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AN A PRIORI ERROR ANALYSIS OF A PROBLEM INVOLVING
MIXTURES OF CONTINUA WITH GRADIENT ENRICHMENT
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Abstract. In this work, we study a strain gradient problem involving mixtures. The variational
formulation is written as a first-order in time coupled system of parabolic variational equations.
An existence and uniqueness result is recalled. Then, we introduce a fully discrete approximation
by using the finite element method and the implicit Euler scheme. A discrete stability property and
a priori error estimates are proved. Finally, some one- and two-dimensional numerical simulations
are performed.
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1. Introduction

We refer as a mixture of materials to the combination of two or more solids
and/or fluids. It is very usual to find mixture of materials in our daily life as far we
can use them in the chemical industry or in steel manufacturing (among others).
It is common to consider them in the creation of composites which combine several
materials with different chemical or physical properties. The main aim is to obtain
a new issue which satisfies new specific properties.

To describe these materials it was considered the continuum theory of mixtures.
It has become an important field of work for physics, engineers and mathematician-
s. A mathematical perspective of this theory suggests a relevant family of problems
concerning systems of partial differential equations and/or integro-differential equa-
tions. It is worth recalling that the current formulation of this theory can be found
in the contributions of Bowen and Wise [8], Eringen and Ingram [11, 22], Green
and Naghdi [14, 15] and Truesdell and Toupin [29]. Books and classical references
on this theory are the works of Atkin and Craine [5, 4], Bedford and Drumheller
[6] and Bowen [7]. This theory is totally accepted in the scientific community
and it has been extended to consider viscous effects on the different constituents
and/or the whole mixture. Some studies concerning these materials can be found
in [24, 25, 16, 17, 19, 21, 20], but they are only a few examples in the huge quantity
of contributions in this theory.

It is of interest (from a mathematical point of view) to clarify the qualitative and
quantitative properties of the solutions to the systems of the differential equations
describing mixture of materials. From a qualitative perspective, it is relevant to
clarify the existence, uniqueness, continuous dependence and the asymptotic behav-
ior of the solutions. We can cite several contributions [1, 3, 2, 12, 13, 26, 27, 28, 18]
in this line.

In this paper, we center our attention in the strain gradient theory of mixtures
proposed by Iegan [18] and we consider several dissipative mechanisms on the con-
servative structure. It is worth recalling that, from a mathematical perspective, the
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strain gradient theories provide a fourth order spatial derivative in the system of
equations and it will be of high interest to clarify the consequences of these com-
ponents there. We will consider a cylinder of constant cross-section and we will
study the behavior of the anti-plane shear deformations. The qualitative study of
this problem can be found in [23]. In this new paper, we want to make a numerical
contribution to the same problem.

In the next section we describe the mathematical model, we state the basic
assumptions to obtain the well-posedness of the problem and we recall an existence
and uniqueness result as well as an energy decay property. In Section 3 a fully
discrete approximation is introduced by using the finite element method and the
implicit Euler scheme. A discrete stability property is proved and a priori error
estimates are obtained. Finally, in Section 4 some numerical simulations, involving
examples in one and two dimensions, are presented to demonstrate the accuracy
of the approximation, the decay of the discrete energy and the behavior of the
solution.

2. The basic equations and the variational formulation

In this work, we consider a mixture of two interacting materials. Our domain
will consist of one cylinder R of constant cross-section, R = B x [0, L], where B is a
bounded two-dimensional region whose boundary, B, is a curve assumed smooth
enough to allow the application of the divergence theorem.

Following [23], we consider the isotropic and homogeneous case for anti-plane
shear deformations. It means that we impose the following conditions on the dis-
placements of the two interacting continua w = (u1, ug, u3) and w = (w1, we, w3):

up=ups =w =we =0, wug=u(z,z2), ws=w(x1,x2),

where u and w are two-dimensional functions which define the displacements of the
two constituents in the domain B.

The general problem modeling the evolution of the mixtures with some dissipa-
tion mechanisms is written as follows:

prii = p1Au+ pAw — 1A% — yA%w — a(u — w) — y* A%
(1) —a*(u —w) + p*Ad,
poi = pAu A+ ppAw — yA%u — 1 A%w + a(u — w) + a* (i — ),

where A is the two-dimensional Laplacian operator.

In the previous system of equations, we have assumed three possible dissipation
mechanisms which correspond to the hyperviscosity (if v* # 0 and a* = p* = 0),
the weak viscosity (if a* # 0 and v* = p* = 0), and the viscosity (if u* # 0 and
a* =v* =0). Anyway, we assume that a*, v*, p* > 0.

As usual in this context, p; and py are assumed to be positive because they
represent mass densities. Moreover, in order to guarantee the elastic stability of
the materials we will suppose that

(2) pips > 2, e > 92, a, pr, 11> 0.

We assume also that v # 0 to ensure the coupling between the materials.
To have a well-posed problem we need to introduce initial and boundary condi-
tions. As initial conditions we consider:

u(x,0) = up(x), u(x,0) =vo(x) forae. x € B,
w(x,0) = wo(x), w(x,0)=co(x) forae x€B,

(3)
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and we set the following boundary conditions:
(4) u=Au=w=Aw=0o0nJB.

In [23], the authors gave some results concerning the existence, uniqueness and
the time decay of the solutions to this system. We recall the main result in the
following theorem.

Theorem 1. Under the assumptions (2), it follows that problem (1), (3) and (4)
admits one solution with the reqularity:

u,w € C*([0,T); Hy(B) N H*(B)) N C*([0, T); L*(B)).

Moreover, when p* # 0 or v* # 0 (that is, the hyperviscosity or viscosity cases), if
we also assume that ym?2 + um,, # a for all m,, the eigenvalues of the problem:

A2 —m2d=0 in B,
P=AP=0 on IB,

then the corresponding solution to problem (1), (8) and (4) decays exponentially.

When a* # 0 and p* = v* = 0 (that is, the weak viscosity case), if we assume
again that ym2 + um,, # a for all m, and also that (v + vy1)p2 — (v +Y2)p1 # 0,
then the solution to problem (1), (3) and (4) decays exponentially. However, if
(v +1)p2 — (v +¥2)p1 = 0, then the solution decays slowly.

In the rest of this section, we will derive the weak form of the problem defined by
system (1), initial conditions (3) and boundary conditions (4). So, let us denote by
Y, H and V the variational spaces L?(B), [L?(B)]? and HZ(B), respectively, and
let (-,-)y and || - ||y be the scalar product and the norm in Y (resp. by (-,-)y and
I - Iz the scalar product and the norm in H). As usual, we must replace boundary
conditions (4) by the new ones:

(5) u=w=0, Vu=Vw=0ondB.

It is worth noting that Theorem 1 could be also proved with these new boundary
conditions (5) (see [23] for further details).

Multiplying system (1) by adequate test functions and applying Green’s formula,
by using the new boundary conditions (5) we have the weak form written in terms of
the velocity of the first constituent v = % and the velocity of the second constituent
e =.

Problem VP. Find the velocity of the first constituent v : [0,T] — V and the
velocity of the second constituent e : [0,T] — V such that v(0) = vy, e(0) = e,
and, for a.e. t € (0,T) and for allr,z € V,

p1(0@t), 1)y + p1(Vu(®), Vr)g + p(Vw(t), Vr)g + 1 (Au(t), Ar)y
+Y(Aw(t), Ar)y + au(t) —w(t),r)y +p"(Vo(t), V)
- 6(!f),’l“)y =0,

(6) +7*(Av(t), Ar)y + a*(v(t)
p2(é(t), 2)y + u(Vu(t), V) + pa(Vw(t), Vz) g + v(Au(t), Az)y
(7) +y2(Aw(t), Az)y + a(w(t) — u(t), 2)y + a*(e(t) — v(t), 2)y = 0.

In the above variational equations, the displacements of the first and second con-
stituents are then recovered from the relations:

(8) u(t):/o o(s) ds + o, w(t):/o e(s) ds + w.
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Finally, we recall that the energy of the system is given by

o 0= (A0 + eI + mI Vol el Vool
FnllAu(®) [} + el Aw (@)} ).

3. An a priori error analysis of a fully discrete problem

Here, we numerically analyze a fully discrete approximation of the variational
problem (6)-(8). As usual, this is done in two steps. First, we obtain the spatial
approximation and so, let us construct the finite element space V" as follows:

(10) Vh={rh e Y (B)NV ; vk e P3(Tr) VTreT"}.

In this definition, we have assumed that the domain B is polyhedral and we have
denoted by T" a regular triangulation (in the sense of [10]), where the space of
cubic polynomials in Tr is represented by P3;(Tr) and parameter h > 0 is the
spatial discretization size. As we can see, we have used C' and piecewise cubic
functions for the approximation of the variational space V.

Secondly, we discretize the time derivatives. Then, let us define a uniform par-
tition of the time interval [0,7], denoted by 0 = tg < t1 < ... < ty = T, where
k =T/N is the time step size. For a continuous function f, let f,, = f(¢,) and, for
a sequence {z,}N_,. let 62, = (2, — 2,—1)/k be its divided differences.

Applying the classical implicit Euler scheme, the fully discrete approximation of
Problem VP is the following.

Problem VP"*. Find the discrete velocity of the first constituent v"* = {vhk1 N,

n Jn=0

C V" and the discrete velocity of the second constituent e = {eh*}N_ c V' such

that vh% = vl eb® =elt, and, forn =1,... N, and for all v" 2" € V",
p1(6VIE My i (Vul® Ve g+ (Yl V) g 4y (AulE ARy
+7(szk, Arh)y + a(uhk — wh* Th)y + u*(VUZk, Vrh)H

n n

(11) 7 (AR ATy at (o) - elF M)y =0,
pg(éezk, My + M(Vuﬁk, Vg + ug(Vka, Vg + W(Auzk, AzM)y
(12) —&—'yg(Awﬁk, Azh)y + a(wflk — uﬁk, Zh)y + a*(eﬁk — vﬁk, Zh)y =0.

In the previous discrete variational equations, the discrete displacements of the first
and second constituents are then recovered from the relations:

(13) uzk:kZU?k+u87 wﬁk:kZe?k—i—wg.
j=1 j=1

If we denote by P" the interpolation operator over the finite element space V"
(see, again, [10]), in the fully discrete problem V P"* the discrete initial conditions
ul, vl wh and el are approximations of the initial conditions ug, vg, wo and eg

defined as
ul = Plug, vl = Phug, w(’)’ = Phuwy, eh = Pley.

It is worth noting that, using Lax-Milgram lemma and assumptions (2), it is
straightforward to show the existence of a unique discrete solution to Problem
VPhE,

Now, we provide an a priori error analysis of the fully discrete problem V P"*.
First, we will prove below a discrete stability property.
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Lemma 2. If we assume that the conditions of Theorem 1 hold, then the sequences
{ul* vk whk ePFY - defined in Problem V PP satisfy the stability estimate:

lon™ I+ 13 + 1V 13 + 1 Aun® |3 + ller® (13-
+ [l (5 + VRt + [[Awp |3 < O,
for a given positive constant C independent of the parameters h and k.

Proof. Here, we remove the superscripts over all the variables for the sake of clarity
in the writing of the calculations presented below.
If we take 7" = v/'* as a test function in (11) it follows that

pl(&uny Un)Y + ,U/l(vu'ru v/U’rL)H + ,U/(Vw'ru vUn)H + ’Yl(AUn, A’l}n)y
+Y(Awy, Avp)y + a(tn — Wn, vn)y + " (Vop, Vo, g
+7* (AU»,“ Avn) + a* (Un — €En, Un) = O,

and so, keeping in mind that

P1
Pl(‘svnvvn)Y > % {anll% - anflll%/} )

a
a(un, vn)y 2 5 {lunllr = llun—1ll5-}
H1
p1(Vg, Vop) g = % {Hvun”%{ - ||Vun,1||§{ + |V (un — unfl)llil} )

Y
VI(AUmAvn)Y = i {”Aun”%/ - ||Aun—1||€f + HA(UH - Un—l)”%f} >

using several times Cauchy-Schwarz inequality and the arithmetic-geometric mean
inequality

(14) ab < ea2+4i6b2 Ya,b € R, € >0,
we find that
L valy = lon—1lI3} + £(Ve0n, Vou)ar +7(Dwn, Avy)y
2 IVl = [Vl + 19 (= 1))
2 {1l — [ Aun-al3 + 1A = 1) 7}
+ 57 {lunlld = lun-sl13} < C(loall + lwaly + lwnly + lleal ).

Proceeding in a similar form, we obtain the following estimates for the discrete
velocity of the second constituent:

L2 {llenll3 = llea1l } + #(Vun, Ven)r +7(Aun, Acy)y
M2

+ 52 IVl = 1V + 19w, = wa) 3}

+ 2 {l1awll} = [ Awa-1 [} + [ A(wn = w1} }

a
o {lwall = lwn-1l3} < C(llenlld + lwall + llunlly + 1ol ).
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Observing that

M(V’wnyvvn)H +,U/(Vun7ven)H = {(vunavwn)H - (Vun 1,V’wn l)H

+ ==

(v(un_un—1)7v( n — Wn— 1 H )
{(Aun, Awa)y = (Attn1, A1)y

a2

V(Awna AU’I’L)Y + 'V(Auna Aen)Y =
( (un _un71>aA( — Wn— 1 Y )

K1 (V(un - un—l)a V(un - un—l))H + MQ(V(’LU»,L - wn—l) (wn Wp— 1))H
—+ 2,LL(V(’LLn — Un—l) v(wn — Wp— 1))H 07

- unfl))Y + ’72(A(wn - wnfl)v A(wn - wnfl))Y

’71(A(un - unfl)v A(un
+ QW(A(Un - Unfl)a A(u]n - wn71)>Y

=0,

where we have used assumptions (2), and combining the previous estimates, it
follows that

P1 2 2 P2 2 2

% {HU?L”Y - ”Un—l”Y} + 51 {”en”Y - |en—1||Y}

1
o UNVualfr = [ Vun- 1||H}+ 7 {1 Aunlly = [[Aun1]f5 }

a
+ o {lunls = lunally} + % {Ilwnlly = Jwn-all3-}

N
o UNVwalls = Va3 } + o {l1dwall} — [ Aw, |3}

+ 2 (T, V)1 = (Tt 1, Vin-1) |
+ 2{ (B, Awy)y = (B, A,y }

<C(oal + lwally + a3 + lleal?,).
If we multiply these estimates by k and we sum the corresponding estimates up to

n, we have
PIHUHH2 + p2||en||§/ + NIHVUHH%I + 'YIHAUHH%
+ allun|® + allwally + po | Vwnl

n
<Ck Y (I3l + w1 + g 3 + lle; 1)
j=1
+ O (Ivolif + huolfes + lleoly + lwollir ))-

Again, by using assumptions (2) we find that

| Vunlf + 2l Vwn |3 + 20(Vun, Van ) > C([Vua|[F + [Vwa | 5),

NlAun I3 + 2l Awn [ + 2y(Atun, Awn )y > C(|Aun |5 + | Awn[5),

and so, using the discrete Gronwall’s inequality (see [9]), it leads to the desired
stability property. |
In what follows, we will show some a priori error estimates for the fully discrete

approximation of problem V P.
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First, let us obtain the error estimates on the velocity of the first constituent.
If we subtract (6) at time t = t,, for » = 7" € V" C V and discrete variational
equation (11), we find that

p1(0n — SVIF M)y 11 (V (up — ), V) g 4 p(V(wy, — wh®), Vet g
71 (A(un —ug®), Art)y +y(A(w, —wpt), Ar)y

+a((up —up®) = (wn — W), ")y + 5 (Vv = 0p?), Vi)

+ 7 (A(vp — 0, Ay 4 a* (v, — 0 — (w,, — wPF), M)y = 0.

Therefore, we have, for all r* € V*,

pl(O — v v, — o)y + m(V(un —ulk), V (v, —vI*) g
+ u(V(wn — whk) V(on = 0"+ 1 (A(un — up), Alv, — o2y
+ v(A(w, — whk) A(vy, — vhk))y

n

( — (w, — wq};k)v Un — ng)Y
( ( ) V(Un - vzk))H + '7* (A(Un - UZI@)’ A(vn - vhk))Y
a*(vn = (wy, — wZ’“L Un — th)y

)
+ u(V(wn — wﬁ ), V(v — ")) ar + 71(A(un —up), Ao, — 1))y
F (A (wy —wi?), Alvg =)y + alun —up® = (wn —wpi®), v, — ")y
+ 15 (V(on = 03%), V(on = ")+ 7" (A(vn = 0p%), Ao, — 1))y
+ a* (v, — v — (w, — wh*), v, — M)y

1
y 2z {llon = VBHIE = llonoy — 25 13 ],
Y Za<un - U»Zk7un - 5un)Y

g e = w13 = s =l 1,
1 (V (= i), 9 v = 081t 202 (V (i = ), ¥ (i — 811
+ S {1V (= ) = 11V (s = )1
+ 119 (=l = (1 = ul)) I
(A = ul), Ao = 08y 271 (A(un — ul), Al = bup))y

N
+ o {18 = ) = Ay =l DI}

11t = b = (o =l ),
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we obtain, for all r* € V',

L { o = 013 = lonms = 25 1 |+ (V= wl), V(0 = 60l
+ Qak{nun S L uiz’zln%/} + (A (wn = whh), Adun — dul))y
+ L9 (= ) = 1V (s — )
+||v<unfu£z’w< =) )
L {18 G = )~ A — i)
1A =l = (1 — b)) |
<C (1 = dvnll} + lin — Sunlidra sy + lvm = " Wz )
o lln = ukF [+ e — ¥
o llon = VBHIE + o — Wi+ 9 (wn = wl) [ + 1A, = whF)]3
119t = w3 + 1A, = w3+ (Fum — 60BF v = 1)y ).

Proceeding in a similar way, we have the following estimates for the velocity of
the second constituent, for all z* € V",

L2 {llen = ebF I3 — llen—s — et ||Y}+u<V<un—uzkwwwn—awzw

o { = Wi = s —wi 13§
+ (A (u, — ul®), A(dw, — wh*))y
+ S LIV, =) = IV (s = w1
IV (= wh® = (war = k)% }
+ {18, =W = A1 —whE )}
1A = Wl = (waer = Wk |
<C(len = denlld + lltin — Swallras + len = 2" gy + lwn — wi|}

+llen — hkll% llun = w15 + 1V (o — w3
+ 1A = w3 + llon — w5

+ IV (wn = w3 + 1A (wn = wiP)[IF + (e — dep®, en — Zh)y>-

n

Thanks again to (2) we find that

UV (wn = i), V(O = ul)) i+ (Y (= k), 9 (0w, — Gwlt)
=2 (V= ), V(wn = wlF)) s = (V(un1 = ), V(wnoy = 0l )

JH

(V= = (g = 1)), V= wh = (woy = wE ) },
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VAW —wp), ASuy — 5up™))y +V(Aun —u®), A(dw, — dwy*))y

n n

:%{(A(un —u®), A(wn, — w))y — (A(un—1 —u™ ), Alw,_1 — wh* )y

+ (Aun - ufzk — (1 = ), Awn = wl = (wny = whE, )y |,

pa (V(un — (Un 1 Uffil)% V(uy — Uzk = (up—1— Uzk—l)))H
Q(V(wn w = (wn-1 — wﬁ'il))a V(wy, — WZ’“ — (wp-1 — wzﬁl)))H
QM(V(Un = (un—1 = up" 1)), V(wn —wp® — (wy—1 —wp*y)))m >0,
Y1 (A(un — (u S =) Alun —up® = (un—1 = upty)))y
2(A(wn - whk (Wn—1 — wﬁ’il))a Alwy, — whk (wn—1 — wﬁ’il)))y
+ 2 (A(up = up® = (w1 = upy), Alwn —wp® = (wp—1 —wity)))y 20,

and so, combining the previous estimates, we obtain
P1 a
2l = o0 = lfor = 0013+ o {lun = ulF I = oy — w13}

i{uwuﬂ BV — IV (e — )%}

+ o {18 G = wl) [ — 1Ay =i )3}
- %{||en — ehFI3 = llen—1 — eh® 3}
5 { lwn = Wl — oy — wh 3§
+ S {1V (wa = wl) % = IV (wn- 1—wZ’il>H%{}
+ 2 {1 A G = wl)F — At - wlE )}
+ 2 { (V= ul), V(wn =) = (Vnos = ), Vwn s = wlE )i }

+ (A =), Alwn = whF))y = (Alun—1 =l ), Away —wiE )y |
<C (11 = dvnll} + litn — Sunlidra sy + lvm = " Wz ) + lun — b1}

+ llow hkn% o lwn = B3 + 1V wn = wl) [ + A — wl) I}

119t = ) + 1A = W)+ (F0n — 601, 00 — )y

+ len — 6en||y o+ N = Gn 2y + llew — 232y + llew — €7

+ (Oep — Ge* e, — zh)y).

If we multlply these estimates by k and we sum up to n, it follows, for all {r
{z _, C VP

Jl’

unt I3+ allun = ug* I3 + il V (un = w1 + 7l ACun — w5
+ p2llen — en® 1% + allwn — wiF (5 + p2l|V(wn — w7 + 2l A(wa — wi) 5
+20(V (un — up®), V(wn — wp?)) i+ 29(A(un — ui®), Alwn — wi¥))y

pl”Un -

<Ok Y [l = uslld + s = Suslidragmy + e = 7213z + llus — w1
j=1
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+ oy = oI5+ llwy — w3 + 1V (w; — ) 13 + A (w; — w5
hk hk hk h
IV (uy = uf ) + Ay — a5+ (v = 0%, 05 =)y
. . h hk
+ e = dej |13 + N[y — dw;lFzmy + lles — 2 o2 gmy + lleg — ¥ 113
+ (9e; = 3l e; = 2y | + O (Ilvo = w13 + lluo — wfllfe )
+ lleo = ebI1? + llwo — w32z )
Keeping in mind that
w1V (= w3+ p2l|V (wn — w3 + 20V (= ™), V(wp, — w}i))
>C([V (un = )1 + IV (wn = wi®)[[F),
A (un = w3 + 72l A(wn = w1 + 29(A(un — up®), Alw, — w}i¥))y
>C (| Aun — uf)[3 + 1A (w, —w)iF)|3),
where we have used again assumptions (2), we find that, for all {7’;‘ jy {z;l i C
Vh,
hk hk hk hk
[on = 0I5+ lun — w15 + 1V (un — a5 + A — w3
+ llen — er 13 + llwn — wi* 13 + 11V (wn — w13 + [ A(wn — wi*)[15
n
<CkY [H’f)j —0u;l% + [lig — 6ujll By + g — 75 ey + llug — w* 113
j=1
+ lo; = oI5 + llws — WPl + 1V (w; — wi) 1F + [ A(w; — wf*)[5
hk hk hk h
+ [V (uj = uf) 1T + Ay — a5 + (v = 0], 0 — 1))y
. H h hk
+éj = 8|13 + [y — dw;llFra ) + lles — 27 | Faemy + leg — efFII3
+ (9e; = del* e = )y | + O (Ilvo = b I3 + luo — ub Iy

h h
+ lleo = el IF + llwo — w3z )

Finally, if we take into account that

n n
kZ(évj - 51);-”“,1)] - T;L)y = Z(v] — U;L = (vj_1 —vity), v — ’I”;l)y
Jj=1 j=1
=(v — v v, — M)y + (0 = v, v — )y
n—1
hk
+ (UJ - Uj y Uj r] - (Uj+1 T]+1))Ya
j=1
n n
kZ((SeJ — e, e; My = Z(ej —ej" —(ej_1—e€j ), e5 — z]h)y
Jj=1 j=1
=(en —enten — 2n)y + (eg —eose1 — 21 )y
n—1
+> (ej =€l e; =2 = (ejp1— 20y,
j=1

and we use the discrete Gronwall’s inequality (see, for instance, [9]), we conclude
some a priori error estimates that we state in the following theorem.
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Theorem 3. Under the assumptions of Theorem 1, if we denote by (u,v,w,e) the
solution to problem VP and by (u"*,v"* w"* e"*) the solution to problem V Ph%,
then, it follows that, for all v = {rh}N 2" = {zM} . c VP,

Jmax {an — 0PI llun = a3+ 11V (= ) e+ 1A (wn — )15
<n<N
Hlen = en® 1% + lwn — w13 + [V (wn — wi) 1 F + |1 A(w, — wﬁ'“)H?w}

N

<CkY [H’Dj — 6u5l[3 + lliy — 6wl By + llv; — 7} 32y + 165 — e5l13
j=1

+l; — 5wj||§12(3) + llej — Z;}H%IQ(B)

N—-1
C
= 3 s = v = i =)+ lles = 2 = (ejen — ) I3 ]
j=1

__h2 __h2
+C max. o, —7h + C max e, — 22
(15)  +C(llvo — eI + lluo — b2y + lleo — kI3 + 1o — Bz )

where the positive constant C' is independent of the discretization parameters h and
k.

It is worth noting that, from estimates (15), if we assume some regularity con-
ditions on the continuous solution, we can obtain the convergence order of the
approximations which we summarize in the following.

Corollary 4. Under the conditions of Theorem 3 and the additional regularity:
u,w € H3(0,T;Y)NWL>(0,T; H3(Q)) N H?(0,T; H(Q)),

we conclude the linear convergence of the approximations obtained from Problem
VP that is, there exists a constant C' > 0, independent of parameters h and k,
such that

e {llon = ey -+ fn = wb o) + llen = €2l + llwn = 0¥ 2, |

<C(h+k).

4. Numerical results

In this final section, we present some numerical examples which demonstrate the
accuracy of the approximations and the behavior of the solution.

We note that, given the solution u"* ; and w"* | at time ¢,,_1, variables v"* and
el'F are obtained by solving the discrete linear system, for all ", 2" € V",
p
f(vzlﬂ My + kpy (VR Ve g+ kv (AP ArhYy + ka(ol®, r?)y
S (VoRt, Vit g + 4" (Ao Art)y +a* vk, ")y
P1
= 2Ry = (Vuply, Vet = p(Vwpt, Vet — (At Aty

(Al Ay — a(uly — wlF )y (e )y,



176 N. BAZARRA, J. R. FERNANDEZ, A. MAGANA, M. MAGANA, AND R. QUINTANILLA

%(ezk, My + puk(Vel* Vo) g + yvok(Ael* AzM)y
+ka(el® 2M)y + a* (el 21y

n

= L2 (ehE 1 2y — (Yl VM) g — (Vo V2 — (A, Aty

—re(Awpty Ay +awnty —un® 2"y +a” (o ")y

This numerical scheme was implemented by using MATLAB, and, regarding the
CPU time, we note that a typical one-dimensional run (h = k = 0.001) took about
0.86 seconds.

4.1. First example: numerical convergence in a one-dimensional prob-
lem. As a simple example, in order to show the accuracy of the approximations
the one-dimensional version of problem (1), (4) and (3) is solved with the following
data:

T:17 B:(Oal)v p1:17 P2:17 /J,Zl, N1:27 /1'2:27
7:17 71:27 72:23 azla 7*207 ,LL*:O, a* =0.
By using the initial conditions, for all x € [0, 1],
ug(x) = vo(z) = wo(x) = eo(x) = 2*(x — 1)3,
homogeneous null boundary conditions and the (artificial) supply terms, for all
(z,t) € (0,1) x (0,1),
Fi(x,t) = e'(® — 32° — 872 4 17923 + 97222 — 1062z + 216),
Fy(z,t) = et (2% — 325 — 872* +1792% + 9722% — 1062 + 216),
the exact solution to this problem can be easily calculated and it has the form, for
(z,t) € [0,1] x [0, 1]:
u(z,t) = w(z,t) = e'a®(x — 1)3.
Therefore, if we estimate the approximation errors by
s {lon v Flly -+ e = w2 + llew = iy + s — 0l s |

we present them in TABLE 1 for several values of the discretization parameters h
and k. Moreover, the evolution of the error depending on the parameter h + k is
plotted in FIGURE 1. As can be clearly seen, the convergence of the algorithm is
shown, and we also found the linear convergence proved in Corollary 4.

TABLE 1. Example 1: Numerical errors for some values of h and k.

hlk— 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001
1/2% 0.900869 | 0.902092 | 0.917193 | 0.931667 | 0.939786 | 0.943989 | 0.947605
1/2* 0.453140 | 0.453514 | 0.458135 | 0.462674 | 0.465456 | 0.469465 | 0.474052
1/2° 0.224097 | 0.224100 | 0.225168 | 0.226371 | 0.227407 | 0.230378 | 0.233664
1/2° 0.111218 | 0.111059 | 0.111211 | 0.111477 | 0.111955 | 0.113852 | 0.115790
1/27 0.055673 | 0.055323 | 0.055255 | 0.055298 | 0.055546 | 0.056613 | 0.057650
1/2% 0.028447 | 0.027762 | 0.027567 | 0.027553 | 0.027678 | 0.028236 | 0.028769
1/2° 0.015449 | 0.014205 | 0.013819 | 0.013767 | 0.013821 | 0.014102 | 0.014372
1/2™ 1 0.009715 | 0.007726 | 0.007013 | 0.006910 | 0.006908 | 0.007048 | 0.007189
1/2™ 10.007528 | 0.004812 | 0.003707 | 0.003519 | 0.003466 | 0.003479 | 0.003558
1/2™ 10.006808 | 0.003791 | 0.000329 | 0.000244 | 0.000225 | 0.001704 | 0.002698
1/2™ ] 0.018605 | 0.011654 | 0.006018 | 0.007580 | 0.000174 | 0.009922 | 0.001363
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Numerical error
°
@

FIGURE 1. Example 1: Asymptotic constant error.

4.2. Second example: Energy decay in a one-dimensional example. In
this case, we are going to compare the energy decay of problem (1), (3) and (4) if
we consider the three dissipation mechanisms studied in this work.

We assume now that there are not supply terms, and we use the final time 7" = 10
and the data:

B:(O?l)V [)1:1, p2:17 /le, /~L1:27 /142:27
7:17 71:27 72:23 a=1.

The values of parameters v*, u*, a* depend on the mechanisms we are considering.
We recall that the three mechanisms are hyperviscosity (v* =1 and a* = p* = 0),
the weak viscosity (a* = 1 and v* = p* = 0), and the viscosity (p* = 1 and
a* =~* = 0). The initial conditions are the same for the three cases and they are
defined as, for all z € (0,1),

ug () = vo(x) = wo(z) = eg(x) = 2 (x — 1)

Thus, taking the discretization parameters h = 0.001 and k£ = 0.001, the evolution
in time of the discrete energy of problem (1), (3) and (4), obtained from the ex-
pression (9), is plotted in FIGURE 2 (in both natural and semi-log scales) for the
three dissipation mechanisms. As we can see, the energy decay seems to be expo-
nential in all the cases but the best dissipation is found for the viscosity case (the
second-order mechanism), being the worst case, as expected, the weak viscosity.

Energy functional Energy functional

T

E)
-
log(E()

FicURE 2. Example 2: Evolution in time of the discrete energy
for the three dissipation mechanisms (natural and semi-log scales).
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4.3. Third example: Numerical results in a two-dimensional problem.
For this third example, we restrict ourselves to the two-dimensional setting and we
consider the square domain B = [0,1] x [0, 1] which is assumed to be fixed on its
boundary. Our aim is to study the dependence of the solution with respect to the
coupling parameter .

ulxy,1) <10

FIGURE 3. Example 2: Displacement (left) and velocity (right) of
the first constituent at final time for v = 1.

w(xy1) 0 2(xy,1) w0

FIGURE 4. Example 2: Displacement (left) and velocity (right) of
the second constituent at final time for v = 1.

ulxy,1) «10°? vixy,1) o

FIGURE 5. Example 2: Displacement (left) and velocity (right) of
the first constituent at final time for v = 5.

The following data have been employed in this simulation:

T =1, P =1, P2:17 /-1':17 :U’1:37 /.1,2:1,
7:15 71:57 72:67 a:17 7*:17 ,U*:O, a*:Ov
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wixy,1) 107t Z(xy,1)

FIGURE 6. Example 2: Displacement (left) and velocity (right) of
the second constituent at final time for v = 5.

and the initial conditions, for (z,y) € (0,1) x (0,1),
UO(xay) = UO(x,y) = ’LUO(ZL',y) = EO(LE,y) = 1172(.’E - 1)2y2(y - 1)2

If we take now the time discretization parameter & = 0.01 and the mesh size

h= \2/—05, in FIGURES 3 and 4 we plot the displacements (left) and velocities (right)

at final time for the first and second constituents, respectively, for v = 1. Finally,
we show the displacements (left) and velocities (right) at final time for the first
and second constituents, respectively, for v = 5 in FIGURES 5 and 6. We observe
that for the greater value of the parameter the differences are huge because the
dependence between the functions is greater.
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