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ORTHOGONAL SPLINE COLLOCATION FOR POISSON’S
EQUATION WITH NEUMANN BOUNDARY CONDITIONS

BERNARD BIALECKI* AND NICK FISHER

Abstract. We apply orthogonal spline collocation with splines of degree » > 3 to solve, on the
unit square, Poisson’s equation with Neumann boundary conditions. We show that the H' norm
error is of order r and explain how to compute efficiently the approximate solution using a matrix
decomposition algorithm involving the solution of a symmetric generalized eigenvalue problem.
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1. Introduction

In this paper we consider Poisson’s equation
(1) —Au= f(x1,22), (x1,22) € Q=(0,1)x(0,1),

where A = §2/0z% + 9% /023 and wu satisfies nonhomogeneous Neumann boundary
conditions

(2) Ugy (@, 22) = g1(a,x2), a=0,1, 2 €][0,1],

(3) uwz(xlaﬁ)ZQQ(Ilvﬁ)a T € [071]a B=0,1.
Using (1)—(3) and integrating with respect to x; and z3, we obtain

(4)
/Qf(arl,mg)dxldxg—i—/o [gl(l,xg)—gl(O,xg)}dacg—F/O [g2(x1,1)—g2(x1,0)]dz1 = 0,

which is a necessary condition for the existence of u satisfying (1)—(3). To guarantee
uniqueness of the solution u of (1)—(3), we impose the condition

(5) / u(xy, xe)dr1day = 7,
Q

where v in R is specified.

A finite difference scheme for (1)—(3) in section 4.7.2 of [12], involving an extend-
ed system of linear equations, is second order accurate in the discrete maximum
norm. A finite difference scheme for (1)—(3), (5), described in Theorem 9 on page
327 in [17], involving a finite difference counterpart of (5), is second order accurate
in the discrete H! norm. It is also shown in Theorem 2 on page 338 in [17] that
this scheme is second order accurate in the discrete maximum norm. [1] is con-
cerned with a Galerkin spectral solver for the Neumann problem for the constant
coefficient Helmholtz equation on a rectangle. Finite element schemes for solving
the pure Neumann problem on a bounded domain Q are discussed in [13]. The
present paper is a generalization of [4] to nonzero Neumann boundary conditions
and splines of arbitrary degree r > 3. Moreover, in comparison to [4], the scheme
in the present paper involves orthogonal spline collocation (OSC) counterpart of
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(5), rather than the least squares solution. Also, using the OSC analog of the
Poincaré inequality, we show that the H' norm of the error, rather than its H'!
seminorm considered in [4], is of order r. Hence our OSC scheme is more accu-
rate than FD schemes of [12, 17]. The Galerkin spectral solution of [1] is obtained
using the matrix decomposition algorithm that involves the computation of eigen-
values and eigenvectors of a symmetric pentadiagonal matrix. In comparison, we
obtain our OSC solution using the matrix decomposition algorithm which involves
finding eigenvalues and eigenvectors of a generalized symmetric banded eigenvalue
problem. For r = 3, explicit formulas for eigenvalues and eigenvectors of these
eigenvalue problems are given in [4]. Our OSC solution is required to satisfy nonze-
ro Neumann boundary conditions at corners and collocation points on 0f) while in
[1], a function, defined on Q and satisfying nonzero Neumann boundary conditions
on 09, is first determined. Spectral accuracy of the approximate solution in [1] is
demonstrated numerically only while we give a theoretical convergence analysis of
our OSC scheme. In [1], integrals involving f of (4) are evaluated approximately
which is unnecessary for our OSC scheme. Generalization of our OSC scheme to
(1)—(3) with (1) replaced by the separable equation

(6) [—ai(zi)ua,e;, + ci(zi)u] = f21,22),  (21,22) €Q,

2
=1

3

with variable coefficients
a;i(xz;) >0, ¢(x;) >0, z;€][0,1],

still involves solution of a generalized symmetric banded eigenvalue problem, while
the approach in [1] for (6), with —(a;uy, )., replacing —a;(x; )y, ., , involves solution
of a generalized symmetric eigenvalue problem with full matrices. Like scheme in [1],
our scheme generalizes to 3 dimensions, in which case the cost of solving eigenvalue
problem is negligible in comparison to the total cost of the solution process. Matrix
decomposition algorithms for solving finite element Galerkin schemes for separable
equations on a rectangle were developed in [14, 15] for Dirichlet and mixed boundary
conditions. However, [14, 15] do not provide details of such algorithms for solving
a singular linear system arising in the case of the pure Neumann problem (1)—(3).
The OSC solution of the Neumann problem on a rectangle was recently used in a
pressure Poisson OSC method for solving the Navier-Stokes equation [11].

The paper is outlined as follows. Section 2 gives some preliminary results used
in the convergence analysis. Section 3 introduces an OSC solution for (1)—(3), (5).
Error bounds are derived in Section 4. A matrix decomposition algorithm to find
the OSC solution is described in Section 5. Finally, numerical results are presented
in Section 6.

2. Preliminaries

In what follows, é,, = {xgl)}f\gé and 0, = {x;j)};vig are partitions of [0, 1], such
that,

O::L"go) <x(11)<~~<1:§N’1):17 O::z:go) <x§1)<~~<ng12):1,
and 0 = 0z, X dy,. We introduce
hit :l'gi) —xgi_l), i=1,..., Ny, hi*= acgj) —xgj_l), j=1,..., Ny,
and we set

hyy = max  hi', hy, = max hi*, h=max(hy,,hy,).
i=1,...,Nz, J=1,...;Ng,
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Throughout the paper we assume that a collection of the partitions & of €2 is regular
(see Section 2 in [2]).

For » > 3, let P, be the set of polynomials of degree < r, and let M,, and
M., be the spaces of C! splines of degree < r with the breaks at the :Ugi) and xgj),
respectively, defined by

Mg, = {ve o, 1]: ol 1) o) € Prii=1,. NG, b

9
M, = {v e C0,1]: Vg0 g0 € Prod =10 Nay b
Note that
dim My, =d; +2, dj=(r— 1N, i=12

Additionally, we introduce

MY ={ve My, 0 (0)=0v(1) =0}, MY ={veM,,: 20 =v(1)=0},
(7) My =My, @ My, MY = MY @ MY,
where for two spaces V4 and V5 of functions on [0, 1], V4 ® V4 is the space of functions
on  consisting of all finite linear combinations of v;(x1)va(x2) with v; € V; and
vy € Vo

Let {&},_} and {wy }7_] be respectively the nodes and the corresponding weight-

s of the (r—l)-pomt Gauss-Legendre quadrature for (0,1), and let G, = {£},

= {3 jvz’”fl:f be the collocation points in [0, 1], where

Ny, =1
i=1,k=1"

®) h=o Vg, gi=af ) Hhpe.
We also introduce {£7}%1#1 and {557”2}?2:61, where
o' =0, §d1+1 1 &* =0, §d2+1
ek =& 1=1...,Noy, k=1...,r—1,

€2 o =€, G=1.. Ny, I=1...r-1
Note that G, = {€}4,, G,y = {&5? }?2:1. The set G, of collocation points in 2
is defined by
gT = {f = (51175932) : EII € gﬁfug:w € gécz}

For v and z defined on G,, we introduce

r—1r—1
(9) ZZh“h“ZZwsz v)(E 6D, ol = V(v 0).
=1 j5=1 k=11=1
Note that
Nz,
(10) < Zhajlzwk zk"’ (fz}{;’)>127
=1
(11) (v, Z hi? sz 2(5 €57
j=1
where
Ngy r—1 Nz, r—1

(12) (P, = > _hi Zwk pa)( => hy sz pa)(
=1 j=1
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N, Na,
Since Zwk =1and Z hit = Z hi? =1, it follows from (12) and the first equa-
= =1 Jj=1

tion in (9) that
(13) (1,1)z, =1, (1,1),, =1, (1,1)=1.

Lemma 2.1. Assume i = 1,2 and v € szv and v =0 on G;,. Thenv =0 on
[0,1].

Proof. Since §,, and ¢, are arbitrary partitions of [0, 1], it suffices to prove the

lemma for i = 1. We follow the proof of Lemma 2.3 in [10].

If v(0) = 0, then v = 0 on [xgo)’xg )] since v € P, has r + 1 zeros in [argo),xgl)]

(v has double zero at 0 and zeros at &, ..., £, ;). By a similar argument v = 0

on [33(11)7365 )] through [ngzl_l),:c(lel)}_
If v(0) # 0, then v" € P._; has r — 1 zeros in [xg )7x§1)] (o has zero at 0 and

zeros between &7,..., &7} _1). v’ has no other zeros in [ajg )zt )]

v" would be 0 on [xg ),wg )] and hence v would be a constant on [J:g ), (1)] which

would violate v(0) # 0 and v(&7}) = 0. If " > 0 on [£7]._ 1,xg1)] then v(x § )) >0

since v(§7._;) = 0. If v < 0 on [£7]._ 1,955 )] then v(z §1)) < 0. Consequently

v(acg )) "(x (1)) > 0. Since v(&7)._;) = v(§3);) = 0 and v" has no zero in [§7, l,xgl)],

v’ has a zero between xg ) and &3y Hence v has r—1 zeros in [xg ), x?)] (v" has also

since otherwise

zeros between &5, ...,&5,._1). v’ has no other zeros in [:vl ,scl ] Consequently

v(xgz))v( (2)) > 0. Repeating this argument, we obtain v(x; (N )) "(z gN”)) >0
which contradicts v’(1) = 0. O

Lemma 2.1 implies that (v, z) and ||v]| of (9) are respectively an inner product
and a norm on M2,

Lemma 2.2. Fori=1,2, we have
0", @a = W' )o = (", P)as = (AP0, P10 € Ma,.
Proof. The desired result follows from (12) and Lemma 3.1 in [10]. O
For : = 1,2, Lemma 2.2 implies

(14) (0" D)z, =p'(1) =p'(0), pE M,
Lemma 2.3. We have

(—Av,z) = (v, —Az), v,z € ./\/l/r\/
Proof. The desired result follows from (10), (11), (12) and Lemma 2.2. O

Throughout the paper, we assume that C' is a generic positive constant, depen-
dent possibly on r but independent of w and h.

Lemma 2.4. Fori=1,2, we have

1
C{p,p)a; < / p*(xi)dz; < Cp,pay, pEMY.
0

Proof. The first inequality is a special case of (3.4) in [10] for p € M,,. (3.4) in
[10], stated without a complete proof, can be proved using the inverse inequality

. z;)1—1/2 ) )
N e[xf(rjlafg o Ip(x:)| < C[hT'] HPHLQ(zgrm,zpy
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The second inequality can be proved following the proofs of Lemma 5.4 and Theo-
rem 5.5 in [16]. We provide details in Appendix. O
The next result is the 2d counterpart of Lemma 2.4.
Lemma 2.5. We have
Clloll < llollzz@y < Clloll, v e MY,

Proof. Using the right-hand side inequality of Lemma 2.4 with ¢ = 1, the first
equation in (12), the right-hand side inequality of Lemma 2.4 with i = 2, (10), and
the second equation in (9), we obtain

1 1
ol = | [/ v2<x1,w2>dx1] ds

< C/ .'172)>1;1dl'2
_Cthlzwk/ zk’xQ dmg
i=1

< CZh”“ Zwk €0k ) 0(E8k Nes = Clloll?,
i=1
which proves the right-hand side mequahty of the lemma. In a similar way we prove

the left-hand side inequality of the lemma. O

We introduce
(15)

SIS
W=

IVl z2@) = (Wvar 2oy + 0w lF2g0) o Mol = (I0l3eq) + IV ollEz )

Lemma 2.6. We have
HV’UH%Q(Q) < C<—A1}7U>7 v E Mﬁ\[

Proof. Tt follows from Lemma 3.1 in [10] that, for ¢ = 1,2, we have

1
(16) [ @ r@yds < -0, pe M.
0

Assume v € M{}/ . Using the right-hand side inequality of Lemma 2.4 with i = 2,
the second equation in (12), (16) with ¢ = 1, and (11), we have
(17)

1 1 1
o Wy = | [ / vi(ml,xz)dm] 51 < C [ oy 01,0 01,

NwQ r—1

~ X S [ ot < OX e S (oot )
j=1 j=1 =1 1
=C (Vg 2,,V)
In a similar way we obtain
(18) [ves 172 (@ < C (~Voaea; v)-
Equations (17), (18), and the first equation in (15) yield the desired result. O

The following lemma is the OSC analog of the Poincaré inequality.
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Lemma 2.7. We have
o] = (v,1)2 < (~Av,v), ve M.
Proof. For i = 1,...,Ny,, 5 =1,...,Nyg,, k,l =1,...,r — 1, and y1,y2 € [0,1],

using the fundamental theorem of calculus the trlangle mequahty, 51 L fz,}w Y1,Y2 €
[0, 1], the inequality

(@+p)* <2(a*+5%), a,f€eR,
and the Cauchy-Schwarz inequality, we have

(19) (gz k?f‘, ) 21}(51 kag‘j)v(ylva) +U2(y1ay2) [ (51 kvg‘j) - U(ylayQ)]Q

] xg

5i,k z §j,l ?
- / (O (thjj)dl'l + / ’0332(3/1,582)61112
Yy

1 Y2
2

ik i
/ Vg, (71, &57)dor + / Vg, (Y1, T2)dx2
Y1

[ pnsaten- |

1 1
§2/ vfgl(thﬁ)dxl + 2/ viz(yl,xg)dxg.
0 0

Multiplying (19) by h{*hj?wyw, summing over i = 1,..., Ny, j = 1,..., Ny,
k,l=1,...,r—1, using (9), the third and first equations in (13), the first equation
n (12), (16) with ¢ = 1, and (11), we obtain

(20) lol* = 20(y1, y2) (v, 1) +v* (41, y2)
N-EQ r—1

<22h$2 Zwl/ 92:1 1, & ]l dﬁCl +2/ Q(yl,dfg)dirg.
Jj=1

1
S2<_U931a:17v> + 2/ Uiz (ylva)de-
0

1 2
le(xlfﬁ)‘d%-i-/o UzQ(y1,$2)|d$2]

T2

Taking y1 = &}, y2 = &7, multiplying (20) by hj*h{*wiw;, summing over i =
1,...,Nz, j=1,...,N,,, kIl = 1,...,r — 1, using (9), the third and second
equations in (13), the second equation in (12), (16) with ¢ = 2, and (10), we obtain

202 — 200, 1)2 < 2(—vy. 0,0 +22hz12wk/ (€ wa)das < 2(—Av,v),
=1

which yields the desired result. O

Asin [10], for r > 3, let 0 < ¢ < {2 < -+ < (r—3 < 1 be the simple zeros of the
polynomial

dr—3

dtr—3

tr—l (t o 1)’1“71:|

and let
Czk: gl 1)_;’_h«701g7 i=1,..., qu k=1,...,r—3,
Gi=x 2y 1)+h””2C, j=1,...,Ny,, l=1,....,r—3.

According to [9], 1 = 1/2 for r = 4, (1 = 1/2 —V7/14, (o = 1/2 + /T7/14 for
r=5 ¢ =1/2—-+3/6, & = 1/2, (3 = 1/2+/3/6 for r = 6, {§ = 1/2 —
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33(9 +4v/3)/66, (o = 1/2 — 1/33(9 — 4/3)/66, (3 = 1/2 + 1/33(9 — 41/3) /66,

Ca=1/2+1/33(9 +4V/3)/66 for r = 7. For any r > 3, the (; can be computed in
Matlab using symbolic differentiation and the roots function.
Throughout the paper, we assume that the solution u of (1)—(3), (5) is a suffi-

ciently smooth function on Q. Let W € M, be piecewise polynomial interpolant
of u defined by

(W —u)(¢53,¢5) =0, i=1,....N,, j=1,...,Ny,

o (i)
3x"(W_u)<xl Gi1) =0, i=0,..., Ny, j=1,..., Ny,
1
(21 aom o1 G . )
) —axm(W—u)(Ci’}wxéﬂ):O, i=1,...,Ny,, j=0,...,Ny,,
2
aner . X ] '
axnxm(W—u)(xgz),xéj)):O, i1=0,...,Ny,, i=0,..., Ny,
1%

where n,m = 0,1 and k,l = 1,...,7 — 3. Throughout the paper, for a function s
defined on [0, 1] or 2, C(s) denotes a generic positive constant, dependent possibly
on r and s, but independent of h. It follows from Lemmas 2.3 and 2.5 in [2] that

(22) lu = W < C(u)h™,

(23) [A(u = W)l < C(u)h",

(24) [u—=Wllm () < Cuh".

It follows from the second and last equations in (21) with xgi) =01, n =1,

m = 0,1, that for « = 0,1, W,, («,) is the piecewise polynomial interpolant of
Uy, (@, +) on [0,1]. Hence adapting the proof of (22) to the one-dimensional case,
we can show that

(25) [(w = W)ay (@, )e, < Cwh™, a=0,1,

2
where [[p]l, = (p, p)i)".

Lemma 2.8. If s € H>"72(Q), then

/ s(x1, x2)dx1dry — (s, 1>’ < C(s)h* 2.
o

Proof. Consider the functional on H?"~2((2) defined by
r—1r—1

Fv) = /0 /0 v(x,y)dedy — ZZwkww(fk,&), v e H*2(Q).

k=11=1
Then
F(v)=0, v€ Py_s3,
where Ps,._3 denotes the set of polynomials of degree < 2r — 3 in «, y. Using the
triangle inequality and the Sobolev imbedding theorem, we have
[Fv)| <C g?g,\v(x,y)l < Olvllaz() < Cllollmer-2), v e HT2(Q).

Hence Bramble-Hilbert lemma (see Theorem 4.1.3 in [6]) gives

(26) [F(v)] <C < >

p+q=2r—2

oPtay
OxPOyd

2 /
, veHT2(Q).
L2(@)
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For s € H>2(Q) and fixed i = 1,...,N,,, 5 = 1,...,N,,, we introduce v;; €
H?"2(Q) defined by

vij(z,y) = hflh;f?s(x(li_l) +hite, xéj_l) + h;‘fzy), x,y € (0,1).
For this v;; we have

r—1r—1

(27)  F(vij) /(7 N /(J Y s(z1, x2)dx1dy _hﬂclhﬂcz Zzwkwls §1k, )
k=11=1
(28)
5 1/2 - N 9
H W) U [ ] wa)
pF+q=2r— () p+g=2r—270 0 oY

hflh;.”2< Z [hfl]%[hf?]zq

p+q=2r—2

1/2
p+q ) ) 2
/ / {gipa;q x(lz—l) + hflx,x(zJ—l) + h;zy)} dardy)

h27‘ 2hm1hw2 1/2 3p+qs 2d d
| 2 Joo ) Wayq(““) rides

p+q=2r—2

1/2
8p+qvij

0xPOy ||,

1/2

Using the first equation in (9), the triangle inequality, (26) with v replaced by v;;,
(27), (28), and the Cauchy-Schwartz inequality, we have

/ s(x1, x2)dx1dxe — (8, 1)’
Q

) r—1r—1
ZZ l/( . /(] , s(ev,@o)dwrdey — b b2 Zzwkwls(ggf;,gﬁ)]

i=1 j=1 k=11=1
r—1r—1
ZZ /(1 . /(J Sl w)drdes =R D LD wyens(El. €57)
i=1 j=1 k=11=1
Noy Na, 2 3
optag
2r—2 z13,7271/2 -
<o S (5 [T [ [ )] i)
=1 j5=1 p+q=2r—2
1/2

N., N,
< Ch2r72 Z Z hfl hJI2

i=1 j=1

2 9
6P+q8
ZZ Z /(1 D) /(7 1) |: oxPd q(x17x2):| dridxs

i=1 j=1 p+q=2r—-2
2 1/2
)
(@)

which proves the required inequality. O

1/2

oprtag
8561’83/1

=Ch>? ( >

p+q=2r—2

We will also need the following 1d counterpart of Lemma 2.8.
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Lemma 2.9. If s € H>"~2(0,1), then
1 1
/ s(a1)day — (5,1)a, / s(@a)dzs — {5,1)ay| < C(s)hZ 2,
0 0

Proof. Since d,, and ¢,, are arbitrary partitions of [0, 1], it suffices to prove the
first inequality of the lemma. We omit a proof of this inequality since the proof is
similar to that of Lemma 2.8 with the functional on H?"~2(0, 1) defined now by

/ / x)dx — Zwkv &), ve H"%0,1).

< C(s)h2i 2,

3. OSC Solution

First, for ¢ = 1,2, we describe an appropriate choice of B-spline basis functions
for Mjwv Let {Bfi}?fol be B-spline basis functions for M,, such that (see, for
example, [5])

B (0) #0, [Bg(0) #0, By*(0)=0, [B{*](0)#0,
T _ xq/ — — .
(29) B;”(l) =[BY)(1)=0, j=0,...,d; —1,

(30) Byi(1) =0, [BgT(1)#0, By, (1) #0, [Bg,]'(1)#0.

(31) 1= [BUT(0)Bg = [By(0) By,
0. = [Bg ( )B&“H [B§7+1] (1) B,
Then [¢7°]'(0) = 0, [¢3i]'(1) = 0 and {¢}* }-,1 is a basis for M2, We also set
=By a1 = Baly

Then {(;Sf"’}?;'gl is a basis for M, .
To define an OSC solution of (1)-(3), (5), consider U € M,. which can be written

as
di+1da+1 R
(32) U(zy,x2) Z Z Umn@m (1)9? (x2) = U(x1,22) + U(21, 72),
m=0 n=0
where
(33)
di+1 do
Ul(z1, 22) Z Z Unn,n®m (21)937 (22) + Z ZUm,nfi)i%(fUl)éf’ﬁz(%),
m=0 n=0,da+1 m=0,d1+1n=1
and
dv  da
(34) Uy, 22) = Y > Unndpt (21)¢57 (12) € MY
m=1n=1

The coefficients Uy, ,, in (33) are determined (see Section 5 for details) by interpo-

lating (2), (3), that is, we require that,

5iUz1 j algl
310’2 (057172) 81’2

(35) (,2)), j=0,...,N,,, i=0,1,
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(36) Us (o, (G1) = g1(a, (§7), G=1,...,Nay, 1=1,...,7r =3,
DUy, , () g2, (i) : :

37 —(z;,8) = —(x7,8), i=0,...,Ny, =0,1,

(37) &Ujl (z17,8) 853]1( 1:8) J

(38) U-Lz(gillg)ﬁ):.QQ(CZ]lw )’ izla"'an1a kzla"'7r_37

where o, 8 = 0,1. It is natural to determine U € ./\/liv such that

(39) ~AU©) = f(9), £€Gr,

where

(40) f©) = f©) +AU(E), £€6..

Lemma 2.3 implies that the operator —A is self-adjoint on M{y with respect to the
inner product (-,-) of (9). Clearly 1 € M and —A1(¢) = 0, £ € G,. Moreover,
it follows from Lemma 2.6 that if v € MY and —Av(¢) = 0, £ € G, then v is
constant. Hence the necessary and sufficient condition for the existence of U € M
satisfying (39) is (f, 1) = 0. Since, in general, (jA’, 1) # 0, (39) will not have a
solution U € M?. We introduce

(41) F=F-(
and look for U € M2 such that
(42) —AU(€) = f(&), €€G..

It follows from (41) and the third equation in (13) that (f, 1) = 0 and hence (42) has
a solution U € M. Assume U of (33) is determined by (35)(38), and U € MY
is a solution of (42). Then, for any ¢ € R, U + ¢ € M and (42) holds with U + ¢
replacing U. Hence
(43) U=U+U+e¢, ceR,
can be viewed as a general OSC solution of (1)—(3). If u satisfies (1)—(3) and (5),
then U of (43) with ¢ such that
(44) (U1) =~
is the OSC solution of (1)—(3), (5).
4. Convergence Analysis
Lemma 4.1. Set

MY ={ve M, vy, (a,23) = vg, (21, 8) = 0,0, 8=0,1, 21,25 € [0,1]}.
Then MY = MV/T\/, where MY is defined in (7).

Proof. Tt follows from the second equation in (7) that MY c MV/T\/ . To show
MN c MY, consider v € M. Since v € M,., we have
di+1da+1

V(@1 m2) = 3 Cmndi (21)5 (22),

m=0 n=0
where the ¢, n, € R. Using vy, (0,22) = 0, 22 € [0,1], [¢5']'(0) # 0, and [¢pZ1]'(0) =
0,m=1,...,dy +1, we get
da+1
D condi(w2) =0, w5 €0, 1].
n=0
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Since the set {qbff}ff’:‘zl is linearly independent, we have cg, =0, n =0,...,d2+1.
Using, in a similar way,

Vg, (1,22) =0, 22 €[0,1], wvg,(x1,8)=0, =z €]0,1], B=0,1,

we obtain
dy do

v(x1,T2) = Z Zcmmqﬁfnl (x1)Pr2(x2) € Mﬁv

m=1n=1

O

Theorem 4.1. Assume U in M, is given by (32), where U of (33) is determined
by (35)-(38), and U in MY satisfies (42). Then

IV(u—=U)llrz@) < C(u)h”.
Proof. Assume W € M, is the interpolant of u defined in (21) and set
(45) v=W-U=-¢, ¢c=(W-U,1).
Using (45) and the third equation in (13), we have
(46) (v, 1) =(W -U,1) —¢(l,1) =c—c=0.
It follows from the second and last equations in (21) with xgi) =01, n =1,
m = 0,1, the third and last equations in (21) with 2’ = 0,1, m =1, n = 0,1,
(35), (36), (37), (38), (2), and (3) that
(47)
Wzl (aaxQ) = UZL’1 (au$2)a sz(xhﬂ) = Uzz(x17ﬁ)7 0675 = Ov 17 T1,T2 € [07 1}

Using (47) and Lemma 4.1, we have W — U € MY . Hence it follows from (45)
and ¢ € MY that v € MY . Next, using (45), (32), (42), (41), (40), (1), (46), the
Cauchy-Schwarz inequality, and (23), we have

(48)

(—Av,0) = (AW + AU, v) = <—AW + AU + AT, 11> - <—AW + AU -7, v>

= (~AW + AT = F+(F,1),0) = (AW = £,0) + {(F, 1), )
= (A(u—W),0) + (F,1)(1,0) < A= W)||[lv]] < C)h[lv].
Lemma 2.7 and (46) imply ||v|| < (—Aw,v)*/? and hence (48) yields
(49) (=Av, )2 < C(u)h".

It follows from Lemma 2.6 and (49) that [[Vv]| 2oy < C(u)h” which, on using (45),
gives

(50) I9OV = U) 20y < CCu)1".
Using the triangle inequality, the second equation in (15), (24), and (50), we have
[V(u—U)llzz) < lu=Wllgi@ + VW = U)llL2@q) < C(u)h".
O

Since ||Vvl|L2(q) is not a norm on H' (), we next bound |lu — U|| g1 (q)-

Theorem 4.2. Assume U in M, is given by (43), where U of (33) satisfies (35),
(36), (37), (38), U in MY satisfies (42), and c is determined so that ({4) holds.
Then

(51) ||u — UHHI(Q) < C(u)hr.
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Proof. Assume W € M, is the interpolant of u defined in (21) and set
(52) v=W-U.

It follows from (52), (47), and Lemma 4.1 that v € M2 . Using the right-hand side
inequality of Lemma 2.5 and Lemma 2.7, we have

(53) [v1Z2(0) < Cllvl* < Clv, 1) + C(~Av, v).
Following the derivation of (48) and using (40), we obtain

(54) (—Awv,v) < CuhT|[o]| + [{f + AT, 1)][(1,v)].
The left-hand side inequality of Lemma 2.5 and the inequality

1
aﬂgeo?—i-iﬁa a,BER, €>0,

give
Cu
(55) CW ol < COM ooy < el + Eolnr
Using (53), (54), (55), and taking e sufficiently small, we obtain
(56) ollZ20) < C(0,1)° + C(f + AT, 1)[[(1,0)] + Cu)h®".

We bound the first two terms on the right-hand side in (56). Using (52), (44), (5),
the triangle inequality, the Cauchy-Schwarz inequality, the third equation in (13),
Lemma 2.8 with u replacing s, (22), and r > 3, we have

(u, 1>—/U(1171,1’2)d171d$2
Q

<|W = || + Cw)h? 2 < C(u)h™ (1 4+ h"3) < C(u)h™
It follows from (11), (10), (14), (12), (32), U € MY, Lemma 4.1, (47), (2), and (3)
that

(58) <A(/j7 1> = <ﬁ$1$1 ’ 1> + <ﬁ$2$27 1>

(57) (v, D] = [(W, 1) =7 < [V —u, 1)| +

N, r—1 N Nz, r—1 N
= Z th2 Zwl<UI1I1 (.’ é‘;”j)’ 1>$1 + Z h;’fl Z wk<U$2$2 (gz}gv ')7 1>x2
Jj=1 =1 i=1 k=1
NU—'Q r—1 N R
=D 057 Y U, (1,€7) = Un (0,€5)]
j=1 =1
Nl'1 r—1 N R
+ R Y el (€53, 1) = U (654, 0)]
=1 k=1

1)
= <U901 (1’ ')a 1>$2 - <U961 (O’ ')’ 1>372
= <WZ1(13 ')a 1>UE2 - <W11 (07 ')7 1>962 + <WI2('v 1)7 1>11 - < £2('70)a ]->961

— 51+ S5 + Ss,
where
(59) St =W =u)e,(1,), D)ay — (W =)z, )(0,), 1)z,
(60) Sa = (W = w)ay (1), Ly = (W = )y (-, 0), Ly,

(61) S = <91(17 ')7 1>w2 - <gl(05 '), 1>mz + <92('a 1)’ 1>a:1 - <g2<'70)’ 1>x1'
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Using (59), the triangle and Cauchy-Schwarz inequalities, (25), and the second
equation in (13), we have

(62) 1S11< Y0 IV = wey (@) e[ Llen < Clu)h™ .

a=0,1
In a similar way, for Sy of (60), we obtain
(63) |So| < C(u)h™ .

It follows from (58), (4), (61), the triangle inequality, Lemma 2.8 with f replacing
s, Lemma 2.9 with ¢1 (o, 2), g2(z1, ) replacing s(x2), s(x1), respectively, (62),
and (63), that

(64) ‘<f>1> + (Aﬁ, 1)‘ = ‘(fa 1)+ 81+ Sa+ 53— /Qf@?l,xz)dxldxg
- / (911, 22) — 910, 22)]dcs — / [g2(21, 1) — galir, 0)]dey
0 0

>

a=0,1

< '<f, 1) - / f(ar, 22)dandas (91(0, ), 1)y — / g1 (o, 2)dr

p>

$=0,1
< Cu)h™ 1+ 1" 73) < C(u)h™ .

u)
Using (56), (57), and (64), we have ||v||12(q) < Ch™ which, on using (52), (15), and
(50), gives

(65) W =Ullg ) < C(u)h".
Using the triangle inequality, (24), and (65), we have
v —Ullge) < llu—Wllgia) + W —ullgq) < C(u)h'".

1
(92(+,8)s 1)y —/0 g2(1, B)dxy| + |S1| + |Sa]

5. Implementation

In this section we explain how to compute the OSC solution U defined in Section
3. We will use the following observation: The matrix-vector form of

M’ N’
(66) b= oSN P, i=1,00 =1,
m=1 n=1
is
(67) D= (C,®Cy)VY,
where
Cr = e )ity Co= [,
and

¢ = [¢1,17"‘7¢1,J’7'"a¢[’,17"'7¢[’,J’]7
e (I P 1 N 1) VU PR () Ve N7 B
With ¢, j being row indices and m,n being columns indices, we introduce the
matrices

By, = 05 (€SIt By = [022 (€72 2005,
Ag, = [=lom) (€N, Ay = [Ho22]"(€22) 22
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where {¢Z}41) and {22194 introduced in Section 3, are bases for M,, and
./\/lgg27 respectively. For k = 1,2, we assume that:
sz is the matrix obtained by deleting the first and last rows of BIk,
Ark, sz are the matrices formed by the first and last columns of Ark, sz, -
spectively;
Az, Bg, are the matrices obtained by deleting the first and last columns of Zwk,
BEM respectively.

Lemma 2.3 in [10] implies that B,, and B,, are nonsingular.

First we explain how to obtain the coefficients U,, ,, in U of (33). For 8 =0 and
i=1,...,N,, (37) and (38) give

%<x¥‘”,o> =22 0i0), 2l 0= 22600, =01,

ox] oz oz oz
Umz(cqfllwo):g2(<ix,]1¢a0)’ k=1,...,7 =3,

which we use to determine Uy, (x1,0), x1 € [z =1 (i)}, in terms of B-splines for
[x§i’1)7x§")]. This allows us to compute Uy, (&, O) i=0,...,d; + 1. Tt follows
from (32) that

di+1
U, (21,0) = [652(0) D Unodii (21), 1 €[0,1],

and hence we obtain
di+1

> EHE ) Um0 = Uny (§74,0) /1652 (0), i =0,...,d1 +1,

m=0

which is a linear system in
T
[U0,0,U1,0,- - Udy 0, Udy +1,0]

with the matrix B,,. In a similar way, for 8 = 1, we obtain a linear system in

T
[UO,d2+1> Ul,dz-‘rl’ ceey Ud17d2+17 Ud1+1,d2+1]

with the matrix B,,. In a similar way, using (35) and (36), we obtain the coefficients
{Um,n}‘ff;{)l, m = 0,d; + 1 in (33). It is not obvious at this point why U, n,
m = 0,d; +1, n = 0,dy + 1, obtained using (37), (38) are the same as those
obtained using (35), (36). However, note, for example, that (37) with j =1, ¢ =0,
B =0, and (32) yield

(92)2:(0,0) = Us,a, (0,0) = [¢5"]'(0)[65°](0) V0,0,
while (35) withi =1, j =0, a = 0, and (32) yield

(91)25(0,0) = Ua,2,(0,0) = [65']'(0)[#5°]'(0)Uo,o-
Moreover, (3) and (2) imply

(92)2:(0,0) = tay, (0,0) = a2, (0,0) = (91),(0,0),
and hence Uy, obtained using (37) is the same as that obtained using (35).
Next we discuss the matrix-vector form of (42). Using (33) and £ = (§*,&*),
i=1,...,d1,5=1,...,da, for AU (&) of (40) we have
di+1

(68) AU =AUE™, &) =D [on"(E) Y. o5& Unm

m=0 n=0,d2+1
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dy+1
+ 3 gmEr) S 65 (€ U
m=0 n=0,dz+1
da
+ 3 EnE) S (€ U
m=0,d;+1 n=1
da
> emEm) D10 (€ U
m=0,d1+1 n=1

It follows from (66), (67) that (68) can be computed for all £ € G, by multiplying
vector

[Uo,0, Uo,ds+1, U100 Ut dy415 - -+ Uy 41,00 Udy 4 1,d41)
by the matrices
—Ay, ® Byy, —Ba, ® Ay,
and the vector
[Uo,1,Uo,2, - -, Uods, Uy 41,1, Udy 11,25 - - - Uy 41.,5) -
by the matrices
—A,, ® By,, —By, ®A,,.

Substituting (34) into (42) and taking § = (§*,£7%), i=1,...,d1, j =1,...,da,
we obtain

di do di ds

=D DI €O (€ Umn— Y D b (€8] (€7 Ui = F(E7.65°)-
m=1n=1 m=1n=1

Hence it follows from (66), (67) that the matrix-vector form of (42) is

(69) (Az, ® By, + By, @ Agy)u =1,

where

(70) u=[U1,..- .Uty Ugy 1y Udyan]”

f= [fl,lv-”vfl,dw' "afd1,1v"'7fd1,d2]Ta fi,j :?(gflvgjmz)

Next we present an efficient method for finding a solution of (69). Following
(3.4) in [3], we introduce the matrices

(71) Fy = Bl WiB,,, G= Bl WA,,,
where the diagonal matrix Wy is defined by
W, = diag (hfflwl, e htwrg, hf\}xlwh . h]mvlwlwr,l) )

Adapting the proof of Lemma 3.1 in [3] to the zero Neumann boundary conditions,
we can show that Fj is symmetric and positive definite and Gy is symmetric and
nonnegative definite. Since F}) is symmetric and positive definite and since G is
symmetric, Theorem 4.12 in [8] implies that there are a real diagonal A = diag

()\j);ll:l and a real nonsingular Z such that

(72) Z'GiZ =N, Z'RZ =1,

where, here and in what follows, Ij is the identity matrix of size k. Since G
is nonnegative definite it follows from the first equation in (72) that all A; are
nonnegative. Rank A,, = dy — 1 since A,, is singular and since the first d; — 1
columns of A,, are linearly independent (these columns are the same as the first
dy — 1 columns of nonsingular A,, in (83).) It follows from the second equation in
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(71) that Rank G; = Rank A;, and it follows from the first equation in (72) that
Rank G; = Rank A. Hence Rank A = d; — 1 which implies that exactly one of the
Aj, say Mg, is 0.

The matrices Z and A of (72) can be obtained as follows (see [3]). Note a
factorization F; = LL”, where L = B;Fl VVl1 / 2, in place of the Cholesky factorization
of Fy. Since (1 is symmetric and nonnegative definite, then so is

(73) C=L"'G LT =w"?A, B;'w; 2,
Hence there are orthogonal @ and diagonal A such that
QRTCQ = A.

Then Z = B 'W, Y20 and A satisfy two equations in (72) since
277 = Q"W VPB T BT Wi A, By WPQ = QTOQ = A,

QTW1*1/2B:E—1TB§'1 WlelB;11W171/2Q _ QTQ — Id1~
The matrices F; and G7 of (71) can be viewed as banded. Hence the matrices
Z and A of (72) can also be obtained using the method of [7] which computes a

banded matrix C' orthogonally similar to the full matrix C' of (73).
Using (72), (71), and properties of the matrix tensor product, we obtain

(ZTB;J; Wy ®Id2) (A:El ®BI2 + Brl ® ArQ) (Z®Id2) = (A®BI2 +Id1 ®AI2) .

1

Hence, (69) is equivalent to

(74) (A®B$2 +Id1 ®AI2)V =8,
where
(75) g=(Z"BIW,®1,)f, v=(ZoIl;) 'u
‘We set
V:[V]_,-.-7Vd1], Vm:[vm,17'-')vm,d2])

g:[g17~-~7gd1]a gm:[gm,17---7gm,d2]-
Then (74) is equivalent to

A372+)‘jBﬂf2vj:gja j:17~'~;d2a ]#lﬁ

(76) A:WV]C = gk-

Note that A, is singular and A, + A\;B,, j # k, is nonsingular. Since (69) is
consistent, (76) has infinitely many solutions. To find a solution of (69), it suffices
to find a solution of (76). To this end note that (76) is the matrix vector form of
the 1d collocation problem

(77) —0"(€7) = g(€7), € € Guyy vE MY,
where

(78) 9(&*) =8ry, J=1....da

Since (77) has a solution, using (77) and (14), we have

(79) <97 1>12 = <_UN? 1>12 = 0.

Consider the 1d collocation problem

(80) —w"(§7) = g(67), € €G,,, we MY,

where g is that of (78) and
MYP = (v e My, :v'(0) = 0,v(1) = 0}.



848 B. BIALECKI AND N. FISHER

Note that {¢7? }] 1> where

(81) 7,[1;”2:@#7”2 J=1...,d2—1, 93> =B,

J )
is a basis for MQQD. Substituting

da
(82) ’LU(J?Q) = Zw]"(/)j(ai‘g)
j=1
into (80) and using (78) we see that the matrix vector form of (80) is
(83) AW = g,
where w = [wy,...,wg,]T and nonsingular ng differs from A,, only in the last

column. Using (79), (80), (14), (82), and (81), we obtain
0= < 9, > <_w”’ 1>a:2 = _wl(l) = —Wd, [sz]/(l)
Since [By?]'(1) # 0, we have wg, = 0. Hence (83) gives

AIQW - AIQW = gk)7

which show that the solution w of the nonsingular system (83) is a solution of (76).

We arrive at the following matrix decomposition algorithm to obtain a solution
of (69).

Algorithm
Compute Z and A satisfying (72).
Compute g = (ZTBQT1 Wi ® Id,z) f.
Solve (A, + AjBg,)vj; =8g;j, j # k.
Solve me =g and set vy = w
5. Compute u = (Z ® Ig,)v.

Algorithm produces a solution u of (69), which, through (70), gives U of (34).
For ~ of (5) and known U of (33) we determine ¢ in U of (43) so that (44) holds.
Using the third equation in (13) and the first equation in (9), we obtain

- W=

Nzy Nz, r—1r—1
c=y—(U+0T,1) = ZZW%@ZZWMUJFU )(Eiks 1)
i=1 j=1 k=11=1
It follows from (33), (34), (66), and (67) that the computation of all
di+1da+1
O+ D)k &) = D > Ul (Si) 622 (1)
m=0 n=0

involves multiplying a vector by f?zl ® EM. In this way we compute the OSC
solution U of (43) and (44) satisfying (51), where u is the solution of (1)—(3), (5).

6. Numerical Results
We solved the problem (1)—(3), (5) with the exact solution
u(xy,x2) = (x1 + cos(dnxy))(ze + cos(dmas))

for which v = 1/4. For the values of N = 4,9, 16, 25, we used the uniform partitions
01 and o with stepsize h = 1/N. For r = 3,4,5,6, in Tables 1 and 2, we computed
the H' and L? norm errors, respectively. The integrals in x;, ¢ = 1,2, in the H!
norm errors were computed using the composite Gauss-Legendre quadrature with
r 4+ 2 nodes in each subinterval of the partitions §; and J, to make the quadrature
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TABLE 1. H! norm errors and rates.

r=3 r=4
N \ error \ rate N \ error \ rate
5 | 1.0722e+00 5 | 1.4803e-01
10 | 1.3305e-01 | 3.0106e400 || 10 | 9.4390e-03 | 3.9711e+00
15 | 3.9103e-02 | 3.0200e+00 || 15 | 1.8710e-03 | 3.9914e+00
20 | 1.6441e-02 | 3.0117e+400 || 20 | 5.9270e-04 | 3.9959e+00
r=>5 r=2~6
N error rate N error rate
5 | 1.7781e-02 5 | 1.8201e-03
10 | 5.7001e-04 | 4.9632e+00 || 10 | 2.9192e-05 | 5.9623e+00
15 | 7.5410e-05 | 4.9886e+400 || 15 | 2.5751e-06 | 5.9882e+00
20 | 1.7924e-05 | 4.9944e+00 || 20 | 4.5907e-07 | 5.9942e+00
TABLE 2. L? norm errors and rates.
r=3 r=4
N error rate N error rate
5 | 4.8915e-02 5 | 4.5198e-03
10 | 2.7439e-03 | 4.1560e+00 || 10 | 1.4346e-04 | 4.9775e+00
15 | 5.2469e-04 | 4.0800e+00 || 15 | 1.8884e-05 | 5.0010e+00
20 | 1.6395e-04 | 4.0436e+00 || 20 | 4.4790e-06 | 5.0019e+4-00
r=2>5 r==6
N \ error \ rate N \ error \ rate
5 | 3.7758e-04 5 | 3.0498e-05
10 | 6.1031e-06 | 5.9511e+00 || 10 | 2.4616e-07 | 6.9530e+00
15 | 5.3926e-07 | 5.9841e+00 || 15 | 1.4495e-08 | 6.9851e+4-00
20 | 9.6191e-08 | 5.9923e+00 || 20 | 1.9389¢-09 | 6.9926e+00

849

errors negligible. We also computed the corresponding convergence rates using the

formula

rate =

. 1Og(EN1 /ENz)

log(Ng /Nl) ’
where N; < N, are two consecutive values of N. As expected, the H' norm rates
in Table 1 are close to . The L? norm rates in Table 2 appear to be close to r + 1.
Bounding theoretically the L? norm errors remains an open problem.
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Appendix

Proof of the second inequality in Lemma 2.4. It suffices to give a proof for ¢ = 1.
Assume that

ik EMQ{, i=1,...,Ny, k=1,...,r—1,
is defined by
¢Z’k(£;j) :51',]'5]9,[; j: 1,...,Nx1, | = 17...,7’—1,

where 0; ; is the Kronecker delta. (The roles of our 4, k are the same as in [10] while
the the roles of ¢, k in [16] are interchanged.) The existence of ¢; j follows from
Lemma 2.1. Following the proof of Lemma 2.1 we have

Al Di ke x(i_l) gb/- x(i_l) >0, 1=2,...,N,,, k=1,...,7r—1.
, 1 i,k \*"1 1
Introduce

T

(A2) @) = [1- 0] Loa@), va(@) =2La(@), z€0.1]

where L,_; is the Legendre polynomial of degree 7 —1 on [0, 1] such that L,_;(0) =
1. Note that

(A.3) Le_i(z) = (=1)" 'Ly (=1 +2z), z€]0,1],

where L,_; is the Legendre polynomial of degree r—1 on [—1, 1] such that L,_1 (1) =
1 and hence L,_1(—1) = (=1)""1! (see, e.g., (1.3.22c) in [18]). Using (A.2) it is easy
to verify that

¥ (0) = vg(0) =1, ¥y,(0) =24(0) =0, ¥u(&) =a(&) =0, k=1,...,r—1
Asin (5.12) of [16], for i = 1,..., Ny, k=1,...,r — 1, and I, = [z 2™,

we have

(A4)  ¢ix (m—1)

1 = Gige (@ o + B2 (2T g, M= 1,00 1,
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where

(A.5)

Gom(e) = wole ="M dam(e) = al(e = 2"/ o € L
Using (A.4) and (A.5), we obtain (see (5.13) and (5.14) in [16])
(A6) dip(ey™) = un(al™)ou(1) + B0l p(ay™ a(D), m=1,..i-1,
(A7)

D™ = ) o) + (a1, m=1, i
(A.3) and L] _{(£1) = (£1)"(r — 1)r/2 (see, e.g., (1.3.22¢) in [18]) give

L1 (0)=~(r=1r, Ly_y(1) = (=) (r=Dr.

Hence it follows from (A.2) and (A.3) that

Yo(1) = ¢g(1) = (=) 1+ (r =], (1) = (1) = r2+ (r = 1)1,

which gives

(A.8) o) = [5(1)] =1+ (r = r =,
and along with 14(1) = (—1)"~! also implies that
(A.9) (1), %a(1), 90 (1),4,(1) have the same sign.

Using (A.6), (A.7), (A.1), zk(:rsgo)) =0, (A.9), and (A.8), we have, for m =
1,...,0—1,

(G0 = 100 (" Yoo (W) + I 61 (™)) = eldin(a™ ),
6 (™) = 102 i (™ (D] 16y (1)) 2 7l (™)

Hence, form=1,...,i—1,
(A.10)

m—1 m m+1 —(i—m i—1
|6ik (@™ < A Hoin (@™ < 4 bk (@™ ) < L <y g (T,

m—1 m m+41 —(i—m i—1
165 128N < 3 (2] < 32 (@) < < gl (@),
The last equation and regularity of partltlonb give

(A.11) Bt | ()] < hwl Rl ]

< ORS Ay =g (@), m=1,. i - L
It follows from (A.4), the triangle inequality, (A.10), and (A.11) that
(A.12)

1 z 1
Ikl oo (1) < 100 @™ W N0 | oo () + HEH S 1 (@) Wt | oo (110
m—1 x m—1
< max{|gi (@™ ) A2 (@Y (ol ne () + l[Wall L= (1)
< Cmax{|gip ()], 2 4 (x (H))I}v‘(’ mom=1,.. 01
To bound |¢i’k(ac§i71))| and h;|¢; k(xl )|7 note that

(A.13) = (@ )i + TG (2T ) + i,
where

i) = el(z — 27D/, we L,
Yr|r € P- and

Pe(0) =¥ (0) =0, (&) =0k, 1=1,...,7r =1
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Assume k # 1,r — 1. Then 9, has r — 1 zeros in [0, 1] (¢}, has zero at 0 and zeros
between 0, &1, ..., k-1, Ekt1y- - -5 Er—1). ¥}, has no other zeros in [0, 1]. ¥ > 0 on
(€k—1,&k+1) and ¥ changes sign r — k — 1 times at &gy1, ..., &—1. Hence

(A.14)  Yx(1) >0 when r —k — 1 is even, (1) <0 when r —k — 1 is odd.
¥} (€k41) < 0 and ¢, changes sign r — k — 2 times in [§441, 1]. Hence
15) (1) <0 when r — k — 2 is even, ;,(1) > 0 when r — k — 2 is odd.

(A

(A.14) and (A.15) hold also for k = 1, — 1. For example, 9] has r — 1 zeros in
[0,1] (¥} has a zero at 0 and zeros between 0, &, ..., &—_1). ¥ has no other zeros
in [0,1]. ¥1 > 0 on (0,&) and v changes sign r — 2 times at &a, ..., &.—1. Hence
¥1(1) > 0 when r — 2 is even and t1(1) < 0 when r — 2 is odd. ¥{(&) < 0 and
1] changes sign r — 3 times in [€2,1]. Hence 9{(1) < 0 when r — 3 is even and
¥1(1) > 0 when r — 3 is odd. It follows from (A.14) and (A.15) that (cf. (5.4) in
16)

(A.16) (D) (1) >0, k=1,...,r—1.
Assume i # 1, N,, and k # 1,7 — 1. Then, as in the proof of Lemma 2.1, gb;’k
has r — 1 zeros in [x(li_l) (z)] (¢ 1, has zeros between x(i_l), TR §l k1> z}ﬁ_l,
N 1 gl)) qf)Lk has no other zeros in [;C%iil) ] ¢ir > 0on (§l k1 i}CH)
and d)l r changes sign r — k — 1 times at fﬁ_H, cen fw._l. Hence

(A.17) ¢ k( ) > 0 when r—k—1 is even, qSi,k(xgi)) < 0 when r—k—1 is odd.

i 1(§iha1) <0 and ¢, changes sign r — k — 1 times in [§f}€+1,x§ ). Hence

(A.18) qﬁlk(:cgl)) < 0 when r—k—1 is even, qﬁlk(xl ) >0 when r—k—1 is odd.

(A.17) and (A.18) hold also for ¢ # 1,N,, and k = 1,r — 1. For example, (b’ 1

has r — 1 zeros in [xgifl),x(i)] (¢} has zeros between a:gl 2 Eidy oo &y T )).

(i— 1) ]

¢; 1 has no other zeros in [r; - ¢in > 0on (z71,,£75) and ¢;1 changes

sign r — 2 times at 5, ..., fz’,r—r Hence ¢2k(x§l)) > 0 when 7 — 2 is even and

&, k(:vgi)) < 0 when r — 2 is odd. ¢},(£;3) <0 and ¢, changes sign r — 2 times in

(3% 2,3:&1)} Hence ¢} 1(x1 ) < 0 when 7 — 2 is even and ¢/ 1(375 )) > 0 when r — 2 is

odd. (A.17) and (A 18) hold also for ¢ = 1 and k # 1,r — 1. Then ¢, hasr—1
(0) (0)

zeros in [z ,x1 } (¢7 1, has a zero at 27 and zeros between 331 y & s S
§1 et 1 ,517,._1) ¢1khas no other zeros in [xg),xl . ¢1 > 0on (674 1, &7 k:+1)
and ¢ changes sign v — k — 1 times at &7} ., ..., £, Hence ¢y k(xg ) >0

when r — k — 1 is even and ¢y i (z ()) <0 whenr —k—1isodd. ¢ ,(§7%,,) <
and ¢ ; changes sign r — k — 1 times in [gl’kﬂ,@{ )] Hence ¢ k(az:1 )) < 0 when

r—k—11iseven and ¢} k(33(1 )) > 0 when r — k — 1 is odd. (A.17) and (A.18) hold

also for i = 1 and k = 1, — 1. For example ¢} 1 has r — 1 zeros in [xgo),:z:gl)}

(#] 1 has a zero at mg ) and zeros between xl s €1y - &0 1) @11 has no other
zeros in [xg ),xgl)]. 1,1 > 0 on (xg ), 1) and ¢y 1 changes sign 7 — 2 times at

1oy oo &0y Hence ¢q1(z; ( )) > 0 when r — 2 is even and ¢1 1(x; ( )) < 0 when
r—2is odd. ¢} (£7h) <0 and ¢ ; changes sign r — 2 times in [ fg,xgl)] Hence

¢’171(x§1)) < 0 when r — 2 is even and qb’l,l(xgi)) > 0 when r — 2 is odd. (A.17) holds
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also for i = N, and k = 1,...,r — 1. It follows from (A.14) and (A.17) that (cf.
(5.21) in [16])

(A.19) Ve ie(@?) >0, i=1,... Ny, k=1,...,r—1
It follows from (A.15), (A.18), and gZ)szl,k(ng“)) =0, that (cf. (5.22) in [16])

(A.20) () (@) <0, i=1,..., Ny, k=1,...,r—1.
Using (A.20), (A.13), and #},(1) # 0, we have
(A.21) |
0> hy* )i (2t )0k (1) = [din (2t ™) (1) + B ) (@l ™) (1) + G (]G (1)

> [pen (@l ™), (1) + 57 (@ )ga W (D).
It follows from (A.9) and (A.1) that ¢;x(z\™ ")) (1) + h¥'ef . («i)uy(1) and
Gi ke (w1(1 = 1))y (1) +hi" ¢ k(acgl 1))¢d(1) have the same sign for i=2,. le It

also follows from (A.9) and ¢; i (z 10 ) # 0 that ¢, k( )z/J;( ) and ¢ k(xl )1/11;( )
have the same sign. Hence (A.21), (A.16), and ¢} k(:c(lo)) =0 give

(A.22) [Dik () (1) + B2 ) (2 )ha( 1)) (1) < 0
Using (A.19) and (A.13), we have
(A.23)

0 < dip (@) (1) = [Diw(@™ o (1) + ATl (2 pa(1) + (1) (1).
Equations (A.22) and (A.23) give

1960y ™) 00 (1) + Bt (™ Ja(1)]ebi (1)
~[Baa (@i ™o (1) + B0 (ST ) a(D (1) < UR (D),
which yields
(A.24) 196y ™) 0u(1) + B (2™ Ja(L))] < e (D))
It follows from (A.9) and (A.1) that ¢; (27 (= 1))1/JU( 1) and h“gf)l k(:v(lz 1))1/1(1(1) have
the same sign for i = 2,..., N;,. Hence (A.24) and ¢} k(:ﬂl )) = 0 give
(A.25)  Jgun(ey ) < Wn /oD, b 165k )] < ()] ba(D)]:
It follows from (A.12) and (A.25) that

) <Oy M =1

and by a symmetry of argument
6kl rn) < Cr ™™, m=i+1,...,N,,.
For m = i using (A.13) and (A.25), we have
pikll Loy < C-

Hence
||¢i,k||Loo([m) SC’Y:'m_”’ m:L'-'?NJDr
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The rest of the proof of the second inequality in Lemma 2.4 follows very closely the
proof of the second inequality of Theorem 5.5 in [16].
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