®)VDp} - ncqlds
+e EEFZI,D JAR(0)Va} - nelplds + oo eEFELD J. he tpllalds,

where oy and o9 are two large enough positive constants, and € € {—1,0,1} corre-
sponds to different interior penalty methods, which will be introduced in Section
3.

By using the skills in [13], we obtain the following lemma.

Lemma 2.1. Ifu € VN (H}(Q)? and p € Q N HY(Q) is the solution of (1)-(2),
then u and p satisfies the variational formulation (9)-(10) and vice versa.

3. Fully discrete DG scheme

In this section, we propose the fully implicit nonlinear numerical scheme for
the problem (1)-(7). The scheme is constructed by using the DG method for spa-
tial discretization and the first order backward difference method for the temporal
approximation.

We introduce a time step size 7 = % for some positive integer N and t,, = n7 for
n=20,1,---,N. By u}l and p}, we denote the approximation of u(t,) and p(t,),
respectively, f , g™ and 4", we denote f(t,) and ¢(t,) and v(¢,) respectively. By
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the backward Euler method to approximate the time derivative in (9), the fully

discrete scheme reads: Forn =1,--- | N, seek u}l € Vj and p}! € @}, such that
(11) a(uy,vy) —b(vp,pp) = (f™,vi), Vvi € Vi,
(12)
co(0rph, qn) + b(0-uy, qn) +e(V -up;py, an) = (9", qn) + V", an)r, x> Yan € Qn,
n n—1 n n—1
where 0,uf = *2—2— and 9,p) = 2—Fr—
Remark: Different values of € correspond to the different DG methods: e = —1

leads to the symmetric interior penalty Galerkin method (SIPG); € = 1 leads to
the non-symmetric interior penalty method (NIPG); ¢ = 0 leads to the incom-
plete interior penalty method (ITPG). Here in the following theoretical analysis and
numerical experiments, we mainly focus on SIPG with € = —1.

For the purpose of theoretical analysis, we introduce the following semi-norms
and norms:

IVVIZ= D IVVIG e IV vIP= D0 IV VI V=) [ bt v]Pds,

KeTn KeTy, ecr V¢

A = 931 + 19 -vI + 2
lal, = 3 Il + 32 [ hetlaPds = laft + I
KeT, e€ly,p “ ¢

According to [14], we obtain that || - ||y is a norm in the space Vj. From [28] and
[2], we supply the following useful lemmas.

Lemma 3.1. [28] There exist positive constants C, independent of mesh size h,
such that
_1
13 Ivllo,e < Chy?[[vllo,x, Vv € Pi(K),
_1
14 [|Vv - nelloe < Chy?||Vullo,x, Yv € Py(K),
_1
19llo.e < Chy® (|[vllo,x + hic|[Vollo,x), Yo € HY(K),

Vo nello.e < Chy? ([Vollo, + hi|[V20llo,x), Yo € H(K).

(13)
(14)
(15)
(16)
Lemma 3.2. [2] There exist constants C > 0, such that
Iv[[* < CIVIY, Vv € Vp,
lgll> < Cllall, Vg € Qn.

Next, we prove the boundedness of a(-,-), b(-,-) and e(+;-,-), and the coercivity
of a(,- and e(+;-,-) in the following two lemmas, respectively.

Lemma 3.3. There exist positive constants C, such that

a(v,w) < Clvilvlwlly, ¥Yv,w € Vy,
b(v,p) < Clvilvllpll, ¥v € Vi,p € Qn,
e(¢;p,9) < Clplielalq, Yp,q € Qn-
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Proof. Using Cauchy-Schwarz inequality and Lemma 3.1, we have

/{v vinwlds < Z/ ({V - vin.)?ds)? Z/ 12ds)

N‘H

ecl’ eel’ eel’
<(Y v v||0KfZ/ 2ds)
Kel eel’
(17) < ClIV - v|[Iwl..

Similarly, we obtain

Z/{v win.[v]ds < C||V - wl||v].,

ecl’

Z/{VV} n.[wlds < C||Vv|||wl.,

ecl’

/{Vw} n.[vlds < C||Vw|||v],

ecl’

Z/ w]ds < C|v|.|w]..

eel
By virtue of the inequality ab + cd < (a® + ¢2)(b* + d?), we provide

a(v,w) <CA+ p)([[V-v[[[[V-w[+ [[V-v[[|wl + [[V - w]||v].)
+ Cu(([VVl[[Vw][ + [[Vv][[w]. + +[[VWw([[v].) + Co|v].|wl|.
<CIV-vIP+ VI + V)V - wl* + [[Vw]]? + [w?)
(18) <Clviviiwllv-

In the same way, we render

(19) b(v,p) < Clpll[IV - v+ Cllpl[[v]« < Cllplllvilv,
and

e(¢;p,9) < Chmax||VD||[IV4|| + Ck2||VD|||g|« + Chmax|[Vall|p|« + Colpl.|ql-
(20) < Cllrligligllq:

which completes the proof.
Lemma 3.4. For any v € Vy, and p € Qp, the following estimates hold
a(v,v) 2 CallVII},

and

e(d;p,p) = Cellpll?),

where C, and C, are two positive constants independent of mesh size h.
Proof. Because of the formulation of a(-,-), we supply

a(v,v) =+ W)V - vIP + [ 9V = 201 + ) Z/{v vin.[v]ds

ecl’
(21) —QMZ/{VV} ne[v ds+alz/h v
ecl ecll

Together with the trace inequality and the inequality ab < % + gbz, we provide

%fe{VV} “ne[vlds < C||Vvl[[v]. < 55[Vv* + 25|V,
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;Ffe{vv}ne[vws <OV -vlIvi < &IV -v2 + 257 v,

and

a(v,v) = A+ p)||V |2+ pl| VY|P = 2RV v |2 = 6O A+ p)|v 2
—5IIVV]I? = opC? VI + o1 vz
Taking Cy = min{(A + p)(1 — ), (1 — 3),01 — 6C*(X\ + ) — nC?8}, we have
(22) a(v,v) > Ca|lvly-
Similarly to e(:;-,-), it follows that

e(¢;Q7q) 2 ’imin||vq”2 - %Cﬁmax||Vq|||q|* + 02|Q|§
> ’iminHVQH2 - SHV(I||2 - 5(C“maX)2|Q|z + ‘72|Q|£-

Taking C, = min{smin — %, 03 — 8(Chmax)?}, we get

(23) e(¢3q,9) > Cellalld,
which finishes the proof. O

Now, we are ready to prove the existence and uniqueness of the solution of the
numerical scheme (11)-(12) in the next two theorems, separately.

Theorem 3.5. Given f € L2(0,T;(L?(2))?), g € L*>(0,T; L*(Q)) and v € L?(0,T;
L3(Tp.n)), the initial conditions u° € (H}(Q))? and p° € HE(RY), then for any
(Vhiqn) € Vi X Qp, there is a solution (u};py) € Vi x Qp satisfying (11) and
(12).

Proof. The proof can be divided into two steps. Step 1: forn =1,--- , N, assuming
that uZﬁl, pzfl, f™, g™ and 4" are known, we prove that we can find (uy;p}) €
V5 x Qp satisfying (11) and (12). Similarly to the proof of Lemma 5 in [8], here,
we define a map G : Vj, x Q) — V), X @y, such that, for (uj;p}) € Vi, X Qp,

n
el
P dh
=a(uy,vy) = b(py,vn) + co(pn, qn) + b(uy, qn) + 7e(V - uy;pi, qn)
(24) —7(9", qn) — T<’Yn7(Jh>F,,‘N - Co(pz"—l,CIh) - b(UZ_I7Qh) — (f",vn),

for all (v;qn) € Vi x Qp. Notice that G defines an operator on Vj, and Qp
simultaneously. Employing Lemma 3.4 and Cauchy-Schwarz inequality, we note
the following estimate

uy uy
@] )
Py Py
>Callui I3 + collpil* + Cerllpilld, — llg™ k]

= 7l 22, 0 IR = collph ~ 111p5 11 = llay = Dvllpa ]l = £ [l
>Callap |l + collphll* + Cerllpill — TC(O)lg"|1* - rollph |1

n s n— 1 n
= 7CEO "I, ) = Tl = clC Ol II* = S0lIpRI*
n— 1 n n n

= CCOlay ™ I = 0llpall* = CO)IIF"(* = dlluzll®

=(Ca = ORIy + (co — 270 = O} |[* + Cerllpi 117
(25) = TCElg"II* = 7CO) V"I, vy — COONur I — C@)IIFI7.
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Taking C, —d > 0 and ¢g — 275 — 9 > 0, then the mapping G : Vi, x Q, — V5, x Qp,
has the property that

(26) @ S]]z

Ph D
when

(Ca = ORIy + (co — 278 = O)[Iph|* + Cerllph 117
>rC(O)llg"1* + 7C@)IN"[[Z2(r, ) + CEOMG T + C@IF 1.

Hence the monotonicity of G is obtained. The continuity of G on Vj, x @, follows
straightforwardly from (24). Noting that V), x Q) is finite dimensional, together
with the two properties of G defined on Vj x @y, we utilize a well-known corollary
of Brouwer’s fixed point theorem [31], which guarantees that there exists a solution
(we may also denote it by (u};p})) such that for any (vi;qn) € Vi, X Qp,

o] [z -

Ph qn
Step 2: based on the assumption f € L2(0,7T;(L?*(Q2))9), g € L*(0,T; L*(2)) and
v € L*0,T; L*(T, n)), and the initial conditions u® € (H(Q2))¢ and p° € HE(Q),
together with Step 1, we adopt the iteration method to produce a weak solution

(u;p}) € Vi, X Qp, for each n =1,--- | N, satisfying (11) and (12). The proof is
completed. O

Theorem 3.6. Under the condition of (8), the numerical solution (u}; py) of (11)-
(12) is unique.

Proof. Assuming that both (u},p}) and (U}, py) are the solutions of (11)-(12), let
wi =u} —a}, 2 = p; —pp. Then for any vj, € V, and g5 € Qn,

(28) a(WZ7Vh) - b(Z;LL7vh) = Oa
(29)  co(zp,qn) +0(Wh,qn) +7e(V - up;py, qn) — 7e(V -y Py, qn) = 0.

Taking v, = w}, g, = 27 in (28) and (29), we obtain

a(WZ’WZ) - b(Z}TLLvWZ) =0,

co(zp,zp) +b(wy,zp) + 1e(V -up; 21, z1) = te(V -ay, — V -up;py, 21)-
It follows that

a(wp,wi)+cozp,zp) +me(V-ay; 2z, 25) = e(V - — V-up;pp, z1),
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together with Cauchy-Schwarz inequality and Young’s inequality, then
e(V-uap —V-uy;ph,zn)
= > (V1) = w(V - ui)) Vi, Vo) i

KeTh

+30 [A(T )~ 6T ) VR mlefds

ecl'; pv*®

+ Y / (Y @) — (V- W)V} - mlpplds

ecl'; pv*®
<kl IVppllool [V - g = V- u[[[[ V23]
+ kLlVpillol [V - uf = Vil ]l o
+ke sup (he IRl - 8 — V- ugllllzrllo
eel'r.p

<Ckrlwillvizle-
By virtue of Lemmas 3.3 and 3.4, it can be concluded that
a(wi, wi) + co(zy, z) + 7Clz 15 < ThiCllwillvliz; lo-
Using Young inequality with 1 — C'7 > 0, we write
CIwi Iy + coll2]1* + Cr(1 = Ol I < 0.
Hence, ||w}|v = 0 and ||z}|| = 0, which implies that u} = aj, p} = py. O
4. Error analysis

In this section, we shall derive the optimal convergence order estimates for the
discrete time DG scheme.
Let

u(t) —uy(t) = [u(t) — Rpu(t)] + [Rpu(t) — un(t)] = p(t) +0(),
p(t) = pu(t) = [p(t) — Rap()] + [Rap(t) — pu(t)] = n(t) + £(2),

where the elliptic projection (Rpu; Rpp) € Vi, x Q) is defined as follows, for (u;p) €
(H"+2(Q) N Hg ()¢ x (H*1(Q) N Hg (),

(30) a(p,v) —b(v,n) =0, Vv EVy,
(31) e(v - agn, Q) = 07 VQ € Q}L-
Now, we introduce the following lemmas which can be found in [28].

Lemma 4.1. Letu € (H*2(K))?, there exists a constant C independent of u, hx
and the function Inu € (Piy1(K))?, such that

la = Znully < CREE a4
Lemma 4.2. Let p € H*1(Q) N HY(Q) with any integer k > 1, then
Inll + kllnlle < CR**Hipllrr,
Inell + hllmelle < CH** el

Lemma 4.3. Letu € (HF2(Q)NHE(Q)), p € H* Q)N HE () with any integer
k>1, then

lollv < CR* (J[ullkgz + lIpllis),
locllv < CR*F (luellisz + lIpellira).
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Proof. For any v, € V},, according to (30) and Lemma 3.3, we obtain

a(vyp, — Rpu, vy, — Rpu)
=a(vy, —u, vy — Rpu) + a(u — Ryu, vy, — Rpu)
=a(vy, —u, vy —u) +b(vy, —Rpu,n)
<Clvi —ulvlvi = Ruully + Cllvi — Ruulflv[[n]].

Applying Lemma 3.4, there is
(32) Ivi = Rpully < Cllvi —uallv + Clinl|.
Together with Lemma 4.1 and Lemma 4.2, it follows that

lollv = lla = Ryully
la=vallvy +llvi — Ruullv

IAIA

inf — c

Jinf Jju—valy +Clln)
< fJu— Tually + Cllal

(33 < CH A (ulsa + [pllsn):

Take the derivative of both sides of (30) with respect to ¢, we get

a(pt,v) —b(v,n) = 0.

Similarly to the proof of the estimate (33), we can provide the second estimate of
this lemma, which completes the proof. (Il

Next, we present the error equations of the fully-discrete DG scheme. According
to (9)-(10) and (11)-(12), together with (30)-(31), we obtain the following error
equations, for any v;, € Vy,qn € Qp,

(34)

a(0",vy) — b(vp, ") =0,

co(07€",qn) +0(9:0", qp) + e(V - up; ", qn) = —co(0p™ — 070", qn) — co(9:1", qn)
(35)

—b(0pa"™ — 0;u", qn) — b(07p", qn) +e(V -up =V -u"ip", qp).

Now we are ready for the optimal convergence order estimates.
Theorem 4.4. For k > 1, let (u(t);p(t)) € L=(0,T;(H*2(Q) N HI(Q))?) x
L>=(0,T; H*1(Q) N H(Q)) be the solution of the problem (1)-(2), and (ul;p}) €
V5 x Qp be the solution of the problem (11)-(12), respectively. Assume that u; €
L2(0,T; (H*2(Q)Y), p; € L2(0,T; H**Y(Q)), uy € L2(0,T;(H(Q)Y), pu €
L?(0,T; HY(Q)), then
lu(ts) — il + [lp(ta) — Pyl

tn tn
s&%/|mww+/ ] ?ds)
0 0

tn tn
+Ch2’f+2(”u(t)”i+2+||p(t)|‘i+1+/0 ||ut||i+zd8+/0 [1pellz 1 ds).
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Proof. Taking v, = 0;0", q;, = £ in (34) and (35), and adding these two equations,
we present
a(0",0:0") + co(9-€",€") + e(V - up; €, €")
=—co(0:n",&") — co(Op™ — Orp", &™) — b(0-p",£")
—b(Ou" — 0,u", ") +e(V - up —V-u";p" ")
=1 +Jo+J3+ Js+ J5.
Next, we estimate the terms J; — J5, respectively. As for Ji, since
ny2 Lo aeiyge L tn 2 Lot 2
(36)  [o-n" (7 = [I=(n" =" )II" = ( neds)“dQ) < — el ds,
T O t T

2
T tn—1

together with Young’s inequality, we supply
n n n 1 t"
[ Ji] = | = co(@r™, €] < C(1€"|1* + ;/ [[7¢]>ds).-
th—1
With respect to Js, combining
1 tn tn,
60 low" — 0= [ G [ s tepudsPan <cr [ puls
Q tn—1 tn—1

with Young’s inequality, we get
tn
[ Jo| = | = co(@p™ — 0-p", €M)| < C([|€"]7 +T/ Ipec|*ds).
tn—1

Using Cauchy-Schwarz inequality, Young’s inequality and Lemma 3.1, we obtain
the following estimate about J3

|J3‘ = ‘ - b(annagn”
< IE" NIV - 07 p"[| + |1€"[|0-p" |«

" 1 tn
<ceP+ 1 [ o).

tn—1

The term Jy can be bounded by utilizing integration by parts,
Jy =—b(0xu" — 9;u", ")

S / £V - (du” — du)dK +
K

[1€ 1m0 —o.utlas

K€Tn eel’;p ¢
= Z / an . (8tlln — &ru”)dK _ Z / (atun o aTun) . anndS
KeT, MK rer, JOK
=Y [ten o - o
EEFI,D €
= Z / Vf" . (atu" — &-u”)dK — Z /{(3tun _ aTun)} . ne[fn]ds.
K

KeTh eel’; p”®

Making use of Cauchy-Schwarz inequality, Young’s inequality and Lemma 3.1, to-
gether with

t’VL
o ~ o P < Cr [ Juads,

tn—1
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we obtain

Ce . ., b
il < S0 + 07 [ s
1

tp—

For Js5, we provide

[ T5] < D ((R(V - up) = K(V - u™)Vp™, VE™ )|
KeTy,

HY [T ) = k(7w )V s

ecly p”*®
Z {(5(V - uf) = £(V - ")) VE"} - me[p"]ds|
=w1 + w2 + w3.
Using Cauchy-Schwarz inequality, Young’s inequality, Lemma 3.1 and (8), we render
w1 < kL] [Vp"||ool [V - ufy = V- u"[[[VE"]

n n CE n
<Cle™I% +16"17) + 1 €™ 15,

w3 [ RlVH eV - Vs

e€lrp v €

1 _1
<SkLlVE s Y RV i = Vo uYlo.che * [|[€"]lo,e

ecl'r p

S EL[|[VP" |||V - uy = V[l [l
n n Ce n
< Cle" I + 107 1%) + 1" 1%

and

ws <ky sup (g Pl IV - uf = Vo w( Y /h{an}2ds>%

ecl'r p eclr.p e

n n Ce n
< "I + 16" 1) + 1" 1%-

Combined with the estimates w;-ws, we have

n n Ce n
75| < C(lle™ 5 + 16" 1) + - 1€" 1
Synthesizing the above estimates, together with
Co - €0 —
co(0r€",€") = (g —en 1 gm) 2 S (en|2 - e ),

a(0.0™,0") > zi( (0",0™) —a(6" 1, 0™ 1)),

and

e(V-up;€,6") > Celle™ 3,
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it follows that

i n gn n—1 gn—1 Cio n||2 n—12 % n||2
o (a(6,07) —a(0™ 0" 1)) + 2 (en? — e %) + S eni
tn tn
SOMﬂP+cv/' wmﬁw+r/ ] ?ds)
tn—1 tn—1

1 tn 1 tn N N
v [ ImlPas+ 2 [ leddids + 1" + 16" ).

tn—1 tn—1

By virtue of the iterative method and 8° = 0, €% = 0, we find

Call6™ I + coll€™ |? + Cer Y 1€71

Jj=1

n

<Cr Y I +Cry eI + 1671

j=1 j=1

tn tn tn tn
+cqﬁwww+#/\mmw+/nmmw+#/|mmﬁy
0 0 0 0

Using Gronwall inequality, Lemma 4.2 and Lemma 4.3 with 1 — C'7 > 0, we write

o™ 1% + €™ 1% +7 > el

=1

tn tn
s&%/|mmw+/ uge]|2ds)
0 0

tn

tn
(38) 4«WHMmmmH+w@mH+A|mmﬁw+llmmﬂﬁy

Because of the triangle inequality, (38), Lemma 4.2 and Lemma 4.3, we finish the
proof. ([

Theorem 4.5. Under the assumption of Theorem 4.4, we have

tn in
lp(tn) — pil7) 3072(/0 Ipeelds + /O luee|%ds) + CR*[[p(t)][7
t

t’n, n
+Ch2k+2(\|u(t)||i+2+/o HutHiJrzds—i—/O [[pe[7+1ds)-

Proof. First, differentiating the both sides of (34) with respect to ¢, and applying
the backward Euler method to approximate the time derivative, we get

(39) a(0:0",vp) — b(vp,0:£") = 0.
Selecting v, = 9,0, g5, = 0:£™ in (39) and (35), and adding, we obtain
0(0,0",0,6") + co(D,£", 0,€") + e(V - i3 €, 0,€")
(@™, 0,E") — oD — Do, DoE") — (D, p", B,
—b(Opu™ — 0;u",0:£") +e(V-up —V-u";p",0.£")
=H, + Hs + H3 + Hy + Hs.

Next, we derive the estimates of Hi-Hs, respectively. Similarly to the derivation of
Theorem 4.4, we render

¢ c [
1< 210+ S [ ImlPas,

tn—1
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t"L
Co
2] < D10 +C7 [ pulPas,

tn—l

" C tn
1] < 2106+ S [ Lot ds,

tn—1

5 tn
Hil < 51061+ Cr [ lualds,
tn—1
n |2 ni|2 J n2
[Hsl < CUUp" I + 1671) + S 19-€" 1.

Consider the left-hand term of the equation

e(V-up;€",0-6") = > (k(V - up)VEe", Vo £k

KeTy

S [

e€l'r,p”°

-2 / {5(V - up) VO£ - [€")ds

e€lr,p”°

v 3 [ncenoneas
ecl'r p®
=T+ T +T5 + Ty
Using the inequality a(a — b) > $(a? — b?), the terms Ty and T} are bounded

Kmin n n—
7y > " g vt ),
T

02 1 sn 2 n—12
> = — .
> ("2 - 16" R)

Following the same way as the proof of (17), and making use of Young’s inequality,
we have the bounds for the terms T and T3

’fmaxc n n—
Ty <~ |ven mg — ¢,
1 1 _ n n—
< —(5IIVeMP+ ||V£" Y12 4 (RamaxC1) (€72 + [€77112)),
KmaXC n n— n
Ty < 222221 yen — venl[en].

\ /\

1 — n n—
;<Z||vs"||2+i||w YR+ GrmaxCo (€72 + 161 2)).
Combined with the above estimates, together with
a(0-6",0,0") > C,[0-0" ‘”%/7

and

60(67.5"7 0,€") = CO| ‘8T§n”27
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we obtain

1 Kmin 1 2 1 Rmin 02
- — D)|IVEn| P — = (Pmin
—(Fm e

1 n—112 li_
+ Ve + =

Fmax(CT + C3)) "2

2 T 2 2
_1@ 2 (02 L o2V en112 1 o llo.0m |12
7_( 2 +I€max( 1 + 2))'5 |* + a||| T ”|V
£ Dloen | - (el + e 1)
Lot 2 n 2
<C(- [nell“ds + 7 [pee||“ds
T Jtn_1 tn—1
1 tn, tn " n
br [ Medtdsr [ JualPds + 10" + 6"
tn—1 th_1

Let C5 = 2 — k2, (CE+C3), Cy = 2 + k2, (CF+C3) 426 and Cs = min{“gin —
1,C3}. Assume that o5 is sufficiently large and choose § such that max{C5—1,0} <
0 < Cs and C4 > §. Then, we get

Cs—6, ., Ci—6
2l - =

1 tn tn
<o [ mlPas+r [ Ipalas
1

tn—1

l€"= 1% + Callo- 0" I + Cll0-€" |2

tn—

1 tn i n n
+ ;/ lo:ll3-ds +T/ [uee*ds + llp" I3 + 16" 117)-
1

n— tn—1

Let g = gi:g, we have 0 < 8 < ﬁ < 1. Therefore
g Lo
—l1EmG — 1€ G + BCall0-6" I + BClI0-¢" I

1 tn tn
<oz [ InlPds+r [ lpulPds

tn—1 th—1
1 tn tn
(40) + o / loell-ds + T/ [wse|ds + [lp" I3 + 6™ 11F)-
tn—1 th—1

Multiplying (40) by 787~! and noticing that 0 < " < 8"~! < 1, we have
BENG = 8" HE S + B Car |63 + B Crl[0-"|
tn trn, tn
<co ([ ImlPs [ pulPas+ [ Jodfds

tn—1 tn—1 tn—1

tn
72 [ JualPds + 7ot + 71071,

tn—1

By virtue of the iterative method, using 8" < ' (I =1,...,n — 1) and £° = 0, we
obtain

BUIE" G + 87 Cat > 10- 67115 + BmCT Y [10:€7|

j=1 j=1

tn tn tn tn
ﬂw*%;mww+¥A|WM@+AMMMw+#A|mmw

n n
+7Y 1P+ 7Y 16°13).
j=1 =1



216 F. CHEN, M. CUI, AND C. ZHOU

Hence,

€ 1% + 7> 10-671% +7 Y 110-¢7|?

Jj=1 Jj=1

tn tn tn
sa/ mww+#/|mm@+/ummw
0 0 0

tn no no
+72/0 leel®ds + 7> 1075 +7 > 167 1)-
j=1 j=1

Using Lemma 4.2, Lemma 4.3 and (38), we write

€12 + 7> N0-671% + 7> [10:¢|I?
j=1 j=1

tn tn
s&%/|mmw+/ ] ?ds)
0 0
tn

t n
k
+ OOl oo + IO+ [ ol ads + [ lEads)

Combined with the triangle inequality and Lemma 4.2, we finish the proof. O
5. Numerical experiments

In this section, we present a numerical example to validate our theoretical re-
sults. It should be stated that the computations here are carried out on the high
performance computers of State Key Laboratory of Scientific and Engineering Com-
puting, Chinese Academy of Sciences. Each computing node has two 18-core Intel
Xeon Gold 6140 processors at 2.3 GHz and 192 GB memory. The linear equation-
s formed by the coefficient matrix from (11) and (12) are solved by the package
PETSc [4, 5, 6].

In our example, we consider the system (1) and (2) on a two dimensional domain
Q = (0,1)2, with the Dirichlet boundary conditions (3) and (4) for u and p on the
entire boundary. With respect to the parameters of the system, the similar settings
with the ones in [9] are adopted and shown as follows. The Kozeny-Carmen-type
hydraulic conductivity x(s) satisfies

Ko ¢(s) . ¢
- ) f < min < < Smax < ]-7
R SR ()
Rmin, if s S Smin»
Rmax; if Smax < S,
where
Pa— @ (¢0 + (1 - (bO)smin)3
i n (1 - Snlin)2(1 - ¢0)2 ’
and

o _ ko (¢0 + (1 = ¢0)5max)”
e n (1 - Smax)2(1 - ¢O)2
Here, syin and syax are some constants, kg > 0 represents the intrinsic permeability,
1 > 0 stands for the viscosity, and ¢, the porosity, is given by
P(s) = do + (1 — ¢o)s
for some reference porosity 0 < ¢y < 1 and dilatation s (=2~ < s < 1). The

¢o—1
parameters are taken as A =1, u=1, ¢ =1, a=1,T =1e3, kg =1, n =1,
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¢ = %, Smin = f% and Spax = %. All the right-hand side terms and boundary

conditions are selected according to the analytical solution

" (éexp(—w sin(rx) sin(ww),

% exp(—t) sin(mwz) sin(mry)

p = tsin(mrz) sin(my).

For the discontinuous finite element spaces, we use a uniform triangular mesh 7j,
and choose k = 1. At each time step, the nonlinear equations are solved by the
fixed point iteration method. The iteration is stopped when the difference between
two successive approximations is less than the preset tolerance le-10.

Tables 1-7 show the convergence rates for error with the fixed time step 7 = le-5
and different penalty parameters o1 and o9. From Tables 4-7, it can be seen that the
optimal convergence rates for error can be obtained by our proposed method, which
verifies the theoretical results in Theorems 4.4 and 4.5. Additionally, Tables 1-5
illustrate that, under our selection of equation parameters, the penalty parameter
o1 mainly affects the optimal convergence order for u in the L? norm when the
penalty parameter os is a “large enough” positive constant. And in our practical
tests, the numerical results of which are not listed in this paper, if oo is “small”,
for example, o1 = le+4 and oo = 5e+2, under our choice of equation parameters,
the error results in the four norms are not convergent until 4 reaches é or less.

TABLE 1. Error convergence rates with o3 = le4+2 and o9 = le+4.

h MuGn) —upll R fluCe) —ujlly R (lpGa) —ppll R JIpGn) —pillg R
1 1.10e-04 - 7.89e-03 - 3.32e-05 - 5.14e-04 -
% 1.43e-05 2.95 1.99¢-03 1.99 1.00e-05 1.73 2.33e-04 1.14
P 1.99¢-06 2.85 5.00e-04 1.99 2.56e-06 1.97 1.11e-04 1.07
? 3.30e-07 2.59 1.25e-04 2.00 6.37e-07 2.01 5.48e-05 1.02
i 6.90e-08 2.26 3.13e-05 2.00 1.58e-07 2.02 2.73e-05 1.00

TABLE 2. Error convergence rates with o1 = 2e+2 and g9 = le+4.

h [Mu(tn) — upll R luCtn) —uplly R [p(tn) — PRl R lp(tn) —prllQ R
1 1.10e-04 - 7.87e-03 - 1.36e-05 - 4.55e-04 -
% 1.40e-05 2.97 1.99e-03 1.99 4.86e-06 1.49 2.22e-04 1.03
$ 1.81e-06 2.95 4.98e-04 2.00 1.31e-06 1.90 1.10e-04 1.02
64 2.51e-07 2.85 1.25e-04 2.00 3.29e-07 1.99 5.46e-05 1.01
ﬁ 4.18e-08 2.59 3.12e-05 2.00 8.13e-08 2.02 2.73e-05 1.00
TABLE 3. Error convergence rates with o7 = 5e4+2 and o9 = le+4.

h [Tu(tn) — ujll R lu(tn) —upllv R [Tp(tn) — PRl R lp(tn) — Phllq R
I 1.10e-04 - 7.87e-03 - 8.55e-06 - 4.46e-04 -
% 1.40e-05 2.97 1.98e-03 1.99 2.25e-06 1.92 2.19e-04 1.02
? 1.76e-06 2.99 4.97e-04 2.00 6.39e-07 1.82 1.09e-04 1.01
od 2.25e-07 2.97 1.24e-04 2.00 1.64e-07 1.97 5.46e-05 1.00
ﬁ 3.01e-08 2.90 3.11e-05 2.00 4.02e-08 2.02 2.73e-05 1.00
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TABLE 4. Error convergence rates with o1 = le+3 and o9 = le+4.

R TuGw) —upll R uy) —uplly K pCGa) —ppll R _pCa) —ppllg &
1 1.10e-04 - 7.87e-03 - 1.07e-05 - 4.49e-04 -
% 1.40e-05 2.98 1.98e-03 1.99 1.83e-06 2.54 2.19e-04 1.04
? 1.75e-06 2.99 4.97e-04 2.00 4.88e-07 1.91 1.09e-04 1.00
d 2.21e-07 2.99 1.24e-04 2.00 1.25e-07 1.97 5.45e-05 1.00
ﬁ 2.81e-08 2.97 3.11e-05 2.00 3.08e-08 2.01 2.73e-05 1.00
TABLE 5. Error convergence rates with 01 = le+4 and g9 = le+4.
R o) —upll R __uGa) —uflly K pGa) —ppll R __Mp(a) —pfllg__F
1 1.10e-04 - 7.87e-03 - 1.35e-05 - 4.54e-04 -
% 1.40e-05 2.98 1.98e-03 1.99 1.92e-06 2.82 2.19e-04 1.05
# 1.75e-06 2.99 4.97e-04 2.00 4.43e-07 2.11 1.09e-04 1.01
64 2.19e-07 3.00 1.24e-04 2.00 1.10e-07 2.01 5.45e-05 1.00
e 2.75¢-08 3.00 3.11e-05 2.00 2.76¢-08 2.00 2.73¢-05 1.00
TABLE 6. Error convergence rates with o1 = le4+3 and g9 = 5e+3.
h Mu(tn) — upll R Ta(n) —upllv R [Tp(tn) — Pyl R lp(tn) — pillg R
) 1.10e-04 - 7.87e-03 - 1.07e-05 - 4.49e-04 -
% 1.40e-05 2.98 1.98e-03 1.99 1.83e-06 2.54 2.19e-04 1.04
? 1.75e-06 2.99 4.97e-04 2.00 4.88e-07 1.91 1.09e-04 1.01
[ 2.21e-07 2.99 1.24e-04 2.00 1.25e-07 1.97 5.46e-05 1.00
11% 2.81e-08 2.97 3.11e-05 2.00 3.08e-08 2.02 2.73e-05 1.00
TABLE 7. Error convergence rates with o7 = 5e+3 and o9 = 5e+3.
h Mu(tn) — upll R Ta(tn) — upllv R [Tp(tn) — pp 1l R lp(tn) — pillg R
1 1.10e-04 - 7.87e-03 - 1.32e-05 - 4.54e-04 -
% 1.40e-05 2.98 1.99e-03 1.99 1.89e-06 2.80 2.19e-04 1.05
? 1.75e-06 3.00 4.97e-04 2.00 4.43e-07 2.09 1.09e-04 1.01
? 2.19e-07 3.00 1.24e-04 2.00 1.10e-07 2.00 5.45e-05 1.00
128 2.75e-08 3.00 3.11e-05 2.00 2.77e-08 2.00 2.73e-05 1.00

6. Conclusions

In this paper, we investigate the nonlinear quasi-static poroelasticity problem
by using the DG method. Different from the existing references, we establish the
fully implicit nonlinear numerical scheme based on the IPDG method in space and
the backward Euler method in time. Then the well-posedness of the fully discrete
numerical scheme is studied, and the a priori error estimates are performed and
validated by the numerical experiments.
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