
INTERNATIONAL JOURNAL OF c⃝ 2023 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 20, Number 6, Pages 805–831 doi: 10.4208/ijnam2023-1035

UNCONDITIONALLY ENERGY STABLE AND FIRST-ORDER

ACCURATE NUMERICAL SCHEMES FOR THE HEAT

EQUATION WITH UNCERTAIN TEMPERATURE-DEPENDENT

CONDUCTIVITY

JOSEPH ANTHONY FIORDILINO∗ AND MATTHEW WINGER

Abstract. In this paper, we present first-order accurate numerical methods for solution of the heat
equation with uncertain temperature-dependent thermal conductivity. Each algorithm yields a

shared coefficient matrix for the ensemble set improving computational efficiency. Both mixed and
Robin-type boundary conditions are treated. In contrast with alternative, related methodologies,
stability and convergence are unconditional. In particular, we prove unconditional, energy stability

and optimal-order error estimates. A battery of numerical tests are presented to illustrate both
the theory and application of these algorithms.

Key words. Time-stepping, finite element method, heat equation, temperature-dependent ther-
mal conductivity, uncertainty quantification.

1. Introduction

Demand for superior predictions of scientific and engineering problems is ever in-
creasing. Improvement of available computational resources and both development
and application of numerical methodologies work synergistically to meet the afore-
mentioned demand. In particular, numerical schemes are devised to improve model
accuracy (e.g., via inclusion of additional physics), replicate additional properties of
the continuous problem (e.g., long-time stability), incorporate uncertainty quantifi-
cation via statistical techniques, etc. The focus of this manuscript is on improving
the efficiency of ensemble simulations, which facilitate uncertainty quantification,
applied to heat conduction dynamics with increased model physics.

The crisis of predictability in numerical weather prediction, led to the discovery
of chaos and the use of ensemble simulations to produce predictive results with un-
certainty quantified. Some key figures include, Charney [5], Philips [41], Thompson
[45], Lorenz [34, 35, 36]; see, e.g., [27, 32] and references therein for a historical
perspective. Ensemble calculations typically involve J solves of a set of equations
with slightly perturbed initial data. Calculations are performed as either J sequen-
tial, fine mesh runs or J parallel, coarse mesh runs of a given code. The ensemble
average tends to perform better as a prediction than any of the individual real-
izations; see, e.g., Chapter 6 Section 5 of [27] or [2, 13, 28]. Evidently, increased
computational resources are needed over a single realization run. Moreover, since
both increased ensemble size J and mesh density h yield superior results, there is
an inherent competition for available computational resources.
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The last six years have seen increased focus in improving efficiency of ensemble
calculations [21, 22, 23, 24, 40, 43, 14, 15, 16, 17, 10, 8, 12, 9, 33, 6, 26, 38, 39, 42]
and references therein. The driver for much of this work is owed to a breakthrough
work by Jiang and Layton [21], as applied to non-isothermal fluid flow. Therein,
they recognized that a consistent modification of the convective term, utilizing the
ensemble mean and fluctuation of the viscosity together with lagging of the fluc-
tuation term, would yield a shared coefficient matrix independent of the ensemble
member j. The result was a reduction in both storage requirements and solution
turnover time.

Recent years have seen increased focus towards problems with uncertain parame-
ters and considerations of alternative physics. Of particular interest here, first- and
second-order ensemble algorithms for iso-thermal fluid flow with constant viscosi-
ty were developed in [14, 15]. Further, first-order methods were presented for the
heat equation with constant thermal conductivity under mixed boundary condition-
s in [42] and both space and time dependent thermal conductivity under Dirichlet
boundary conditions in [38]. Moreover, first and second-order methods were devel-
oped for spatially dependent thermal conductivities in [9]. Notably, stochastics were
incorporated in [38, 39] via the Monte Carlo method and in [33] for the convection-
diffusion equation via stochastic collocation.

In each of the above works, both stability and convergence were conditionally
dependent on the ratio between the fluctuating and mean values of the relevant
parameter. In contrast, the ensemble methods presented herein are unconditional-
ly, nonlinearly, energy stable and first-order accurate, with ∆t = O(h). Moreover,
we consider the heat equation with uncertain temperature-dependent thermal con-
ductivity due to uncertain initial conditions. Physically, this is more realistic as
most materials’ thermal conductivity exhibit non-trivial temperature-dependence.
Mathematically, the resulting equation becomes nonlinear, in the diffusive term,
presenting new challenges over the analogous linear problem.

Let Ω ⊂ Rd be an open, bounded, Lipschitz domain. Given initial temperature
T 0(x) = T (x, 0), thermal conductivity κ and heat source f , find T (x, t) : Ω ×
(0, t∗]→ R satisfying

∂T

∂t
−∇ · (κ∇T ) = f in Ω.(1)

We consider two boundary configurations: mixed and Robin. Throughout, κ is
the thermal conductivity of the solid medium which depends on the temperature
profile; that is, κ ≡ κ(T ). For the mixed boundary condition, the boundary ∂Ω is
partitioned such that ∂Ω = ΓD

∪
ΓN with ΓD

∩
ΓN = 0 (ΓD for Dirichlet condition

and ΓN for Neumann condition). Let n denote the outward normal, then

T = 0 on ΓD, ∇T · n = 0 on ΓN .(2)

Moreover, the Robin condition is prescribed via

αT + κ∇T · n = β on ∂Ω,(3)

where α ∈ [0, 1] is the emissivity, and β a prescribed function on the boundary.
The paper is organized as follows. In Section 2, we introduce mathematical pre-

liminaries required in the analysis, including semi-discrete numerical schemes and
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finite element preliminaries. The fully discrete schemes are introduced in Section
3. Sections 4 and 5 are devoted to the stability and error analysis of the fully
discrete algorithms. Results from a battery of numerical tests are provided in Sec-
tion 6. These serve to illustrate the validity of the proven theory and value of the
algorithms. Finally, conclusions are drawn in Section 7.

2. Mathematical Preliminaries

Herein, we introduce notation and preliminaries that are necessary for presen-
tation and analysis. Hs(Ω) denotes the Hilbert space of L2(Ω) functions with
distributional derivatives of order s ≥ 0 in L2(Ω). The corresponding norms and
seminorms are ∥ · ∥s and | · |s. In the special case s = 0, H0(Ω) = L2(Ω) and the
associated inner product and induced norm are (·, ·) and ∥ · ∥. Moreover, (., .)∂Ω
and ∥ · ∥∂Ω denote the L2(∂Ω) inner product and induced norm on the boundary.

Define the Hilbert spaces,

X := H1(Ω), Y := {S ∈ H1(Ω) : S = 0 on ΓD},

with dual norm ∥ · ∥−1 understood to correspond to either X or Y . The following
Poincaré-like inequalities are critical in the analysis.

Lemma 1. Let γ be a linear form on H1(Ω) whose restriction to constant functions
is nonzero. Then, ∃ CP > 0 such that ∀S ∈ X

CP ∥S∥1 ≤ ∥∇S∥+ |γ(S)|.(4)

Moreover, if S ∈ Y then ∃ CPF > 0 satisfying

∥S∥ ≤ CPF ∥∇S∥.(5)

Proof. See Lemma B.63 pp. 490, for the former, and Lemma B.66 pp. 491, for the
latter, in [3]. �

The Poincaré-Friedrichs inequality, inequality (5), guarantees that | · |1 is an equiv-
alent norm to ∥ · ∥1 in Y . Recall, Young’s inequality is given by

ab ≤ ϵ

q
aq +

ϵ−r/q

r
br, 1 < q, r <∞, 1

q
+

1

r
, a, b ≥ 0.(6)

The special case q = r = 2 will be used throughout.
Let {T (x, t;ωj)}Jj=1 denote the ensemble set of solution variables to equation (1),

with corresponding boundary conditions; ωj parametrizes each ensemble member
j ∈ [1, J ]. Then, the weak formulation of system (1) and (2) is: Find T : [0, t∗]→ Y
for a.e. t ∈ (0, t∗] satisfying for j = 1, 2, ..., J :

(
∂T

∂t
, S) + (κ∇T,∇S) = (f, S) ∀S ∈ Y.(7)

Furthermore, the weak formulation of system (1) and (3) is : Find T : [0, t∗] → X
for a.e. t ∈ (0, t∗] satisfying for j = 1, 2, ..., J :

(
∂T

∂t
, S) + (κ∇T,∇S) + (αT, S)∂Ω = (f, S) + (β, S)∂Ω ∀S ∈ X.(8)
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Throughout, the thermal conductivity is assumed bounded and continuously differ-
entiable such that:

|κ(T )− κ(S)| ≤ Cκ|T − S| ∀S, T,(9)

0 < κmin ≤ κ(S) ≤ κmax <∞ ∀S.(10)

Remark: Practically, κmax can be estimated a priori knowing that equation (1) is
elliptic satisfying a maximum principle [4].

A discrete Gronwall inequality will be critical in the subsequent stability and
error analysis. Let N be a positive integer and set both ∆t = t∗

N and tn = n∆t for

0 ≤ n ≤ N . Then, [0, t∗] =
N−1∪
n=0

[tn, tn+1] is a partition of the time interval.

Lemma 2. (Discrete Gronwall Lemma). Let ∆t, H, an, bn, cn, and dn be finite
nonnegative numbers for n ≥ 0 such that for N ≥ 1

aN +∆t

N∑
0

bn ≤ ∆t

N−1∑
0

dnan +∆t

N∑
0

cn +H,

then for all ∆t > 0 and N ≥ 1

aN +∆t
N∑
0

bn ≤ exp
(
∆t

N−1∑
0

dn
)(
∆t

N∑
0

cn +H
)
.

Proof. See Lemma 5.1 on pp. 369 of [20]. �

Lastly, the following norms are utilized in the error analysis: ∀ − 1 ≤ k <∞,

|||v|||∞,k := max
0≤n≤N

∥vn∥k, |||v|||p,k :=
(
∆t

N∑
n=0

∥vn∥pk
)1/p

.

We are now in a place to discuss the key idea of the numerical methods. Let
κn ≡ κ(Tn) and κ′n ≡ κmax − κn. Suppress the spatial discretization, apply an
implicit-explicit time-discretization to the system (1) with (2):
Algorithm 1 (a):

Tn+1 − Tn

∆t
− κmax△Tn+1 +∇ · (κ′n∇Tn) = fn+1,(11)

Remark: For the Robin boundary condition (3), the form of the above scheme
is modified such that (αTn+1, S)∂Ω and (β, S)∂Ω appear on the left- and right-hand
sides, respectively.

Applying a standard FEM discretization in space for the above system, we arrive
at the following block linear system for each ensemble member j:( 1

∆t
M + κmaxD

)
Tn+1 =

(
fn+1 +

1

∆t
M +Nκ(T

n)
)
Tn,(12)

where M is the mass matrix, D is the diffusion matrix, and Nκ(T
n) is the matrix

associated with conductivity fluctuations. The above linear system is equivalent to
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the following: Let A be the resulting coefficient matrix (independent of j). Then,
the following set of J linear systems must be solved at each timestep:[

A
] [
x1|x2|...|xJ

]
=
[
b1|b2|...|bJ

]
.(13)

The matrix A is symmetric positive definite (SPD) since both 1
∆tM and κmaxD are

SPD. The system (13) can be solved with efficient block solvers [7, 18]. Further, since
only one coefficient matrix is required for computation per timestep, the storage
requirement is thereby reduced.

2.1. Finite Element Preliminaries. Let {Th}0<h<1 be a family of quasi-uniform
meshes with maximum element length h = max

K∈Th

hK . We define the geometric

interpolation of Ω as Ωh =
∪

K∈Th
K. Throughout, Ω is assumed to be a convex

polytope so that Ω = Ωh. Let Xh ⊂ X and Yh ⊂ Y be conforming finite element
spaces defined as

Xh := {Sh ∈ C0(Ωh) : ∀ K ∈ Th, Sh|K ∈ Pl(K)} ∩X,
Yh := {Sh ∈ C0(Ωh) : ∀ K ∈ Th, Sh|K ∈ Pl(K)} ∩ Y.

The spaces above satisfy the following approximation properties: ∀1 ≤ l ≤ k,

inf
Sh∈Z

{
∥T − Sh∥+ h∥∇(T − Sh)∥

}
≤ Chk+1|T |k+1 T ∈ Z ∩Hk+1(Ω),(14)

and Z = X or Y . Throughout, C denotes a generic positive constant independent
of h or ∆t.

3. Numerical Scheme

Let Tn
h be the fully discrete approximate solution at time level tn, κnh = κ(Tn

h ),
and κ′nh = κmax − κnh. Then, the fully discrete schemes are:
Algorithm 1:
(a) Given Tn

h ∈ Yh, find T
n+1
h ∈ Yh satisfying

(
Tn+1
h − Tn

h

∆t
, Sh

)
+ (κmax∇Tn+1

h ,∇Sh)− (κ′nh ∇Tn
h ,∇Sh) = (fn+1, Sh) ∀Sh ∈ Yh.

(15)

(b) Given Tn
h ∈ Xh, find T

n+1
h ∈ Xh satisfying the fully discrete scheme as follows:

(
Tn+1
h − Tn

h

∆t
, Sh

)
+ (κmax∇Tn+1

h ,∇Sh)− (κ′nh ∇Tn
h ,∇Sh) + (αTn+1

h , Sh)∂Ω

(16)

= (fn+1, Sh) + (β, Sh)∂Ω ∀Sh ∈ Xh.

Remark: If the thermal conductivity is provided with explicit dependence on
space and time, e.g., κ ≡ κ(x, t), then
(κmax∇Tn+1

h ,∇Sh)− (κ′nh ∇Tn
h ,∇Sh)← (κnmax∇Tn+1

h ,∇Sh)− (κ′n∇Tn
h ,∇Sh)

with κnmax = max1≤j≤J supx∈Ω κ(x, t
n) and κ′n = κnmax − κ(x, tn), in the above,

yield unconditionally stable and first-order accurate methods. The analysis is nov-
el but analogous to that presented below. Advantageously, κmax needs not be
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estimated a priori. Moreover, the consistency error is tighter with more relaxed
requirements on solution regularity.

Finally, the following regularity assumptions of the temperature T are needed
for the subsequent analyses of the schemes (15) and (16) respectively:

T ∈ L∞(0, t∗;Y ∩Hk+1(Ω)),∇T ∈ L∞(0, t∗;L∞(Ω)),(17)

∂T

∂t
∈ L2(0, t∗;X),

∂2T

∂t2
∈ L2(0, t∗;L2(Ω)),

T ∈ L∞(0, t∗;X ∩Hk+1(Ω)),∇T ∈ L∞(0, t∗;L∞(Ω)),(18)

∂T

∂t
∈ L2(0, t∗;X),

∂2T

∂t2
∈ L2(0, t∗;H−1(Ω)).

4. Stability Analysis

In Theorem 3, stability of the temperature approximation is proven for Algorithm
1, both (15) and (16). Later, first-order convergence is proven in Theorem 5.

Theorem 3. Consider Algorithm 1(a) and suppose f ∈ L2(0, t∗;H−1(Ω)) and
β ∈ H−1(∂Ω), then

∥TN
h ∥2 + ∥

√
κmax∇TN

h ∥2 +
N−1∑
n=0

(
∥Tn+1

h − Tn
h ∥2 +∆t∥

√
κ′nh ∇(T

n+1
h − Tn

h )∥2
)(19)

+
∆t

2

N−1∑
n=0

∥
√
κnh∇T

n+1
h ∥2 ≤ ∥T 0

h∥2 + ∥
√
κmax∇T 0

h∥2 +
2∆t

κmin

N−1∑
n=0

∥fn+1∥2−1.

Moreover, for Algorithm 1(b), we have

∥TN
h ∥2 + ∥

√
κmax∇TN

h ∥2 +
N−1∑
n=0

(
∥Tn+1

h − Tn
h ∥2 +∆t∥

√
κ′nh ∇(T

n+1
h − Tn

h )∥2
)(20)

+
C2

P∆t

8

N−1∑
n=0

∥
√
κnh∇T

n+1
h ∥21

≤ ∥T 0
h∥2 + ∥

√
κmax∇T 0

h∥2 +
4∆t

C2
Pκmin

N−1∑
n=0

(
∥fn+1∥2−1.+ 2∥β∥2−1,∂Ω

)
.

Proof. Setting Sh = 2∆tTn+1
h in (15) and using the polarization identity on the

first term, we have

∥Tn+1
h ∥2 − ∥Tn

h ∥2 + ∥Tn+1
h − Tn

h ∥2 + 2∆t∥
√
κmax∇Tn+1

h ∥2(21)

− 2∆t(κ′nh ∇Tn
h ,∇Tn+1

h ) = (fn+1, 2∆tTn+1
h ).
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Now,

2∆t∥
√
κmax∇Tn+1

h ∥2 − 2∆t(κ′nh ∇Tn
h ,∇Tn+1

h )(22)

= 2∆t(κmax∇Tn+1
h ,∇(Tn+1

h − Tn
h )) + 2∆t(κnh∇Tn

h ,∇Tn+1
h ).

Using the polarization identity twice and rearranging terms in equation (21)
yields,

∥Tn+1
h ∥2 − ∥Tn

h ∥2 + ∥Tn+1
h − Tn

h ∥2 + ∥
√
κmax∇Tn+1

h ∥2 − ∥
√
κmax∇Tn

h ∥2(23)

+ ∆t∥
√
κ′nh ∇(T

n+1
h − Tn

h )∥2 +∆t∥
√
κnh∇T

n+1
h ∥2 +∆t∥

√
κnh∇T

n
h ∥2

= 2∆t(fn+1, Tn+1
h ).

Application of Cauchy-Schwarz and Young’s inequalities on the forcing term leads
to

2∆t(fn+1, Tn+1
h ) ≤ ∆t

ϵ1κmin
∥fn+1∥2−1 + ϵ1∆t∥

√
κnh∇T

n+1
h ∥2.(24)

Drop ∆t∥
√
κnh∇Tn

h ∥2, use estimate (24) with ϵ1 = 1/2, and rearrange terms. Then,

∥Tn+1
h ∥2 − ∥Tn

h ∥2 + ∥Tn+1
h − Tn

h ∥2 + ∥
√
κmax∇Tn+1

h ∥2 − ∥
√
κmax∇Tn

h ∥2(25)

+ ∆t∥
√
κ′nh ∇(T

n+1
h − Tn

h )∥2 +
∆t

2
∥
√
κnh∇T

n+1
h ∥2 ≤ 2∆t

κmin
∥fn+1∥2−1.

Summing from n = 0 to n = N − 1, we arrive at

∥TN
h ∥2 + ∥

√
κmax∇TN

h ∥2 +
N−1∑
n=0

(
∥Tn+1

h − Tn
h ∥2 +∆t∥

√
κ′nh ∇(T

n+1
h − Tn

h )∥2
)(26)

+
∆t

2

N−1∑
n=0

∥
√
κnh∇T

n+1
h ∥2 ≤ ∥T 0

h∥2 + ∥
√
κmax∇T 0

h∥2 +
2∆t

κmin

N−1∑
n=0

∥fn+1∥2−1.

Similarly, setting Sh = 2∆tTn+1
h in equation (16), we have

∥Tn+1
h ∥2 − ∥Tn

h ∥2 + ∥Tn+1
h − Tn

h ∥2 + 2∆t∥
√
κmax∇Tn+1

h ∥2(27)

+ 2∆t∥
√
αTn+1

h ∥2∂Ω − 2∆t(κ′nh ∇Tn
h ,∇Tn+1

h )

= (fn+1, 2∆tTn+1
h ) + 2∆t(β, Tn+1

h )∂Ω.

Following the analysis above and rearranging leads to

∥Tn+1
h ∥2 − ∥Tn

h ∥2 + ∥Tn+1
h − Tn

h ∥2 + ∥
√
κmax∇Tn+1

h ∥2 − ∥
√
κmax∇Tn

h ∥2(28)

+ ∆t∥
√
κ′nh ∇(T

n+1
h − Tn

h )∥2 +∆t∥
√
κnh∇T

n+1
h ∥2 +∆t∥

√
κnh∇T

n
h ∥2

+ 2∆t∥
√
αTn+1

h ∥2∂Ω = 2∆t(fn+1, Tn+1
h ) + 2∆t(β, Tn+1

h )∂Ω.

Apply Cauchy-Schwarz and Young’s inequalities on the two terms on the right hand
side of (28). Then,

2∆t(fn+1, Tn+1
h ) ≤ ∆t

ϵ2κmin
∥fn+1∥2−1 + ϵ2∆t∥

√
κnhT

n+1
h ∥21,(29)
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2∆t(β, Tn+1
h )∂Ω ≤

∆t

ϵ3κmin
∥β∥2−1,∂Ω + ϵ3∆t∥

√
κnhT

n+1
h ∥21.(30)

From Lemma 1, we have ∥
√
κnh∇T

n+1
h ∥2+∥

√
αTn+1

h ∥2 ≥ C2
P

2 ∥
√
κnhT

n+1
h ∥21 and thus

C2
P∆t

2
∥
√
κnhT

n+1
h ∥21 ≤ ∆t∥

√
κnh∇T

n+1
h ∥2 +∆t∥

√
αTn+1

h ∥2(31)

≤ ∆t∥
√
κnh∇T

n+1
h ∥2 +

(
∆t∥

√
κnh∇T

n
h ∥2 + 2∆t∥

√
αTn+1

h ∥2
)
.

Combine estimates (29)-(30) with ϵ2 = 2ϵ3 =
C2

P

4 , the above estimate in equation
(28), and rearrange. Then,

∥Tn+1
h ∥2 − ∥Tn

h ∥2 + ∥Tn+1
h − Tn

h ∥2 + ∥
√
κmax∇Tn+1

h ∥2 − ∥
√
κmax∇Tn

h ∥2(32)

+ ∆t∥
√
κ′nh ∇(T

n+1
h − Tn

h )∥2 +
C2

P∆t

8
∥
√
κnhT

n+1
h ∥21

≤ 4∆t

C2
Pκmin

∥fn+1∥2−1 +
8∆t

C2
Pκmin

∥β∥2−1,∂Ω.

Summing from n = 0 to n = N − 1 leads to

∥TN
h ∥2 + ∥

√
κmax∇TN

h ∥2 +
N−1∑
n=0

(
∥Tn+1

h − Tn
h ∥2 +∆t∥

√
κ′nh ∇(T

n+1
h − Tn

h )∥2
)(33)

+
C2

P∆t

8

N−1∑
n=0

∥
√
κnh∇T

n+1
h ∥21

≤ ∥T 0
h∥2 + ∥

√
κmax∇T 0

h∥2 +
4∆t

C2
Pκmin

N−1∑
n=0

(
∥fn+1∥2−1 + 2∥β∥2−1,∂Ω

)
.

�

The stability result above shows that we have control over the temperature ap-
proximation in both L∞(0, t∗;L2(Ω)) and L2(0, t∗;H1(Ω)), unconditionally. More-
over, we see that the numerical dissipation is enhanced, compared to standard

Backward Euler, with the additional term ∆t
∑N−1

n=0 ∥
√
κ′nh ∇(T

n+1
h − Tn

h )∥2.

5. Convergence Analysis

In this section, we first analyze the consistency errors for each numerical scheme.
Convergence is then proven at the anticipated, optimal rates. Recall, the true
solution satisfies

(
Tn+1 − Tn

∆t
, S) + (κn+1∇Tn+1,∇S)(34)

= (fn+1, S) + (
Tn+1 − Tn

∆t
− ∂Tn+1

∂t
, S) ∀S ∈ Y,
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under mixed boundary conditions. For the Robin boundary condition, the true
solution satisfies

(
Tn+1 − Tn

∆t
, S) + (κn+1∇Tn+1,∇S) + (αTn+1, S)∂Ω(35)

= (fn+1, S) + (
Tn+1 − Tn

∆t
− ∂Tn+1

∂t
, S) + (β, S)∂Ω ∀S ∈ X.

Denote en = (Tn − IhTn) − (Tn
h − IhTn) = ϕn − ψn

h , where IhT
n is an arbitrary

interpolate of Tn and en is the error at the time t = tn; e.g., the Lagrange interpolate
[3] is common and applicable. Letting S = Sh ∈ Xh or Yh and subtracting (34) and
(35) from (15) and (16), respectively, yields the error equations:

(
en+1 − en

∆t
, Sh) + (κmax∇en+1,∇Sh)− (κ′nh ∇en,∇Sh) = ξ1(T

n+1, Sh) ∀Sh ∈ Yh,

(36)

and

(
en+1 − en

∆t
, Sh) + (κmax∇en+1,∇Sh)− (κ′nh ∇en,∇Sh) + (αen+1, Sh)(37)

= ξ1(T
n+1, Sh) ∀Sh ∈ Xh,

where ξ1(T
n+1, Sh) is defined as

ξ1(T
n+1, Sh) : = (

Tn+1 − Tn

∆t
− ∂Tn+1

∂t
, Sh) + ((κmax − κn+1)∇Tn+1,∇Sh)(38)

− (κ′nh ∇Tn,∇Sh).

Lemma 4. For T satisfying the system (1) and (2) and regularity assumptions
(17), the consistency error satisfies

∥ξ1(Tn+1, Sh)∥2 ≤
C2

P∆t
2

2κminϵ4

∥∥∥∥∂2T∂t2
∥∥∥∥2
L2(tn,tn+1;L2(Ω))

+
C2

κ

2κminϵ6
∥∇Tn∥2∞∥en∥2(39)

+
C2

κ∆t

2κminϵ5
∥∇Tn+1∥2∞

∥∥∥∥∂T∂t
∥∥∥∥2
L2(tn,tn+1;L2(Ω))

+ (ϵ−1
7 + ϵ−1

8 )∆t
κ2max

2κmin
∥∇T∥2L2(tn,tn+1;L2(Ω))

+
( 8∑
i=4

ϵi
)
∥
√
κnh∇Sh∥2.
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Moreover, suppose T satisfies the system (1) and (3) and regularity assumption
(18). Then,

∥ξ1(Tn+1, Sh)∥2 ≤
∆t2

2κminϵ9

∥∥∥∥∂2T∂t2
∥∥∥∥2
L2(tn,tn+1;H−1(Ω))

(40)

+
C2

κ

2κminϵ6
∥∇Tn∥2∞∥en∥2 +

C2
κ∆t

2κminϵ5
∥∇Tn+1∥2∞

∥∥∥∥∂T∂t
∥∥∥∥2
L2(tn,tn+1;L2(Ω))

+ (ϵ−1
7 + ϵ−1

8 )∆t
κ2max

2κmin

∥∥∥∥∇∂T∂t
∥∥∥∥2
L2(tn,tn+1;L2(Ω))

+
( 9∑

i=5

ϵi

)
∥
√
κnh∇Sh∥21.

Proof. Recall, ξ1(T
n+1, Sh) is defined by

ξ1(T
n+1, Sh) : =

(Tn+1 − Tn

∆t
− ∂Tn+1

∂t
, Sh

)
+ ((κmax − κn+1)∇Tn+1,∇Sh)

(41)

− (κ′nh ∇Tn,∇Sh).

Applying Taylor’s Theorem with integral remainder, Lemma 1, and both Cauchy-
Schwarz and Young’s inequalities, we have

(
Tn+1 − Tn

∆t
− ∂Tn+1

∂t
, Sh) ≤

C2
PF∆t

2κminϵ4

∥∥∥∥∂2T∂t2
∥∥∥∥2
L2(tn,tn+1;L2(Ω))

+
ϵ4
2
∥
√
κnh∇Sh∥2.

(42)

The last two terms in (41) can be reorganized as,

(κ′n+1∇Tn+1,∇Sh)− (κ′nh ∇Tn,∇Sh)(43)

= (κmax∇(Tn+1 − Tn),∇Sh) + (κnh∇Tn,∇Sh)− (κn+1∇Tn+1,∇Sh).

Adding and subtracting (κn∇(Tn+1−Tn),∇Sh) to the right-hand side of the above
and rearranging yields,

(κmax∇(Tn+1 − Tn),∇Sh) + (κnh∇Tn,∇Sh)− (κn+1∇Tn+1,∇Sh)(44)

= (κmax∇(Tn+1 − Tn),∇Sh)− ((κn+1 − κn)∇Tn+1,∇Sh)

− (κn∇(Tn+1 − Tn),∇Sh)− ((κn − κnh)∇Tn,∇Sh).

Using properties (9)-(10), Taylor’s Theorem with integral remainder in the first
term, and both Cauchy-Schwarz and Young’s inequalities, leads to

−((κn+1 − κn)∇Tn+1,∇Sh) ≤ Cκ∥Tn+1 − Tn∥∥∇Tn+1∥∞∥∇Sh∥(45)

≤ C2
κ∆t

2κminϵ5
∥∇Tn+1∥2∞

∥∥∥∥∂T∂t
∥∥∥∥2
L2(tn,tn+1;L2(Ω))

+
ϵ5
2
∥
√
κnh∇Sh∥2,

and

−((κn − κnh)∇Tn,∇Sh) ≤
C2

κ

2κminϵ6
∥∇Tn∥2∞∥en∥2 +

ϵ6
2
∥
√
κnh∇Sh∥2.(46)
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The other two estimates follow from Taylor’s Theorem with integral remainder,
Cauchy-Schwarz, and Young’s inequality,

(κmax∇(Tn+1 − Tn),∇Sh) ≤
κ2max∆t

2κminϵ7

∥∥∥∥∇∂T∂t
∥∥∥∥2
L2(tn,tn+1;L2(Ω))

+
ϵ7
2
∥
√
κnh∇Sh∥2,

(47)

−(κn∇(Tn+1 − Tn),∇Sh) ≤
κ2max∆t

2κminϵ8

∥∥∥∥∇∂T∂t
∥∥∥∥2
L2(tn,tn+1;L2(Ω))

+
ϵ8
2
∥
√
κnh∇Sh∥2.

(48)

Combining the above estimates (41)-(48) yields the result (39). For Robin bound-
ary conditions, the first term of ξ1(T

n+1, Sh) is estimated as

(Tn+1 − Tn

∆t
− ∂T

∂t

n+1

, Sh

)
≤ ∆t2

2κminϵ9

∥∥∥∥∂2T∂t2
∥∥∥∥2
L2(tn,tn+1;H−1(Ω))

+
ϵ9
2
∥
√
κnhSh∥21.

(49)

Combining the above estimates (44)-(49) and using ∥∇Sh∥ ≤ ∥Sh∥1 yields the
result (40). �

With the consistency error now analyzed, we can now prove the major conver-
gence result.

Theorem 5. Suppose T satisfies the assumptions of Lemma 4. Moreover, suppose
T 0
h ∈ Yh is an approximation of T 0 to within the accuracy of the interpolant. Then,
∃ C† such that scheme (15) satisfies

∥eN∥2 +∆t∥
√
κmax∇eN∥2 +

N−1∑
n=0

(
∥en+1 − en∥2 +∆t∥

√
κ′nh ∇(e

n+1 − en)∥2
)(50)

+
∆t

2

N−1∑
n=0

∥
√
κnh∇e

n+1∥2 ≤ C exp(C†)
{(
κ−1
min + κ2maxκ

−1
min + 1 +∆t

)
h2k+2

+
(
κ−1
min + κmax(1 + ∆t+∆t2)

)
h2k +

(
1 + κ−1

min + κ2maxκ
−1
min + κmax

)
∆t2

}
.

Moreover, scheme (16) satisfies

∥eN∥2 + ∥
√
κmax∇eN∥2 +

N−1∑
n=0

(
∥en+1 − en∥2 +∆t∥

√
κ′nh ∇(e

n+1 − en)∥2
)(51)

+
C2

P∆t

8

N−1∑
n=0

∥
√
κnh∇e

n+1∥21 ≤ C exp(C†)
{(
κ−1
min + κ2maxκ

−1
min + 1 +∆t

)
h2k+2

+
(
κ−1
min + κmax(1 + ∆t+∆t2)

)
h2k +

(
1 + κ−1

min + κ2maxκ
−1
min + κmax

)
∆t2

}
.
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Proof. Using en = ϕn − ψn
h , rearrange the error equation (36) with Sh = 2∆tψn+1

h

∥ψn+1
h ∥2 − ∥ψn

h∥2 + ∥ψn+1
h − ψn

h∥2 + 2∆t∥
√
κmax∇ψn+1

h ∥2 − 2∆t(κ′nh ∇ψn
h ,∇ψn+1

h )

(52)

= 2∆t
(ϕn+1 − ϕn

∆t
, ψn+1

h

)
+ 2∆t(κmax∇ϕn+1, ψn+1

h )− 2∆t(κ′nh ∇ϕnh,∇ψn+1
h )

− ξ1(Tn+1, 2∆tψn+1
h ).

Recall equations (22) and (23) from Theorem 7, we proceed in similar fashion so
that after applications of the polarization identity we arrive at

∥ψn+1
h ∥2 − ∥ψn

h∥2 + ∥ψn+1
h − ψn

h∥2 + ∥
√
κmax∇ψn+1

h ∥2 − ∥
√
κmax∇ψn

h∥2
(53)

+ ∆t∥
√
κ′nh ∇(ψ

n+1
h − ψn

h)∥2 +∆t∥
√
κnh∇ψ

n+1
h ∥2 +∆t∥

√
κnh∇ψ

n
h∥2

= 2∆t
(ϕn+1 − ϕn

∆t
, ψn+1

h

)
+ 2∆t(κmax∇ϕn+1, ψn+1

h )− 2∆t(κ′nh ∇ϕnh,∇ψn+1
h )

− 2∆tξ1(T
n+1, ψn+1

h ).

Now, application of Taylor’s Theorem with integral remainder, the Cauchy-Schwarz
inequality, Lemma 1, and Young’s inequality on the first term on the right-hand-side
of (52) yields

2∆t
(ϕn+1 − ϕn

∆t
, ψn+1

h

)
≤ C2

PF

ϵ10κmin
∥ϕt∥2L2(tn,tn+1,L2(Ω)) + ϵ10∆t∥

√
κnh∇ψ

n+1
h ∥2.

(54)

Applying the Cauchy-Schwarz and Young inequalities to the second and third terms
yield

2∆t(κmax∇ϕn+1,∇ψn+1
h ) ≤ κ2max∆t

ϵ11κmin
∥∇ϕn+1∥2 + ϵ11∆t∥

√
κnh∇ψ

n+1
h ∥2,(55)

2∆t(κ′n∇ϕn,∇ψn+1
h ) ≤ κ2max∆t

ϵ12κmin
∥∇ϕn∥2 + ϵ12∆t∥

√
κnh∇ψ

n+1
h ∥2.(56)
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Using the above and Lemma 4 in equation (53), with ϵi = 1/20 for i = 4, 5, 6, 7, 8
and ϵi = 1/12 for i = 10, 11, 12, yields

∥ψn+1
h ∥2 − ∥ψn

h∥2 + ∥ψn+1
h − ψn

h∥2 + ∥
√
κmax∇ψn+1

h ∥2 − ∥
√
κmax∇ψn

h∥2(57)

+ ∆t∥
√
κ′nh ∇(ψ

n+1
h − ψn

h)∥2 +
∆t

2
∥
√
κnh∇ψ

n+1
h ∥2 +∆t∥

√
κnh∇ψ

n
h∥2

≤ 12C2
PF

κmin
∥ϕt∥2L2(tn,tn+1,L2(Ω)) +

12κ2max∆t

κmin

(
∥∇ϕn+1∥2 + ∥∇ϕn∥2

)
+

10C2
PF∆t

2

κmin

∥∥∥∥∂2T∂t2
∥∥∥∥2
L2(tn,tn+1;L2(Ω))

+
10C2

κ∆t

κmin
∥∇Tn∥2∞∥en∥2

+
10C2

κ∆t
2

κmin
∥∇Tn+1∥2∞

∥∥∥∥∂T∂t
∥∥∥∥2
L2(tn,tn+1;L2(Ω))

+
5κ2max∆t

2

κmin

∥∥∥∥∇∂T∂t
∥∥∥∥2
L2(tn,tn+1;L2(Ω))

.

Now, note that ∥en∥2 ≤ 2∥ψn∥2+2∥ψn
h∥2, drop ∆t∥

√
κnh∇ψn

h∥2, sum from n = 0
to n = N − 1, and rearrange terms to arrive at

∥ψN
h ∥2 +∆t∥

√
κmax∇ψN

h ∥2 +
N−1∑
n=0

(
∥ψn+1

h − ψn
h∥2 +∆t∥

√
κ′nh ∇(ψ

n+1
h − ψn

h)∥2
)(58)

+
∆t

2

N−1∑
n=0

∥
√
κnh∇ψ

n+1
h ∥2

≤ 20C2
κ

κmin

N−1∑
n=0

∥∇Tn∥2∞∥ψn
h∥2 +

12C2
PF

κmin
∥ϕt∥2L2(0,t∗,L2(Ω))

+
24κ2max

κmin
|||∇ϕ|||22,0 +

10C2
PF∆t

2

κmin

∥∥∥∥∂2T∂t2
∥∥∥∥2
L2(0,t∗;L2(Ω))

+
10C2

κ

κmin
max

0≤n≤N
∥∇Tn∥2∞

(
2|||ϕ|||22,0 +∆t2

∥∥∥∥∂T∂t
∥∥∥∥2
L2(0,t∗;L2(Ω))

)
+

5κ2max∆t
2

κmin

∥∥∥∥∇∂T∂t
∥∥∥∥2
L2(0,t∗;L2(Ω))

+ ∥ψ0
h∥2 +∆t∥

√
κmax∇ψ0

h∥2.
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Collecting constants, application of Lemma 2, and a rearrangement yield

∥ψN
h ∥2 +∆t∥

√
κmax∇ψN

h ∥2 +
N−1∑
n=0

(
∥ψn+1

h − ψn
h∥2 +∆t∥

√
κ′nh ∇(ψ

n+1
h − ψn

h)∥2
)(59)

+
∆t

2

N−1∑
n=0

∥
√
κnh∇ψ

n+1
h ∥2

≤ C exp
(20C2

κ

κmin
∆t

N−1∑
n=0

∥∇Tn∥2∞
){
κ−1
min

(
∥ϕt∥2L2(0,t∗,L2(Ω))

+ κ2max|||∇ϕ|||
2
2,0 + max

0≤n≤N
∥∇Tn∥2∞|||ϕ|||

2
2,0

)
+∆t2

(
κ−1
min

∥∥∥∥∂2T∂t2
∥∥∥∥2
L2(0,t∗;L2(Ω))

+ κ−1
min max

0≤n≤N
∥∇Tn∥2∞

∥∥∥∥∂T∂t
∥∥∥∥2
L2(0,t∗;L2(Ω))

+ κ2maxκ
−1
min

∥∥∥∥∇∂T∂t
∥∥∥∥2
L2(0,t∗;L2(Ω))

)
+ ∥ψ0

h∥2 +∆t∥
√
κmax∇ψ0

h∥2
}
.

Denote C† =
20C2

κ

κmin
∆t
∑N−1

n=0 ∥∇Tn∥2∞, take an infimum over Yh, apply approxi-

mation property (14), and collect constants. Then,

∥ψN
h ∥2 +∆t∥

√
κmax∇ψN

h ∥2 +
N−1∑
n=0

(
∥ψn+1

h − ψn
h∥2 +∆t∥

√
κ′nh ∇(ψ

n+1
h − ψn

h)∥2
)(60)

+
∆t

2

N−1∑
n=0

∥
√
κnh∇ψ

n+1
h ∥2 ≤ C exp(C†)

{
κ−1
min

(
1 + κ2max + κmin

)
h2k+2

+ κ−1
minh

2k +
(
1 + κ−1

min + κ2maxκ
−1
min + κmax

)
∆t2

}
.

Application of the triangle inequality yields the result, estimate (50). For the latter
result (51) pertaining to Robin boundary conditions, we have the following estimate
for the boundary term:

2∆t(αϕn+1, ψn+1
h )∂Ω ≤

∥α∥2L∞(∂Ω)∆t

2κminϵ0
∥ϕn+1

h ∥2−1,∂Ω +
ϵ0∆t

2
∥
√
κnhψ

n+1
h ∥21.(61)

Using the above estimate, noting that ∥∇S∥ ≤ ∥S∥1 and selecting ϵi = C2
P /40

for i = 5, 6, 7, 8, 9 and ϵi = C2
P /16 for i = 0, 10, 11, 12, leads to the result. �

The above Theorem allows for Lagrange elements of arbitrary polynomial order
to be used. However, if P1 is used, the optimal, first-order accuracy is achieved
with h = O(∆t).
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Table 1. Errors and rates for algorithm (15)

.

m |||∇ < e >|||2,0 Rate |||< e >|||∞,0 Rate

4 2.54E-01 - 1.72E-02 -
8 1.27E-01 1 4.23E-03 2.03
16 6.04E-02 1.08 1.04E-03 2.03
32 3.04E-02 0.99 2.80E-04 1.9
64 1.55E-02 0.98 7.29E-05 1.95

Corollary 6. Suppose the finite element space Z = Yh or Xh is given by P1. Then,
under the assumptions of Theorem 5, the error for Algorithms 1(a) and (b) satisfy

∥eN∥2 +∆t∥
√
κmax∇eN∥2 +

N−1∑
n=0

(
∥en+1 − en∥2 +∆t∥

√
κ′nh ∇(e

n+1 − en)∥2
)(62)

+
∆t

2

N−1∑
n=0

∥
√
κnh∇e

n+1∥2 ≤ C(h2 +∆t2)

and

∥eN∥2 +∆t∥
√
κmax∇eN∥2 +

N−1∑
n=0

(
∥en+1 − en∥2 +∆t∥

√
κ′nh ∇(e

n+1 − en)∥2
)(63)

+
C2

P∆t

8

N−1∑
n=0

∥
√
κnh∇e

n+1∥2 ≤ C(h2 +∆t2).

6. Numerical Experiments

In this section, we illustrate the stability and convergence of the numerical
schemes (15) and (16) using P1 Lagrange elements to approximate temperature
distributions. The first numerical experiment tests for convergence and consider-
s the effects of ensemble and perturbation sizes, where an analytical solution is
constructed via the method of manufactured solutions. From this test it is shown
that the numerical methods (15) and (16) are first-order accurate in the appropri-
ate norms. Moreover, the ensemble and perturbation sizes have little effect on the
accuracy in this setting.

The next numerical experiment is a 3D printing application in the spirit of the
work by Vora and Dahotre [46] using a temperature-dependent thermal conductivity
that resembles data from [48]. A simple application to uncertainty quantification,
calculation of error envelopes, is illustrated using temperature-dependent thermal
conductivity. The final validation experiment is the steady-state solution of a non-
linear heat transfer problem from [47] which is compared to a given analytical
solution. The software used for all tests is FreeFem++ [19].

6.1. Numerical Convergence Study. For the first numerical experiment we will
illustrate the convergence rates for the proposed algorithms (15) and (16). Let the



820 J. A. FIORDILINO AND M. WINGER

Table 2. Errors and rates for algorithm (16)

.

m |||∇ < e >|||2,0 Rate |||< e >|||∞,0 Rate

4 2.49E-01 - 1.81E-02 -
8 1.29E-01 0.95 4.03E-03 2.17
16 6.07E-02 1.1 1.06E-03 1.93
32 3.05E-02 1 3.69E-04 1.53
64 1.55E-02 0.98 1.57E-04 1.24

domain Ω be the unit square (0, 1)2 and final time t∗ = 1; see Figure 1 for the
domain and boundary conditions. Let c = 0.1, with J = 4 and T (x, y, t, ωj) =
(1 + ϵj)T (x, y, t), where ϵj = O(10−1) for 1 ≤ j ≤ 4. The manufactured solution
and thermal conductivity are

T (x, y, t) = 20 cos(t) (cos(x(x− 1)) sin(y(y − 1))− y(y − 1))

κ(T ) = 10 + cT,

where both the heat source and boundary terms are adjusted appropriately. For al-
gorithm (16), the Robin boundary condition is used with α = 1/2 and appropriate β.

Remark: The perturbations are randomly generated. For the first test, they
are 0.9578666373, 0.9721124752, 0.03562315298, and 0.4332194024.

The finite element mesh Ωh is a Delaunay triangulation generated from m points
on each side of Ω. P1 Lagrange elements are used. We calculate the error in the ap-
proximations of the average temperature with the L∞(0, t∗;L2(Ω)) and L2(0, t∗;H1(Ω))
norms. Rates are calculated from the errors at two ∆t1,2 via

log2(e(∆t1)/e(∆t2))

log2(∆t1/∆t2)
.

We set ∆t = 0.5/m and vary m between 4, 8, 16, 32, and 64. Results are presented
in Tables 1 and 2. We see first-order convergence in the L∞(0, t∗;L2(Ω)) norm
and first-order convergence in the L2(0, t∗;H1(Ω)) norm for each algorithm. These
results are as expected based on the convergence analysis, Theorem 5.

For the second test, we study the effect of the size of the perturbation on conver-
gence. We repeat the above convergence test, changing only the perturbation size.
For 1 ≤ j ≤ 4, let ϵj = O(10−l) for l = −2,−1, 0, 1, 2, 3, and 4. The errors of the
average solution in L∞(0, t∗;L2(Ω)) are presented in Tables 3 and 4 for methods
(15) and (16), respectively. We see that as the perturbation size is reduced, the
results increasingly agree with one another. Notably, the algorithm remains stable
irrespective of the perturbation size, consistent with Theorem 3.

Finally, we investigate the effect of the ensemble size J. We fix m = 16, ∆t =
0.5/m, ϵj = O(10−1), and then let J vary from 1, 2, 4, 8, 16, 32, and 64. The
associated average errors are calculated and plotted, Figure 2. Once again, results
are consistent with the theory.
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Figure 1. Domain and boundary conditions for (top) convergence
test manufactured solution, (middle) 3D printing problem, and
(bottom) steady-state solution.
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Table 3. Comparison of |||< e >|||∞,0 with algorithm (15), varying
perturbation size, ϵ.

Mesh Perturbation Size
m O(10−2) O(10−1) O(100) O(101) O(102) O(103)
4 1.09E-02 1.15E-02 1.72E-02 8.17E-02 1.42E+00 1.62E+01
8 2.65E-03 2.79E-03 4.23E-03 5.22E-02 1.67E+00 2.10E+01
16 6.52E-04 6.86E-04 1.04E-03 3.05E-02 1.37E+00 2.06E+01
32 1.77E-04 2.07E-04 2.80E-04 1.63E-02 9.48E-01 1.88E+01
64 1.01E-04 1.17E-04 7.29E-05 8.40E-03 5.63E-01 1.58E+01

Table 4. Comparison of |||< e >|||∞,0 with algorithm (16), varying
perturbation size, ϵ.

Mesh Perturbation Size
m O(10−2) O(10−1) O(100) O(101) O(102) O(103)
4 1.15E-02 1.21E-02 1.81E-02 8.55E-02 1.01E+00 1.16E+01
8 2.54E-03 2.67E-03 4.03E-03 3.86E-02 1.27E+00 1.59E+01
16 6.36E-04 6.66E-04 1.06E-03 2.34E-02 1.07E+00 1.60E+01
32 2.07E-04 2.15E-04 3.69E-04 1.27E-02 7.57E-01 1.49E+01
64 8.98E-05 9.44E-05 1.57E-04 6.59E-03 4.58E-01 1.27E+01

Table 5. Comparison of steady-state solutions with exact solution.

Position m = 8 m = 16 Analytical
x y T % Error T % Error T
0.25 0.50 161.939 3.5 161.919 1.5 161.904
0.375 0.630 143.281 2.8 143.259 0.6 143.253
0.50 0.50 132.309 2.1 132.293 0.5 132.288
0.50 0.75 124.361 1.9 124.342 0 124.342
0.625 0.625 120.343 1.5 120.332 0.4 120.328
0.75 0.50 113.423 1 113.415 0.2 113.413
0.75 0.75 109.731 0.8 109.725 0.2 109.723
0.25 0.75 151.584 6.5 151.541 2.2 151.519

6.2. 3D Printing Application. We now consider an application problem in the
spirit of [46] to illustrate the use of ensembles. The problem is the two-dimensional
heat transfer of a solid medium subject to laser heating from above by a single pulse.
We implement the thermal conductivity for Aluminum Oxide found in [48] which is
dependent on the temperature of the material. Moreover, we set J = 12 whereby for
each ensemble member we generate two random perturbations ωj , ξj ∈ O(10−1) for
the initial condition T (x, y, 0;ωj , ξj) = T0,j = 300(1 + ωj/10) + 100(ξj − 0.5). The
lower left corner walls are maintained at temperature T (1, y, t;ωj) = T (x, 0, t;ωj)
= 300 and upper right corner walls allow for heat flow out of the element via
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Figure 2. Errors versus ensemble size J.
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Figure 3. Comparison of the approximated maximum, minimum
and average temperatures obtained using the ensemble method
(left) and typical backwards differentiation formula (right).

κ∇T · n = 1; see Figure 1. Moreover, the heat source, f(x, y, t), is given by

f(x, y, t;ωj) =

{
(400000) exp(−8((x− 0.5)2 + (y − 0.5)2)) 0 ≤ t ≤ 0.0005,

0 0.0005 < t,

representing a pulse laser with Gaussian beam profile.
The finite element mesh is a division of (0, 1)2 into 642 squares with diagonals

connected with a line within each square in the same direction. First, we use algo-
rithm (15) with timestep ∆t = 0.0001 and final time t∗ = 0.02. Next we solve the
ensemble members individually using a typical backwards differentiation formula,
providing a comparison of the solutions using each method. The values for the
maximum and minimum approximate temperature distributions and mean distri-
bution in the L2(Ω) norm are computed and presented in Figure 3, we can see the
results from the ensemble method agree with with a more traditional method. We
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Figure 4. Mean temperature approximation of all ensemble mem-
bers at t = 0.01, measured along x = 0.5.

see that the temperature approximations generated by perturbed thermal conduc-
tivities envelop the mean, evidently useful in quantifying uncertainty. Additionally
we compare the mean temperature distribution along the center of the domain at
x = 0.5 at the time t = 0.01 in Figure 4.

6.3. Steady State Experiment. The final numerical experiment is the solution
of a two-dimensional steady-state nonlinear heat transfer problem with temperature
dependent thermal conductivity as performed in [47]. We use a single ensemble with
J = 1 and initial condition T (x, y, 0) = 100. The left wall is set at T (0, y, t) = 200
and the remaining boundaries are T (1, y, t) = T (x, 0, t) = T (x, 1, t) = 100. We use
the heat source f(x, y, t) = 0, and set κ(T ) = κ0

cρT where κ0 = 400 is the reference

thermal conductivity, and the specific heat and density are set to be c = 400 and
ρ = 9000, respectively. These boundary conditions can be seen in Figure 1.

The finite element mesh is a uniform division of the domain (0, 1)2 into 82 and
162 squares whose diagonals are connected with a line in the same direction for each
square. Values of the steady-state solution at each mesh size are approximated and
presented with a comparison to the analytical solution given from [47] in Table 5;
from this we can see Algorithm (15) reproduces the steady-state solution with high
accuracy.

7. Conclusion

We presented two algorithms for calculating an ensemble of solutions to heat
conduction problems with uncertain temperature-dependent thermal conductivity.
In particular, these algorithms required the solution of a linear system, involving
a shared coefficient matrix, for multiple right-hand sides at each timestep. Un-
conditional stability and convergence of the algorithms were proven. Moreover,
numerical experiments were performed to illustrate the use of ensembles and the
proven properties. Important next steps include allowing for phase changes in the
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solid material (e.g., liquid phase) and incorporating more physics in the boundary
conditions (e.g., surface-to-ambient radiation).
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[7] Y. T. Feng, D.R.J. Owen, and D. Perić, A block conjugate gradient method applied to linear

systems with multiple right-hand sides, Computer Methods in Applied Mechanics and Engi-
neering 127 (1995) 203-215.

[8] J. A. Fiordilino, A second order ensemble timestepping algorithm for natural convection, SIAM

Journal on Numerical Analysis 56 (2018) 816-837.
[9] J. A. Fiordilino, Ensemble timestepping algorithms for the heat equation with uncertain con-

ductivity, Numerical Methods for Partial Differential Equations 34 (2018) 1901-1916.
[10] J. A. Fiordilino and S. Khankan, Ensemble Timestepping Algorithms for Natural Convection,

International Journal of Numerical Analysis and Modeling 15 (2018) 524-551.
[11] J. A. Fiordilino and Y. Li, New, efficient, and unconditional methods for calculating ensembles

to the heat equation with temperature dependent thermal conductivity, arXiv preprint (2021).
[12] J. A. Fiordilino and M. McLaughlin, An artificial compressibility ensemble timestepping al-

gorithm for flow problems, arXiv preprint (2017) arXiv:1712.06271.
[13] J. M. Fritsch, J. Hilliker, J. Ross, and R. L. Vislocky, Model consensus, Weather and Fore-

casting 15 (2000) 571-582.
[14] M. Gunzburger, N. Jiang, and Z. Wang, An efficient algorithm for simulating ensembles of

parameterized flow problems , IMA Journal of Numerical Analysis 39 (2019) 1180-1205.
[15] M. Gunzburger, N. Jiang, and Z. Wang, A Second-Order Time-Stepping Scheme for Simu-

lating Ensembles of Parameterized Flow Problems, Computer Methods in Applied Mechanics

and Engineering 19 (2017).
[16] M. D. Gunzburger, C. G. Webster, and G. Zhang, Stochastic finite element methods for

partial differential equations with random input data, Acta Numerica 23 (2014) 521-650.
[17] M. Gunzburger, T. Iliescu, M. Schneier, A Leray regularized ensemble-proper orthogonal de-

composition method for parameterized convection-dominated flows, IMA Journal of Numerical
Analysis 40 (2020) 886-913.



826 J. A. FIORDILINO AND M. WINGER

[18] M. H. Gutknecht, Block Krylov Space Methods for Linear Systems with Multiple Right-Hand
Sides: An Introduction, In Modern Mathematical Models, Methods and Algorithms for Real

World Systems, Anamaya Publishers, New Delhi, India, 2006.
[19] F. Hecht, New development in freefem++, Journal of Numerical Mathematics 20 (2012) 251-

265.
[20] J. G. Heywood and R. Rannacher, Finite-Element Approximation of the Nonstationary

Navier-Stokes Problem Part IV: Error Analysis for Second-Order Time Discretization, SIAM
Journal on Numerical Analysis 27 (1990) 353-384.

[21] N. Jiang, A Higher Order Ensemble Simulation Algorithm for Fluid Flows, Journal of Scien-
tific Computing 64 (2015) 264-288.

[22] N. Jiang, S. Kaya, and W. Layton, Analysis of model variance for ensemble based turbulence
modeling, Computational Methods in Applied Mathematics 15 (2015) 173-188.

[23] N. Jiang and W. Layton, An Algorithm for Fast Calculation of Flow Ensembles, International
Journal for Uncertainty Quantification 4 (2014) 273-301.

[24] N. Jiang and C. Qiu, An efficient ensemble algorithm for numerical approximation of stochas-
tic Stokes-Darcy equations, Computer Methods in Applied Mechanics and Engineering 343
(2019) 249-275.

[25] V. John, Finite Element Methods for Incompressible Flow Problems, Springer Nature, Cham,
Switzerland, 2017.

[26] L. Ju, W. Leng, Z. Wang, and S. Yuan, Numerical investigation of ensemble methods with
block iterative solvers for evolution problems, Discrete and Continuous Dynamical Systems,

Series B (2019).
[27] E. Kalnay, Atmospheric modeling, data assimilation and predictability, Cambridge University

Press, New York, 2003.
[28] E. Kalnay and M. Ham, Forecasting forecast skill in the Southern Hemisphere, Preprints

of the 3rd International Conference on Southern Hemisphere Meteorology and Oceanography,
Buenos Aires, 1989, 13-17.

[29] G. E. Karniadakis and J. Glimm, Uncertainty quantification in simulation science, Journal of
Computational Physics 217 (2006) 1-4.

[30] W. J. Layton and C. Trenchea, Stability of the IMEX methods, CNLF and BDF2-AB2, for
uncoupling systems of evolution equations, Applied Numerical Mathematics 62 (2012) 112-120.

[31] P. Lermusiaux, Uncertainty estimation and prediction for interdisciplinary ocean dynamics,
Journal of Computational Physics 217 (2006) 176-199.

[32] J. M. Lewis, Roots of Ensemble Forecasting, Monthly Weather Review 133 (2005) 1865-1885.
[33] N. Li, J. Fiordilino, and X. Feng, Ensemble time-stepping algorithm for the convection-

diffusion equation with random diffusivity, Journal of Scientific Computing 79 (2) 1271-1293.

[34] E. N. Lorenz, The predictability of hydrodynamic flow, Transactions of the New York Acad-
emy of Sciences, Series II 25 (1963) 409-432.

[35] E. N. Lorenz, Deterministic non-periodic flow, Journal of Atmospheric Sciences, 20 (1963)
130-141.

[36] E. N. Lorenz, A study of predictability of a 28-variable atmospheric model, Tellus 17 (1965)
321-333.

[37] E. N. Lorenz The predictability of a flow which possesses many scales of motion, Tellus 21
(1968) 289-307.

[38] Y. Luo and Z. Wang, An Ensemble Algorithm for Numerical Solutions to Deterministic and
Random Parabolic PDEs, SIAM Journal on Scientific Computing 56 (2018) 859-876.

[39] Y. Luo and Z. Wang, A Multilevel Monte Carlo Ensemble Scheme for Random Parabolic
PDEs, SIAM Journal on Scientific Computing 41 (2019) A622-A642.

[40] M. Mohebujjaman and L. Rebholz, An efficient algorithm for computation of MHD flow
ensembles, Computational Methods in Applied Mathematics 17 (2017) 121-137.

[41] N. A. Philips, An Example of Non-Linear Computational Instability, The Atmosphere and

the Sea in Motion 1959 501-504.
[42] N. Sakthivel, J. A. Fiordilino, D. Banh, S. Sanyal, and H. Vora, Development of an Integrat-

ed Laser-aided Metal Additive Manufacturing System with Real-time Process, Dimensions,



FIRST-ORDER ACCURATE NUMERICAL SCHEMES FOR THE HEAT EQUATION 827

and Property Monitoring, Measurements and Control, TMS 2017 146th Annual Meeting &
Exhibition, San Diego, CA, 2017.

[43] A. Takhirov, M. Neda, and J. Waters, Time Relaxation Algorithm for Flow Ensembles, Nu-
merical Methods for Partial Differential Equations 32 (2016) 757-777.

[44] V. Thomée, Galerkin finite element methods for parabolic problems, Springer-Verlag, Berlin,
1984.

[45] P. D. Thompson, Uncertainty of Initial State as a Factor in the Predictability of Large Scale
Atmospheric Flow Patterns, Tellus 9 (1957) 275-295.

[46] H. D. Vora and N. B. Dahotre, Laser Machining of Structural Alumina: Influence of Moving
Laser Beam on the Evolution of Surface Topography, International Journal of Applied Ceramic

Technology 12 (2015) 665-678.
[47] Singh, Akhilendra and Singh, Indra Vir and Prakash, Ravi, ”Numerical solution of

temperature-dependent thermal conductivity problems using a meshless method,” Numerical
Heat Transfer, Part A: Applications, Vol. 50, No. 2, 125–145, (2006). Taylor & Francis.

[48] Kolev, Nikolay Ivanov, Multiphase Flow Dynamics 5: Nuclear Thermal Hydraulics, Springer
(2015) 764-765.

Appendix A. Analysis with Random Initial Condition

Motivated by the analysis performed in [33], we wish to provide the stability and
convergence of (11) with mixed and Robin boundary conditions, where the initial
condition is a real-valued random field on the problem domain. First we must
redefine the problem (1) to include this randomness.

Note: The symbol for the domain Ω used in the previous analysis has
been changed to D, as Ω will be used to represent the event space of the
complete probability space.

A.1. Problem Setting. Let D ⊂ Rd be an open, bounded, Lipschitz domain
and (Ω,F ,P) be a complete probability space with ω ∈ Ω denoting a sampling
point, where Ω is the event space, F ⊂ 2Ω is the σ−algebra, and P : F → [0, 1] is
a probability measure. Given a random initial temperature T (ω, x, 0) = T 0(ω, x),
temperature dependent thermal conductivity κ(T ) and heat source f , find a random
field T : Ω×D × [0, T ]→ R, such that P-almost satisfies:

∂T

∂t
−∇ · [κ(ω, x, t)∇T ] = f(ω, x, t) in Ω×D × [0, T ],(A.1)

where T = T (ω, x, t). For the mixed boundary condition, the boundary ∂D is
partitioned such that ∂D = ΓD

∪
ΓN with ΓD

∩
ΓN = 0 (ΓD for Dirichlet condition

and ΓN for Neumann condition). Let n denote the outward normal, then

T = 0 on ΓD, ∇T · n = 0 on ΓN .(A.2)

Moreover, the Robin condition is prescribed via

αT + κ(ω, x, t)∇T · n = β(ω, x) on ∂D,(A.3)

where α ∈ [0, 1] is the emissivity, and β a prescribed function on the boundary. The
thermal conductivity, κ(ω, x, t), external force term f(ω, x, t), β(ω, x) and initial
condition T 0(ω, x) are real-valued random fields or processes on the physical domain
D; that is
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κ(ω, x, t), T 0(ω, x) : Ω× D̄ → R, f(ω, x, t) : Ω× D̄ × [0, T ]→ R.

Additionally we have the following assumptions of the data:

(A1) The coefficient κ(ω, x, t) is uniformly bounded and coercive:
∃ κmin, κmax ∈ (0,∞) such that P{ω ∈ Ω : κ(ω, x, t) ∈ [κmin, κmax], ∀x ∈
D} = 1;

(A2) The function f(ω, x, t) belongs to the space L2(0, T ;L2(D)) and is square
integrable with respect to P in the sense of:∫

Ω
∥f(ω, x, t)∥2L2(0,T ;L2(D))dP(ω) <∞;

(A2) The function β(ω, x) belongs to the space L2(∂D) and is square integrable
with respect to P in the sense of:∫

Ω
∥β(ω, x)∥2L2(∂D)dP(ω) <∞.

A.2. Weak Formulation. Finally, in addition to the Hilbert spaces and asso-
ciated norms defined in the previous analysis, we introduce the following Hilbert
space

V = L2(0, T ;H1
0 (D))⊗ L2

P(Ω) with norm ∥T∥2V =

∫ T

0

∫
D

E[|∇T 2|]dxdt,

where E stands for the expectation. Now we introduce the weak form of the
problem (A.1), defined as follows for the problem with mixed boundary conditions:
a function T ∈ V is a weak solution of (A.1) if it satisfies the initial condition
T (ω, x, 0) = T 0(ω, x) and for T > 0:∫

D

E[
∂T

∂t
S] +

∫
D

E[κ∇T · ∇S] =
∫
D

E[fS], ∀S ∈ H1
0 (D)⊗ L2

P(Ω).(A.4)

Where for Robin boundary conditions the terms
∫
∂D

E[αTn+1S)] and
∫
∂D

[βS] ap-
pear on the left- and right-hand sides, respectively.

A.3. Parameterization of Stochastic Equation. By applying the KL expan-
sion as used in [33] we can reduce the infinite probability space to a K-dimensional
space. With this we assume that {ξi(ω)}Ki=1 are random variables with probability
density functions ρi : Γi → R+ and their images Γi = ξi(Ω) are bounded inter-
vals in R for i = 1, ...,K. Then, the joint probability density of ξ = (ξ1, ...ξK) is
ρ(ξ) = ΠK

i=1ρi(ξi), ∀ξ ∈ Γ, with the support Γ = ΠK
i=1Γi ⊂ RK .

Now we can rewrite the original problem as the following finite dimensional
problem:

∂T

∂t
−∇ · [κ(ξ, x, t)∇T ] = f(ξ, x, t) in Γ×D × [0, T ],(A.5)

with initial condition T (ξ, x, 0) = T 0(ξ, x) and where T = T (ξ, x, t). The mixed
boundary condition is given as

T = 0 on ΓD, ∇T · n = 0 on ΓN .(A.6)
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Moreover, the Robin condition is prescribed via

αT + κ(ξ, x, t)∇T · n = β(ξ, x) on ∂D,(A.7)

Therefore, the weak form (A.4) has an equivalent form: a function T ∈ Vρ is a weak
solution of (A.5) if it satisfies T (ξ, x, 0) = T 0(ξ, x),

∫
Γ

(
∂T

∂t
, S

)
ρdξ +

∫
Γ

(κ∇T,∇S) ρdξ =
∫
Γ

(f, S) ρdξ.(A.8)

A.4. Numerical Scheme. Applying the method proposed in [33] to the weak
form (A.8), we will need to solve the following fully-discrete methods for mixed
and Robin boundary conditions, which are similar to those introduced in Section
3. Use the uniform time partition on [0, T ] with the time step δT = T/N . Define
Tn
j = T (ξj , x, tn), f

n+1
j = f(ξj , x, tn+1) and κ′ = κmax − κj . The fully discrete

schemes for mixed and Robin boundary conditions are given by:
Algorithm 2: (a) Given Tn

h ∈ Yh, find T
n+1
h ∈ Yh satisfying(

Tn+1
j,h − Tn

j,h

∆t
, Sh

)
+ (κmax∇Tn+1

j,h ,∇Sh)− (κ′nj,h∇Tn
j,h,∇Sh)(A.9)

= (fn+1
j , Sh) ∀Sh ∈ Yh(D).

(b) Given Tn
h ∈ Xh, find T

n+1
h ∈ Xh satisfying the fully discrete scheme as follows:

(
Tn+1
j,h − Tn

j,h

∆t
, Sh

)
+ (κmax∇Tn+1

j,h ,∇Sh)− (κ′nj,h∇Tn
j,h,∇Sh) + (αTn+1

j,h , Sh)∂Ω

(A.10)

= (fn+1
j , Sh) + (β, Sh)∂Ω ∀Sh ∈ Xh(D).

Additionally, we presume the regularity assumptions (17)-(18) hold for the mixed
and Robin boundary conditions, respectively.

A.5. Stability. We can follow an identical analysis to Section 4 for Algorithms 2a
and 2b to obtain the following Theorem:

Theorem 7. Consider Algorithm 2(a) and suppose fj ∈ L2(0, t∗;H−1(D)) and
βj ∈ H−1(∂D), then

∥TN
j,h∥2 + ∥

√
κmax∇TN

j,h∥2 +
N−1∑
n=0

(
∥Tn+1

j,h − Tn
j,h∥2 +∆t∥

√
κ′nj,h∇(T

n+1
j,h − Tn

j,h)∥2
)(A.11)

+
∆t

2

N−1∑
n=0

∥
√
κnj,h∇T

n+1
j,h ∥

2 ≤ ∥T 0
j,h∥2 + ∥

√
κmax∇T 0

j,h∥2 +
2∆t

κmin

N−1∑
n=0

∥fn+1
j ∥2−1.
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Moreover, for Algorithm 2(b), we have

∥TN
j,h∥2 + ∥

√
κmax∇TN

j,h∥2 +
N−1∑
n=0

(
∥Tn+1

j,h − Tn
j,h∥2 +∆t∥

√
κ′nj,h∇(T

n+1
j,h − Tn

j,h)∥2
)(A.12)

+
C2

P∆t

8

N−1∑
n=0

∥
√
κnj,h∇T

n+1
j,h ∥

2
1

≤ ∥T 0
j,h∥2 + ∥

√
κmax∇T 0

j,h∥2 +
4∆t

C2
Pκmin

N−1∑
n=0

(
∥fn+1

j ∥2−1 + 2∥βj∥2−1,∂D

)
.

A.6. Convergence. Again, following the method used in Section 5 we have the
following error bounds for mixed and Robin boundary conditions, respectively,

∥eNj ∥2 +∆t∥
√
κmax∇eNj ∥2 +

N−1∑
n=0

(
∥en+1

j − enj ∥2 +∆t∥
√
κ′nj,h∇(e

n+1
j − enj )∥2

)(A.13)

+
∆t

2

N−1∑
n=0

∥
√
κnj,h∇e

n+1
j ∥2 ≤ C(h2 +∆t2),

and

∥eNj ∥2 +∆t∥
√
κmax∇eNj ∥2 +

N−1∑
n=0

(
∥en+1

j − enj ∥2 +∆t∥
√
κ′nj,h∇(e

n+1
j − enj )∥2

)(A.14)

+
C2

P∆t

8

N−1∑
n=0

∥
√
κnj,h∇e

n+1
j ∥2 ≤ C(h2 +∆t2).

If we apply the expectation to the above, we obtain the following Theorem,
similar to the one proven in [33]:

Theorem 8. Suppose T satisfies the equation (A.5) with boundary conditions (A.6)
and (A.7). Moreover, suppose T 0

h ∈ Yh is an approximation of T 0 to within the
accuracy of the interpolant. Then, ∃ C such that Algorithm 2(a) satisfies

E
[
∥eNj ∥2

]
+∆tE

[
∥
√
κmax∇eNj ∥2

]
(A.15)

+

N−1∑
n=0

E
[(
∥en+1

j − enj ∥2 +∆t∥
√
κ′nj,h∇(e

n+1
j − enj )∥2

)]
+

∆t

2

N−1∑
n=0

E
[
∥
√
κnj,h∇e

n+1
j ∥2

]
≤ C(h2 +∆t2)
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and Algorithm 2(b) satisfies

E
[
∥eN∥2

]
+∆tE

[
∥
√
κmax∇eN∥2

]
(A.16)

+

N−1∑
n=0

E
[(
∥en+1 − en∥2 +∆t∥

√
κ′nh ∇(e

n+1 − en)∥2
)]

+
C2

P∆t

8

N−1∑
n=0

E
[
∥
√
κnh∇e

n+1∥2
]
≤ C(h2 +∆t2).
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