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A NEW WEAK GALERKIN METHOD WITH WEAKLY

ENFORCED DIRICHLET BOUNDARY CONDITION

DAN LI, YIQIANG LI*, AND ZHANBIN YUAN

Abstract. A new weak Galerkin method with weakly enforced Dirichlet boundary condition is
proposed and analyzed for the second order elliptic problems. Two penalty terms are incorporated
into the weak Galerkin method to enforce the boundary condition in the weak sense. The new

numerical scheme is designed by using the locally constructed weak gradient. Optimal order error
estimates are established for the numerical approximation in the energy norm and usual L2 norm.
Moreover, by using the Schur complement technique, the unknowns of the numerical scheme are
only defined on the boundary of each piecewise element and an effective implementation of the

reduced global system is presented. Some numerical experiments are reported to demonstrate the
accuracy and efficiency of the proposed method.
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1. Introduction

This paper is focused on the new developments of the weak Galerkin (WG)
method with weakly enforced Dirichlet boundary condition. For simplicity, we
consider the second order elliptic problem that finds u satisfying

−∇ · (a∇u) = f, in Ω,

u = g, on ∂Ω,
(1)

where Ω is a polygonal domain in Rd(d = 2, 3), and the diffusion tensor a =
{aij}di,j=1 is a symmetric, uniformly positive definite matrix in Rd×d.

Various finite element methods have been proposed for the second order elliptic
problems. The conforming finite element method is well known but requires the
continuous piecewise polynomials on simplicial grids, which leads to the difficulty
in practice. To address this difficulty, the discontinuous Galerkin methods [9], the
hybrid high-order method [29], virtual element methods [1, 2] and WG methods
[34, 36, 37, 47, 48] have attracted wide attention. The WG method first proposed
in [34] is a natural extension of the standard finite element method through a re-
laxed continuity requirement for the approximating functions. Due to this weak
continuity, the WG methods have some advantages such as high flexibility in both
numerical approximations and mesh generations. Moreover, the WG methods are
generally capable of guaranteeing the physical conservation of many problems. The
WG methods have been applied to solve a wide range of PDEs including the bihar-
monic equation [38, 43], wave equation [15], Stokes equations [39], linear elasticity
equation [20], Cahn-Hilliard equation [40], Brinkman equation [23], elliptic inter-
face problems [24], two-phase model [13], Navier-Stokes equation [16], Maxwell’s
equation [25, 31]. Since then, the primal dual WG methods were proposed to simu-
late some challenging problems including elliptic Cauchy problem [41], second order
elliptic equation in non-divergee form [11, 42], Fokker-Planck type equations [44],
div-curl systems with low regularity solutions [10, 19], first order transport problems
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[46]. Recently, Ye and Zhang [49, 50] introduced the stabilizer free WG methods to
simplify the standard WG method, which have been successfully applied to solve
many partial differential equations (PDEs) including second order elliptic problems
[33], Stokes equations [26], biharmonic equation [51], monotone quasilinear elliptic
PDEs [52].

The enforcement of Dirichlet boundary conditions is crucial in practice. It is well
known that the enforcement of the strong boundary conditions is not complicated
only if the computational meshes perfectly match the solving domain of the model
problems, while the implementation of all other cases is very complicated [7, 30]. For
the simple variational problems, the strong enforced Dirichlet boundary conditions
are easy to implement and can provide a numerical approximation with needed
order of convergence so that the strong boundary conditions are usually employed
in many numerical methods. However, it is difficult to obtain an accurate numerical
approximation for some problems such as the interface problems [21] and Naiver-
Stokes equation with low Reynolds number on coarse meshes [8]. To address these
issues, the weakly enforced boundary conditions have been extensively studied. The
most popular approaches include Nitsche’s method [28], the penalty method [5] and
Lagrange multiplier method [6].

The objective of this paper is to present the weak Galerkin method with weakly
enforced Dirichlet boundary condition for the Possion equation (1). The idea is
to weakly impose the boundary condition through the introduction of a Lagrange
multiplier. Specifically, the WG form can be obtained by seeking uh ∈ Vh and
λh ∈ Λh such that

s(uh, v) + (a∇wuh,∇wv)− ⟨λh, v⟩∂Ω =(f, v), ∀v ∈ Vh,

hα⟨λh, σ⟩∂Ω + ⟨σ, ub⟩∂Ω =⟨σ, g⟩∂Ω, ∀σ ∈ Λh,
(2)

where a Lagrangian multiplier λh is given by λh = h−α(−ub +Qbg), and then first
equation in (2) can be rewritten as

s(uh, v) + (a∇wuh,∇wv) + h−α⟨uh, v⟩∂Ω = (f, v) + h−α⟨g, v⟩∂Ω, ∀v ∈ Vh.(3)

Different from the penalty method [5], two additional penalty terms are designed
through a new Lagrangian multiplier. In addition, the generalized weak gradient is
employed in the numerical algorithm. The weak enforcement of Dirichlet boundary
conditions has been incorporated into various numerical methods including finite
element method [17, 27], hybrid high-order method [12], virtual element method
[4], extended finite element methods[45]. To the best of our knowledge, most of the
existing results on the WG framework are available in the sense of strong Dirichlet
boundary conditions. One such exception is the modified WG method [14] that
introduced different penalty terms.

The main novelty of this paper is the following. Firstly, the newWGmethod with
the weak enforcement of Dirichlet boundary condition is a non-trivial generalization
of the classical Nitsche method. This lays the potential foundation in solving many
PDEs that are difficult to enforce the Dirichlet boundary condition in the strong
sense. Secondly, our numerical method allows the general polytopal partitions
which makes the structure of numerical approximations and mesh generations more
flexible. Moreover, the new method can provide an easy-to-implement technique
for certain boundary condition. Finally, we observe from some numerical results
that the maximum principle of the WG method for the model equation (1) with low
regularity solutions holds true on general polytopal meshes, for which the rigorous
mathematical analysis has not been developed.
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This paper is organized as follows. In section 2, we simply review the definition
of the weak gradient and its discrete form. Section 3 presents the WG scheme
for the model equation (1) and then discusses the existence and uniqueness of the
numerical approximation. Section 4 is devoted to deriving an error equation for the
WG scheme. We establish some technical results in section 5. The goal of section
6 is to establish some optimal order error estimates for the numerical solution. In
section 7, we present some details of the Schur complement of the WG scheme.
Section 8 presents a variety of numerical experiments to confirm the developed
theory. Finally, section 9 summarizes this paper and presents the future work.

2. Weak Gradient Operator

This section reviews the definitions of weak gradient and its discrete form. Let
T be a polygonal region with boundary ∂T . A weak function on T refers to v =
{v0, vb} such that v0 ∈ L2(T ) and vb ∈ L2(∂T ). The v0 and vb are intended for the
values of v in the interior of T and on the boundary of T , respectively. It should
be pointed out that vb and v0 are completely independent although vb = v0|∂T is a
feasible choice.

Denote by W(T ) the weak function space on T given by

W(T ) = {v = {v0, vb} : v0 ∈ L2(T ), vb ∈ L2(∂T )}.

Definition 2.1. [34] (Weak gradient) For any weak function v ∈ W(T ), the weak
gradient, denoted by ∇w,T v for v, is defined as a linear function in the dual space
of [H1(T )]d satisfying

(∇w,T v,ψψψ)T = −(v0,∇ ·ψψψ)T + ⟨vb,ψψψ · n⟩∂T , ∀ψψψ ∈ [H1(T )]d,

where n is the unit outward normal vector to ∂T .

For any given integer r ≥ 0, Pr(T ) is the set of polynomial spaces on T with
total degrees no more than r.

Definition 2.2. [34] (Discrete weak gradient) The discrete weak gradient for any
weak function v ∈ W(T ), denoted by ∇w,r,T v, is defined as a unique vector-valued
polynomial in [Pr(T )]

d such that

(∇w,r,T v,ψψψ)T = −(v0,∇ ·ψψψ)T + ⟨vb,ψψψ · n⟩∂T , ∀ψψψ ∈ [Pr(T )]
d.(4)

3. Weak Galerkin Scheme

This section presents the WG method for the equation (1) and then discusses
the existence and uniqueness of the numerical approximation. Let Th be a general
polygonal or polyhedral partition of Ω that satisfies the regular assumptions de-
scribed as in [37]. Denote by Eh the set of all edges or flat faces in Th. Denote by
E0
h = Eh \ ∂Ω the set of all interior edges or faces and E∂Ω = Eh ∩ ∂Ω the set of all

boundary edges or faces, respectively. For each element T ∈ Th, let hT be the mesh
size of T and h = maxT∈Th

hT be the mesh size of Th. Similarly, on each edge or
face e ∈ E∂Ω, he means the mesh size of e.

For integer k ≥ 1, denote by Vk(T ) the piecewise weak function space on T given
by

Vk(T ) = {v = {v0, vb} : v0 ∈ Pk(T ), vb ∈ Pk−1(e), T ∈ Th, e ⊂ ∂T}.
By patching the local finite element Vk(T ) over all the elements T ∈ Th through a
unique value vb on E0

h, we build a global finite element space Vh; i.e.,

Vh = {v = {v0, vb} : v|T ∈ Vk(T ), T ∈ Th}.



650 D. LI, Y. LI, AND Z. YUAN

For simplicity, ∇w is the discrete weak gradient operator ∇w,k−1,T defined by
(4) with r = k − 1; i.e.,

(∇wv)|T = ∇w,k−1,T (v|T ), v ∈ Vh.

For any w, v ∈ Vh, two bilinear forms are given as follows

(a∇ww,∇wv)Th
=

∑
T∈Th

(a∇ww,∇wv)T ,

s(w, v) =
∑
T∈Th

h−1
T ⟨Qbw0 − wb, Qbv0 − vb⟩∂T ,

(5)

where Qb is the usual L2 projection operator from L2(e) to Pk−1(e).
To weakly enforce the Dirichlet boundary condition, we introduce the following

bilinear form:

(6) b(wb, vb) =
∑

e∈E∂Ω

h−α
e ⟨wb, vb⟩e, wb, vb ∈ Vh,

where α ∈ R.

Weak Galerkin scheme 1. A numerical approximation for equation (1) can be
obtained by seeking uh = {u0, ub} ∈ Vh such that

(7) (a∇wuh,∇wv)Th
+ s(uh, v) + b(ub, vb) = (f, v0) + b(Qbg, vb), ∀v ∈ Vh,

where b(ub, vb) and b(Qbg, vb) are defined by (6) or its equivalent form.

Remark 3.1. Compared (7) with the WG scheme in [22], a weakly enforced Dirich-
let boundary condition is employed. It should be pointed out that the numerical
approximation ub arising from (7) is given by ub = Qbg + εb with unknown pertur-
bation εb . To this end, multiplying the linear system (7) by hαe gives rise to the
approximation ub when the mesh size he is small enough .

To reduce the computational complexity of (7), we review the following equiva-
lence result.

Lemma 3.1. For any vb ∈ Vh, the bilinear form ⟨vb, vb⟩∂Ω is spectrally equivalent to
the corresponding discrete form

∑
e∈E∂Ω

∑m
i=1 h

d−1
e |vb(Ai)|2 in the sense that there

exist two constants C1 and C2 such that

(8) C1

∑
e∈E∂Ω

m∑
i=1

hd−1
e |vb(Ai)|2 ≤ ⟨vb, vb⟩∂Ω ≤ C2

∑
e∈E∂Ω

m∑
i=1

hd−1
e |vb(Ai)|2,

where vb(Ai) represents the value of vb at the vertice Ai = (xi, yi) or Ai = (xi, yi, zi)
on e ∈ E∂Ω∩∂T , and the integer m is m = k in two dimension and m = k(k + 1)/2
in three dimension, respectively.

Proof. Similar proof can be found in [35] in details. �

For any wb, vb ∈ Vh, from (8), the bilinear form b(wb, vb) given by (6) can be
reformulated as follows

b(wb, vb) =
∑

e∈E∂Ω

m∑
i=1

hd−1−α
e wbvb(Ai).

For any v ∈ Vh, we introduce

(9) |||v|||2 = (a∇wv,∇wv)Th
+ s(v, v) + b(vb, vb).

Lemma 3.2. For any v ∈ Vh, |||v||| defined by (9) is a norm.
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Proof. It suffices to prove that the positivity property for |||v||| holds true. To this
end, assume that |||v||| = 0. By using (9) and the properties of diffusive tensor a
gives ∇wv = 0 on each T , Qbv0 = vb on each ∂T and vb = 0 on each ∂Ω. It follows
from (4) and integration by parts that for any qqq ∈ [Pk−1(T )]

d

0 = (∇wv,qqq)T

= (∇v0, qqq)T − ⟨v0 − vb, qqq · n⟩∂T
= (∇v0, qqq)T − ⟨Qbv0 − vb, qqq · n⟩∂T
= (∇v0, qqq)T ,

which implies ∇v0 = 0 on each T . Thus, v0 = const on each T . This, together
with Qbv0 = v0 and Qbv0 = vb on each ∂T , leads to v0 ∈ C0(Ω). From vb = 0 on
e ⊂ ∂Ω, we have v0 = 0 in Ω and further vb = 0 on each ∂T . This completes the
proof. �

Lemma 3.3. The weak Galerkin scheme (7) has one and only one numerical so-
lution.

Proof. It follows from (7) that the coefficient matrix (7) is symmetric and positive
definite, which verifies the existence of the numerical solution. Next, it suffices to
prove the uniqueness of the numerical approximation. To this end, assume that

u
(1)
h and u

(2)
h are two different solutions of the WG scheme (7), there holds

(a∇w(u
(1)
h − u

(2)
h ),∇wv)Th

+ s(u
(1)
h − u

(2)
h , v) + b(u

(1)
h − u

(2)
h , vb) = 0

for any v ∈ Vh. By letting v = u
(1)
h − u

(2)
h in the above equation and using Lemma

3.2 leads to u
(1)
h = u

(2)
h . This completes the proof. �

4. Error Equation

The goal of this section is to derive an error equation for the WG scheme (7). To
this end, we introduce some projection operators. On each element T ∈ Th, denote
by Q0 the usual L2 projection operator onto Pk(T ). For any ϕ ∈ H1(Ω), by com-
bining Q0 with Qb gives rise to a projection Qhϕ = {Q0ϕ,Qbϕ}. Similarly, denote
by Qh the usual L2 projection operator mapping from [L2(T )]d to [Pk−1(T )]

d.

Lemma 4.1. [22] For any ϕ ∈ H1(T ), we have the following commutative property

∇w(Qhϕ) = Qh∇ϕ.

Let u be the exact solution of equation (1) and uh be the numerical approx-
imation of the WG scheme (7). eh is denoted as the difference between the L2

projection of the exact solution and the numerical approximation given by

eh = {e0, eb} = {Q0u− u0, Qbu− ub}.
For simplicity of analysis, assume that the diffusion tensor a in (1) is a piecewise

constant matrix. The following results can be easily extended to the WG scheme
(7) with the variable diffusion tensor if the matrix a is enough smooth.

Lemma 4.2. For any v ∈ Vh, the error function eh satisfies the following equation

(10) (a∇weh,∇wv)Th
+ s(eh, v) + b(eb, vb) = s(Qhu, v) + ℓu(v) + ⟨a∇u · n, vb⟩∂Ω,

where the linear function ℓu(v) is given by

ℓu(v) =
∑
T∈Th

⟨v0 − vb, a(I −Qh)∇u · n⟩∂T .(11)
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Proof. It follows from Lemma 4.1, (4) with qqq = aQh∇u and integration by parts
that

(a∇wQhu,∇wv)Th
=(aQh∇u,∇wv)Th

=−
∑
T∈Th

(v0,∇ · (aQh∇u))T +
∑
T∈Th

⟨vb, aQh∇u · n⟩∂T

=
∑
T∈Th

(∇v0, aQh∇u)T +
∑
T∈Th

⟨vb − v0, aQh∇u · n⟩∂T

=(∇v0, a∇u) +
∑
T∈Th

⟨vb − v0, aQh∇u · n⟩∂T ,

(12)

where the property of Qh is used in the last step.
To deal with the first term on the right hand of (12), we test the model equation

(1) against v0 and then use integration by parts to obtain

(f, v0) =− (∇ · (a∇u), v0)

=(a∇u,∇v0)−
∑
T∈Th

⟨a∇u · n, v0⟩∂T

=(a∇u,∇v0)−
∑
T∈Th

⟨a∇u · n, v0 − vb⟩∂T − ⟨a∇u · n, vb⟩∂Ω,

(13)

where
∑

e∈E0
h
⟨a∇u · n, vb⟩e = 0 is used since vb is single valued on each e ∈ Eh.

Substituting (13) into (12) and then using the WG scheme (7) give

(a∇wQhu,∇wv)Th

=(f, v0) +
∑
T∈Th

⟨v0 − vb, a(I −Qh)∇u · n⟩∂T + ⟨a∇u · n, vb⟩∂Ω

=(a∇wuh,∇wv)Th
+ s(uh, v) + b(ub, vb)− b(Qbg, vb) + ℓu(v) + ⟨a∇u · n, vb⟩∂Ω

=(a∇wuh,∇wv)Th
+ s(Qhu− eh, v)− b(eb, vb) + b(Qbu−Qbg, vb) + ℓu(v)

+ ⟨a∇u · n, vb⟩∂Ω
=(a∇wuh,∇wv)Th

− s(eh, v)− b(eb, vb) + s(Qhu, v) + ℓu(v) + ⟨a∇u · n, vb⟩∂Ω,
which, together with u = g on ∂Ω, leads to Lemma 4.2. This completes the proof.

�
5. Technical Results

This section is to derive some technical results to be used in the following con-
vergence analysis.

Assume Th is a regular partition presented in [37]. Then, for any T ∈ Th and
ϕ ∈ H1(T ), the following trace inequality holds true

(14) ∥ϕ∥2∂T ≤ C(h−1
T ∥ϕ∥2T + hT ∥∇ϕ∥2T ).

Moreover, if ϕ is a polynomial on T ∈ Th, we have

(15) ∥ϕ∥2∂T ≤ Ch−1
T ∥ϕ∥2T .

Lemma 5.1. [37] Let Th be a regular partition of Ω that satisfies the assumptions
described as in [37]. Then, for any ϕ ∈ Hk+1(Ω), there holds∑

T∈Th

(∥ϕ−Q0ϕ∥2T + h2T ∥∇(ϕ−Q0ϕ)∥2T ) ≤ Ch2(k+1)∥ϕ∥2k+1,∑
T∈Th

(∥ϕ−Qhϕ∥2T + h2T ∥∇(ϕ−Qhϕ)∥2T ) ≤ Ch2k∥ϕ∥2k+1.
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Lemma 5.2. [22] For any v ∈ Vh, we have the following estimate

∥∇v0∥ ≤ C|||v|||.

Lemma 5.3. For any u ∈ Hk+1(Ω) and v ∈ Vh, there exists a constant C such
that

|s(Qhu, v)| ≤Chk∥u∥k+1|||v|||,(16)

|ℓu(v)| ≤Chk∥u∥k+1|||v|||,(17)

|⟨a∇u · n, vb⟩∂Ω| ≤Ch
α
2 ∥a∇u · n∥∂Ω|||v|||.(18)

Proof. To derive (16), by using the Cauchy-Schwarz inequality, (14) and Lemma
5.1, we have

|s(Qhu, v)|

=|
∑
T∈Th

h−1
T ⟨Qb(Q0u)−Qbu,Qbv0 − vb⟩∂T |

≤C
( ∑

T∈Th

h−1
T ∥Q0u− u∥2∂T

) 1
2
( ∑

T∈Th

h−1
T ∥Qbv0 − vb∥2∂T

) 1
2

≤Chk∥u∥k+1|||v|||,
which leads to the desired error estimate.

From the Cauchy-Schwarz inequality, (14), Lemmas 5.1 and 5.2, ℓu(v) given by
(17) we obtain

|ℓu(v)| =|
∑
T∈Th

⟨v0 − vb, a(I −Qh)∇u · n⟩∂T |

≤C
( ∑

T∈Th

∥v0 − vb∥2∂T
) 1

2
( ∑

T∈Th

∥a(I −Qh)∇u · n∥2∂T
) 1

2

≤C
( ∑

T∈Th

∥Qbv0 − vb∥2∂T +
∑
T∈Th

∥v0 −Qbv0∥2∂T
) 1

2

h
2k−1

2 ∥u∥k+1

≤Ch
2k−1

2 ∥u∥k+1

(
h|||v|||2 + h∥∇v0∥2

) 1
2

≤Chk∥u∥k+1|||v|||,
which implies the desired estimate.

For (18), using (6) and (9) yields

|⟨a∇u · n, vb⟩∂Ω| ≤Ch
α
2 ∥a∇u · n∥∂Ωh

−α
2 ∥vb∥∂Ω

≤Chα
2 ∥a∇u · n∥∂Ω|||v|||.

This completes the proof of the lemma. �

6. Error Estimates

This section is devoted to establishing some error estimates for the numerical
approximation in the energy norm and L2 norm.

Theorem 6.1. Assume that u ∈ Hk+1(Ω) is the exact solution of the equation (1).
Let uh ∈ Vh be the numerical approximation of the WG scheme (7). Then, we have

|||eh||| ≤ C(hk∥u∥k+1 + h
α
2 ∥a∇u · n∥∂Ω),

which implies that α = 2k is the optimal exponent.
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Proof. Let v = eh in (10), we get

(a∇weh,∇weh)Th
+ s(eh, eh) + b(eb, eb) = s(Qhu, eh) + ℓu(eh) + ⟨a∇u · n, eb⟩∂Ω.

From (9) and Lemma 5.3 with v = eh, there yields

|||eh|||2 ≤ C(hk∥u∥k+1 + h
α
2 ∥a∇u · n∥∂Ω)|||eh|||,

This completes the proof of the theorem. �

In order to establish an optimal order error estimate e0 in the L2 norm, the
following dual problem is introduced as:

−∇ · (a∇Φ) = e0, in Ω,

Φ = 0, on ∂Ω.
(19)

If problem (19) satisfies the H2-regularity property, then there exists a general
constant C such that

(20) ∥Φ∥2 ≤ C∥e0∥.

Theorem 6.2. Let u ∈ Hk+1(Ω) be the exact solution of equation (1) and uh ∈ Vh
be the numerical approximation of the WG scheme (7), respectively. If the dual
problem (19) has the H2-regularity property (20). Then, we have the following
error estimate

∥e0∥ ≤ C(hk+1∥u∥k+1 + (h+ h
α
2 )|||eh|||),

which implies the optimal exponent α = 2k.

Proof. By testing the dual problem (19) against e0 and integrating by parts, we
obtain

∥e0∥2 =(−∇ · (a∇Φ), e0)

=
∑
T∈Th

(a∇Φ,∇e0)T −
∑
T∈Th

⟨a∇Φ · n, e0⟩∂T

=
∑
T∈Th

(a∇Φ,∇e0)T −
∑
T∈Th

⟨a∇Φ · n, e0 − eb⟩∂T − ⟨a∇Φ · n, eb⟩∂Ω.

(21)

To analyze the first right term on the right hand side of (21), by choosing u = Φ
and v = eh in (12), we obtain

(22) (a∇Φ,∇e0) = (a∇wQhΦ,∇weh)Th
−

∑
T∈Th

⟨eb − e0, aQh∇Φ · n⟩∂T .

Substituting (22) into (21) and using (10) with v = QhΦ, we have

∥e0∥2 =(a∇wQhΦ,∇weh)Th
−

∑
T∈Th

⟨eb − e0, a(Qh − I)∇Φ · n⟩∂T

− ⟨a∇Φ · n, eb⟩∂Ω
=s(Qhu,QhΦ) + ℓu(QhΦ)− s(eh, QhΦ)− b(eb, QbΦ)

+ ⟨a∇u · n, QbΦ⟩∂Ω − ℓΦ(eh)− ⟨a∇Φ · n, eb⟩∂Ω
=s(Qhu,QhΦ) + ℓu(QhΦ)− s(eh, QhΦ)− ℓΦ(eh)− ⟨a∇Φ · n, eb⟩∂Ω,

(23)

where Φ = 0 on ∂Ω is also used.
Next, it remains to deal with the five terms on the right hand side of (23) one by

one. To derive the first term, it follows from the Cauchy-Schwarz inequality, (14)
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and Lemma 5.1 that

|s(Qhu,QhΦ)| =|
∑
T∈Th

h−1
T ⟨Qb(Q0u)−Qbu,Qb(Q0Φ)−QbΦ⟩∂T |

≤C
( ∑

T∈Th

h−1
T ∥Q0u− u∥2∂T

) 1
2
( ∑

T∈Th

h−1
T ∥Q0Φ− Φ∥2∂T

) 1
2

≤Chk+1∥u∥k+1∥Φ∥2
≤Chk+1∥u∥k+1∥e0∥,

(24)

where the regularity property (20) is also used in the last step.
For the second term, the Cauchy-Schwarz inequality, (14), Lemma 5.1 and the

regularity property (20) are used to obtain

|ℓu(QhΦ)| =|
∑
T∈Th

⟨Q0Φ−QbΦ, a(I −Qh)∇u · n⟩∂T |

≤C
( ∑

T∈Th

∥Q0Φ− Φ∥2∂T
) 1

2
( ∑

T∈Th

∥a(I −Qh)∇u · n∥2∂T
) 1

2

≤Chk+1∥u∥k+1∥Φ∥2
≤Chk+1∥u∥k+1∥e0∥.

(25)

To derive the last three terms, using the similar arguments as in Lemma 5.3 and
(20) gives

|s(QhΦ, eh)| ≤Ch∥e0∥|||eh|||,
|ℓΦ(eh)| ≤Ch∥e0∥|||eh|||,

|⟨a∇Φ · n, eb⟩∂Ω| ≤Ch
α
2 ∥a∇Φ · n∥∂Ω|||eh|||

≤Chα
2 ∥Φ∥2|||eh|||

≤Chα
2 ∥e0∥|||eh|||,

where we also used (9) and the trace theorem for Sobolev space [3].
Finally, substituting (24)-(25) and the above three estimates into (23) yields

∥e0∥2 ≤ C(hk+1∥u∥k+1 + (h+ h
α
2 )|||eh|||)∥e0∥.

This completes the proof. �

Let us introduce the following norm defined on the all edges or faces:

∥eb∥Eh
=

( ∑
T∈Th

hT ∥eb∥2∂T
) 1

2

.

Theorem 6.3. Under the assumptions of Theorem 6.2, there holds

∥eb∥Eh
≤ C(hk+1∥u∥k+1 + (h+ h

α
2 )|||eh|||).

Proof. By the triangle inequality and (15), we can obtain

∥eb∥Eh
=
( ∑

T∈Th

hT ∥eb∥2∂T
) 1

2

≤C
( ∑

T∈Th

hT ∥eb −Qbe0∥2∂T +
∑
T∈Th

hT ∥Qbe0∥2∂T
) 1

2

≤C
(
h2|||eh|||2 + ∥e0∥

) 1
2

,
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which, together with Theorems 6.1 and 6.2, leads to the desired result. This com-
pletes the proof. �
7. Schur Complement of Weak Galerkin Method

To present an effective implementation of the Schur complement of the WG
scheme (7), we recall that the WG solution uh satisfies

(26) (a∇wuh,∇wv)Th
+ s(uh, v) + b(ub, vb) = (f, v0) + b(Qbg, vb), ∀v ∈ Vh.

Setting v = {v0, 0} in (26) yields

(27) (a∇wuh,∇wv)Th
+ s(uh, v) = (f, v0).

Taking v = {0, vb} in (26) gives

(28) (a∇wuh,∇wv)Th
+ s(uh, v) + b(ub, vb) = b(Qbg, vb).

It follows from (27) that for a given numerical approximation ub on each ∂T , the
unknown variable u0 can be written as

(29) u0 = u0(ub, f).

From the principle of superposition, the WG solution uh = {u0, ub} can be refor-
mulated as follows

{u0, ub} = {u0(ub, f), ub} = {u0(0, f), 0}+ {u0(ub, 0), ub}.
Next, substituting the above formulation into (28), we arrive at

(a∇w{u0(ub, 0), ub},∇wv)Th
+ s(∇w{u0(ub, 0), ub}, v) + b(ub, vb)

=b(Qbg, vb)− (a∇w{u0(0, f), 0},∇wv)Th
− s(∇w{u0(0, f), 0}, v)

(30)

for any v = {0, vb} ∈ Vh. From which the unknown variable ub can be obtained.
Then u0 can be solved by (29).

For simplicity, the implementation of the Schur complement of WG scheme (27)-
(28) is summarized as follows:
Step 1 Solve the equation (27) to get u0 = u0(ub, f).
Step 2 Substitute u0 = u0(ub, f) into (30) to obtain ub.
Step 3 Recover u0 by u0 = u0(ub, f) with ub.

Remark 7.1. Note that the solution of the Schur complement of the WG scheme
(27)-(28) is the numerical approximation of the WG scheme (7), since the unique-
ness of numerical solution of (7) implies the fact. Moreover, the Schur component
of the WG methods can significantly reduce the degrees of freedom, especially for the
model problems with high order derivatives in high dimensions. Furthermore, the
global system can be obtained by calculating the local system on each finite element
in a completely independent manner and then integrated them over all the elements
T ∈ Th.

The matrix form of (27)-(28) shall be presented to show further implement the
Schur complement of the WG methods. We only demonstrate the details on a
typical element T ∈ Th because of the similarity for others.

For each T ∈ Th, we introduce the following matrices

A0,0 = [(a∇w{ϕ0j , 0},∇w{ϕ0i, 0})]i,j,T , A0,b = [(a∇w{0, ϕbj},∇w{ϕ0i, 0})]i,j,T ,
Ab,0 = [(a∇w{ϕ0j , 0},∇w{0, ϕbi})]i,j,T , Ab,b = [(a∇w{0, ϕbj},∇w{0, ϕbi})]i,j,T ,
S0,0 = [s({ϕ0j , 0}, {ϕ0i, 0})]i,j,T , S0,b = [s({0, ϕbj}, {ϕ0i, 0})]i,j,T ,
Sb,0 = [s({ϕ0j , 0}, {0, ϕbi})]i,j,T , Sb,b = [s({0, ϕbj}, {0, ϕbi})]i,j,T ,
B∂Ω = [b(ϕbj , ϕbi)]i,j,T , F0 = [(f, ϕ0i)]i,T , F∂Ω = [b(Qbg, ϕb,j)]i,T ,
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in which {ϕ0i} and {ϕbj} are the sets of basis functions for the first and second
components of weak function in the finite element space Vk(T ), respectively.

By substituting the above matrices into the WG scheme (26), we have(
A0,0 + S0,0 A0,b + S0,b

Ab,0 + Sb,0 Ab,b + Sb,b +B∂Ω

)(
u0
ub

)
=

(
F0

F∂Ω

)
,

from which, we get

(31) u0 = (A0,0 + S0,0)
−1(F0 − (A0,b + S0,b)ub).

Substituting (31) into the second equation in the matrix form of the WG scheme
gives (

(Ab,b + Sb,b +B∂Ω)− (Ab,0 + Sb,0)(A0,0 + S0,0)
−1(A0,b + S0,b)

)
ub

=F∂Ω − (Ab,0 + Sb,0)(A0,0 + S0,0)
−1F0,

which leads to ub, and u0 can be solved by equation (31) additionally.

8. Numerical Experiments

In this section, some numerical experiments are reported to confirm the conver-
gence theory established in previous sections.

For simplicity, the piecewise linear finite element Vh with k = 1 and quadratic
element Vh with k = 2 are employed. To demonstrate the efficiency and flexibility
of the WG methods, various numerical experiments with smooth and low regularity
solutions are conducted on both the convex domain Ω1 = (0, 1)2 and the non-convex
domain Ω2 with vertices B1 = (−1,−1), B2 = (0,−1), B3 = (0, 0), B4 = (1, 0),
B5 = (1, 1), B6 = (−1, 1). The domain Ω1 is divided by using some finite element
partitions including uniform triangular partitions “mesh 135”, uniform rectangular
partitions, randomized quadrilateral partitions, hexagonal partitions and octagonal
partitions. The polygonal meshes are generated by PolyMesher package [32] (see
Figure 1) and refined by Lloyd iterations. The uniform triangular partitions are
employed to divide the domain Ω2.

Table 1. Errors and convergence rates for the linear element; ex-
act solution u = cos(x + 1) sin(2y − 1) on the uniform triangular
partitions in Ω1.

α 1/h |||eh||| ∥e0∥ ∥eb∥Eh
∥eb∥∂Ω ∥eb∥L1(∂Ω) ∥eb∥∞,∂Ω

8 3.86E-01 6.29E-02 7.67E-02 1.15E-01 1.95E-01 1.18E-01
1 16 2.95E-01 3.57E-02 4.29E-02 6.67E-02 1.12E-01 7.16E-02

32 2.18E-01 1.94E-02 2.30E-02 3.65E-02 6.06E-02 3.98E-02
64 1.59E-01 1.02E-02 1.19E-02 1.92E-02 3.16E-02 2.14E-02
128 1.14E-01 5.25E-03 6.10E-03 9.89E-03 1.62E-02 1.13E-02

Rate 0.48 0.96 0.97 0.96 0.97 0.92
8 1.67E-01 1.47E-02 1.29E-02 1.90E-02 3.14E-02 2.09E-02

2 16 8.62E-02 3.73E-03 3.26E-03 5.02E-03 8.15E-03 5.84E-03
32 4.35E-02 9.37E-04 8.12E-04 1.28E-03 2.06E-03 1.53E-03
64 2.18E-02 2.35E-04 2.02E-04 3.20E-04 5.16E-04 3.92E-04
128 1.09E-02 5.87E-05 5.03E-05 8.02E-05 1.29E-04 9.92E-05

Rate 1.00 2.00 2.00 2.00 2.00 1.98
8 8.12E-02 1.19E-02 3.46E-03 2.51E-03 4.08E-03 2.82E-03

3 16 3.57E-02 3.02E-03 8.16E-04 3.19E-04 5.15E-04 3.79E-04
32 1.64E-02 7.59E-04 2.02E-04 4.01E-05 6.45E-05 4.88E-05
64 7.79E-03 1.90E-04 5.05E-05 5.01E-06 8.07E-06 6.18E-06
128 3.79E-03 4.77E-05 1.26E-05 6.27E-07 1.01E-06 7.78E-07

Rate 1.04 2.00 2.00 3.00 3.00 2.99
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Figure 1. Mesh level 1 (top) and mesh level 2 (bottom) of the
randomised quadrilateral partitions, the hexagonal partitions and
the non-convex octagonal partitions from left to right, respectively.

Table 2. Errors and convergence rates for the quadratic element;
exact solution u = cos(x+1) sin(2y− 1) on the uniform triangular
partitions in Ω1.

α 1/h |||eh||| ∥e0∥ ∥eb∥Eh
∥eb∥∂Ω ∥eb∥L1(∂Ω) ∥eb∥∞,∂Ω

8 6.82E-02 4.27E-03 5.42E-03 8.43E-03 2.06E-02 5.28E-03
2 16 3.45E-02 1.08E-03 1.31E-03 2.15E-03 5.23E-03 1.41E-03

32 1.73E-02 2.71E-04 3.20E-04 5.40E-04 1.31E-03 3.63E-04
64 8.65E-03 6.77E-05 7.91E-05 1.35E-04 3.28E-04 9.21E-05
128 4.33E-03 1.69E-05 1.97E-05 3.38E-05 8.20E-05 2.32E-05

Rate 1.00 2.00 2.00 2.00 2.00 1.99
8 2.45E-02 5.75E-04 7.02E-04 1.07E-03 2.61E-03 6.96E-04

3 16 8.67E-03 7.44E-05 8.65E-05 1.35E-04 3.28E-04 9.06E-05
32 3.06E-03 9.47E-06 1.08E-05 1.69E-05 4.10E-05 1.15E-05
64 1.08E-03 1.20E-06 1.35E-06 2.11E-06 5.12E-06 1.45E-06
128 3.83E-04 1.50E-07 1.68E-07 2.64E-07 6.41E-07 1.82E-07

Rate 1.50 2.99 3.00 3.00 3.00 2.99
8 8.99E-03 2.82E-04 2.76E-04 1.35E-04 3.27E-04 8.78E-05

4 16 2.26E-03 3.63E-05 3.54E-05 8.44E-06 2.05E-05 5.67E-06
32 5.65E-04 4.59E-06 4.50E-06 5.28E-07 1.28E-06 3.60E-07
64 1.41E-04 5.77E-07 5.66E-07 3.30E-08 8.01E-08 2.26E-08
128 3.54E-05 7.23E-08 7.10E-08 2.06E-09 5.00E-09 1.42E-09

Rate 2.00 3.00 3.00 4.00 4.00 4.00
8 4.00E-03 2.84E-04 2.75E-04 1.68E-05 4.09E-05 1.10E-05

5 16 8.50E-04 3.63E-05 3.55E-05 5.28E-07 1.28E-06 3.55E-07
32 1.91E-04 4.59E-06 4.50E-06 1.65E-08 4.00E-08 1.12E-08
64 4.47E-05 5.77E-07 5.66E-07 5.16E-010 1.25E-09 3.54E-010
128 1.08E-05 7.23E-08 7.10E-08 1.61E-011 3.91E-011 1.11E-011

Rate 2.05 3.00 3.00 5.00 5.00 5.00

In addition to |||eh|||, ∥e0∥ and ∥eb∥Eh
, the following metrics are employed to

measure eb :

∥eb∥∂Ω =
( ∑

e∈E∂Ω

∫
e

|Qbu− ub|2ds
) 1

2

, ∥eb∥L1(∂Ω) =
∑

e∈E∂Ω

∫
e

|Qbu− ub|ds,

∥eb∥∞,∂Ω = max
(x,y)∈e
e∈E∂Ω

|Qbu(x, y)− ub(x, y)|,
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Table 3. Errors and convergence rates for the linear element; ex-
act solution u = exp(2x) cos(3y) on the polygonal partitions in
Ω1.

h Dof |||eh||| ∥e0∥ ∥eb∥Eh
∥eb∥∂Ω ∥eb∥L1(∂Ω) ∥eb∥∞,∂Ω

Randomised quadrilateral partitions
0.114 544 1.15E-00 2.35E-02 5.21E-02 6.78E-02 8.27E-02 8.91E-02
0.0594 2112 6.05E-01 6.59E-03 1.39E-02 1.87E-02 2.18E-02 2.57E-02
0.0302 8320 3.07E-01 1.70E-03 3.55E-03 4.87E-03 5.55E-03 6.82E-03
0.0152 33024 1.55E-01 4.31E-04 8.93E-04 1.23E-03 1.39E-03 1.74E-03
Rate 1.00 1.98 2.01 1.99 2.02 1.95

Hexagonal partitions
0.0777 1200 8.02E-01 1.35E-02 3.09E-02 4.25E-02 4.91E-02 6.13E-02
0.0388 4786 4.05E-01 3.23E-03 7.36E-03 1.09E-02 1.22E-02 1.67E-02
0.0194 19160 1.99E-01 7.69E-04 1.74E-03 2.63E-03 2.97E-03 4.04E-03
0.00946 76661 9.82E-02 1.87E-04 4.13E-04 6.50E-04 7.31E-04 1.05E-03
Rate 1.00 2.03 2.05 1.99 2.00 1.94

Non-octagonal partitions
0.182 288 1.65E-00 6.41E-02 9.19E-02 1.01E-01 1.30E-01 1.38E-01
0.0911 1088 9.05E-01 1.79E-02 2.77E-02 2.80E-02 3.33E-02 3.87E-02
0.0456 4224 4.70E-01 4.74E-03 7.51E-03 7.27E-03 8.37E-03 1.02E-02
0.0228 16640 2.38E-01 1.22E-03 1.94E-03 1.84E-03 2.09E-03 2.60E-03
Rate 0.93 1.91 1.86 1.93 1.99 1.91

Table 4. Errors and convergence rates for the quadratic elemen-
t; exact solution u = cos(πx) cos(πy) on the uniform triangular
partitions in Ω1.

α 1/h |||eh||| ∥e0∥ ∥eb∥Eh
∥eb∥∂Ω ∥eb∥L1(∂Ω) ∥eb∥∞,∂Ω

8 2.85E-02 3.30E-03 3.23E-03 1.16E-03 2.94E-03 5.88E-04
0 16 7.19E-03 4.12E-04 4.10E-04 1.59E-04 4.04E-04 7.99E-05

32 1.80E-03 5.15E-05 5.14E-05 2.08E-05 5.29E-05 1.04E-05
64 4.51E-04 6.44E-06 6.43E-06 2.65E-06 6.75E-06 1.33E-06
128 1.13E-04 8.04E-07 8.04E-07 3.35E-07 8.53E-07 1.68E-07

Rate 2.00 3.00 3.00 2.98 2.98 2.99
8 2.84E-02 3.27E-03 3.17E-03 5.71E-04 1.45E-03 2.88E-04

1 16 7.18E-03 4.10E-04 4.06E-04 7.22E-05 1.83E-04 3.62E-05
32 1.80E-03 5.14E-05 5.11E-05 9.04E-06 2.30E-05 4.52E-06
64 4.51E-04 6.43E-06 6.41E-06 1.13E-06 2.88E-06 5.66E-07
128 1.13E-04 8.04E-07 8.02E-07 1.41E-07 3.60E-07 7.07E-08

Rate 2.00 3.00 3.00 3.00 3.00 3.00
8 2.84E-02 3.26E-03 3.14E-03 1.13E-04 2.86E-04 5.71E-05

2 16 7.17E-03 4.09E-04 4.03E-04 7.42E-06 1.89E-05 3.72E-06
32 1.80E-03 5.13E-05 5.10E-05 4.75E-07 1.21E-06 2.37E-07
64 4.50E-04 6.42E-06 6.40E-06 3.00E-08 7.64E-08 1.50E-08
128 1.13E-04 8.04E-07 8.02E-07 1.89E-09 4.80E-09 9.43E-010

Rate 2.00 3.00 3.00 3.99 3.99 3.99
8 2.84E-02 3.25E-03 3.14E-03 1.53E-05 3.85E-05 7.70E-06

3 16 7.17E-03 4.09E-04 4.03E-04 4.83E-07 1.23E-06 2.42E-07
32 1.80E-03 5.13E-05 5.10E-05 1.52E-08 3.86E-08 7.58E-09
64 4.50E-04 6.42E-06 6.40E-06 4.74E-010 1.21E-09 2.37E-010
128 1.13E-04 8.04E-07 8.02E-07 1.48E-011 3.77E-011 7.40E-012

Rate 2.00 3.00 3.00 5.00 5.00 5.00

for the linear finite element the maximum norm ∥eb∥∞,∂Ω is calculated over the
midpoint of each edge, and for the quadratic finite element the maximum norm
∥eb∥∞,∂Ω is calculated over the the starting point and ending point of each edge in
two dimensions.

8.1. Smooth Solutions. The first part is to numerically validate the accuracy of
WG scheme (7) for the equation (1) with smooth solutions on the square domain
Ω1. The diffusion tensor a = {aij}2i,j=1 is chosen as the variable coefficient matrix
in Table 1 and the identity matrix in Tables 2-5.
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Table 5. Errors and convergence rates for the quadratic element;
exact solution u = cos(x+1) sin(2y−1) on the uniform rectangular
partitions in Ω1.

1/h |||eh||| ∥e0∥ ∥eb∥Eh
∥eb∥∂Ω ∥eb∥L1(∂Ω) ∥eb∥∞,∂Ω

8 8.72E-03 9.90E-05 1.51E-04 1.35E-04 3.28E-04 8.78E-05
Type 1 16 2.19E-03 9.69E-06 2.04E-05 8.44E-06 2.05E-05 5.67E-06

32 5.49E-04 1.09E-06 2.68E-06 5.28E-07 1.28E-06 3.60E-07
64 1.37E-04 1.31E-07 3.44E-07 3.30E-08 8.01E-08 2.26E-08
128 3.43E-05 1.60E-08 4.36E-08 2.06E-09 5.00E-09 1.42E-09

Rate 1.99 3.02 2.98 3.99 3.99 3.99
8 8.91E-03 1.01E-04 1.53E-04 1.48E-04 3.41E-04 1.24E-04

Type 2 16 2.23E-03 9.75E-06 2.04E-05 9.21E-06 2.13E-05 7.84E-06
32 5.59E-04 1.09E-06 2.68E-06 5.75E-07 1.33E-06 4.93E-07
64 1.40E-04 1.31E-07 3.44E-07 3.59E-08 8.33E-08 3.09E-08
128 3.50E-05 1.60E-08 4.36E-08 2.25E-09 5.21E-09 1.94E-09

Rate 1.99 3.02 2.98 4.00 4.00 3.99
8 8.75E-03 9.96E-05 1.51E-04 1.37E-04 3.28E-04 9.34E-05

Type 3 16 2.19E-03 9.70E-06 2.04E-05 8.47E-06 2.05E-05 5.84E-06
32 5.49E-04 1.09E-06 2.68E-06 5.29E-07 1.28E-06 3.65E-07
64 1.37E-04 1.31E-07 3.44E-07 3.30E-08 8.01E-08 2.28E-08
128 3.43E-05 1.60E-08 4.36E-08 2.06E-09 5.00E-09 1.43E-09

Rate 1.99 3.02 2.98 4.00 4.00 4.00

Table 1 demonstrates the numerical performance of the linear WG element for
the equation (1) in Ω1 with different values of α on the uniform triangular partitions.
The variable diffusion tensor a is given by a11 = 1 + x2, a12 = a21 = xy/4 and
a22 = 1 + y2. The exact solution is u = cos(x + 1) sin(2y − 1). These numerical
results are in perfect consistency with the theoretical results. Moreover, for the
case of α = 3, the rates of convergence for |||eh|||, ∥e0∥ and ∥eb∥Eh

remain to be of
orders O(h), O(h) and O(h2), respectively. Therefore, we recommend the value of
α = 2 in practice. In addition, the numerical performance of the errors ∥eb∥∂Ω,
∥eb∥L1(∂Ω) and ∥eb∥∞,∂Ω supports strongly our expectations.

Table 2 lists some numerical results for the quadratic WG element with different
values of α. The exact solution is u = cos(x+ 1) sin(2y − 1). We observe that the
convergence rate for |||eh||| is in perfect consistent with theoretical predictions. For
the numerical errors ∥e0∥ and ∥eb∥Eh

, the numerical results are consistent with the
theory for α = 2, 4, 5, but greatly outperform the theory for the value of α = 3.
In addition, the same rates of convergence are observed of |||eh|||, ∥e0∥ and ∥eb∥Eh

although the parameter α = 5 exceeds the theoretical optimal exponent α = 4.
Thus, α = 4 is recommended in practical computing. Once again, the numerical
errors ∥eb∥∂Ω, ∥eb∥L1(∂Ω) and ∥eb∥∞,∂Ω confirm greatly our prediction of O(hα).

Table 3 presents some numerical results for the linear WG element on different
types of polygonal meshes shown in Figure 1. The parameter is set as the optimal
parameter α = 2. It is clearly seen that these numerical results achieve the optimal
orders of convergence for numerical errors |||eh|||, ∥e0∥ and ∥eb∥Eh

. It should be
pointed out that the convergence rates are computed by the least-square approach.

Table 4 illustrates the numerical performance of the quadratic WG element with
different values of α. The exact solution is given by u = cos(πx) cos(πy), which
satisfies a∇u · n = 0 on ∂Ω. From the comparison, these numerical results typi-
cally outperform the theoretical prediction especially for the values of α = 0 and
α = 1. Moreover, the errors ∥eb∥∂Ω, ∥eb∥L1(∂Ω) and ∥eb∥∞,∂Ω seem to exceed our
expectation.

Table 5 reports some numerical results for the quadratic WG element with three
types of the uniform rectangular mesh. The optimal exponent α = 4 is employed.
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Table 6. Errors and convergence rates for the linear element and
quadratic element; exact solution u = (x2 + y2)

1
4 sin(2 arctan( yx ))

on the uniform triangular partitions in Ω2.

k = 1,α = 2
1/h |||eh||| Rate ∥e0∥ Rate ∥eb∥Eh

Rate

16 7.03E-01 0.74 4.12E-02 1.59 5.22E-02 1.60
32 4.35E-01 0.69 1.41E-02 1.55 1.81E-02 1.53
64 2.80E-01 0.63 4.97E-03 1.50 6.62E-03 1.45
128 1.87E-01 0.59 1.82E-03 1.45 2.56E-03 1.37
1/h ∥eb∥∂Ω Rate ∥eb∥L1(∂Ω) Rate ∥eb∥∞,∂Ω Rate

16 3.15E-02 1.89 3.56E-02 2.00 7.34E-02 1.44
32 8.31E-03 1.92 8.85E-03 2.01 2.65E-02 1.47
64 2.17E-03 1.94 2.20E-03 2.01 9.45E-03 1.49
128 5.62E-04 1.95 5.47E-04 2.01 3.36E-03 1.49

k = 1,α = 3
1/h |||eh||| Rate ∥e0∥ Rate ∥eb∥Eh

Rate

16 5.00E-01 0.61 3.19E-02 1.50 2.69E-02 1.36
32 3.47E-01 0.53 1.16E-02 1.46 1.11E-02 1.27
64 2.44E-01 0.51 4.31E-03 1.43 4.75E-03 1.23
128 1.72E-01 0.50 1.64E-03 1.40 2.06E-03 1.20
1/h ∥eb∥∂Ω Rate ∥eb∥L1(∂Ω) Rate ∥eb∥∞,∂Ω Rate

16 2.01E-03 2.93 2.24E-03 3.02 4.76E-03 2.49
32 2.62E-04 2.94 2.77E-04 3.01 8.43E-04 2.50
64 3.40E-05 2.95 3.44E-05 3.01 1.49E-04 2.50
128 4.40E-06 2.95 4.27E-06 3.01 2.64E-05 2.50

k = 2,α = 3
1/h |||eh||| Rate ∥e0∥ Rate ∥eb∥Eh

Rate

16 2.43E-01 0.73 6.63E-02 1.50 1.92E-02 1.44
32 1.63E-01 0.58 2.36E-02 1.49 7.81E-03 1.30
64 1.13E-01 0.52 8.51E-03 1.47 3.32E-03 1.23
128 7.99E-02 0.51 3.09E-03 1.46 1.44E-03 1.20
1/h ∥eb∥∂Ω Rate ∥eb∥L1(∂Ω) Rate ∥eb∥∞,∂Ω Rate

16 1.43E-03 2.93 2.24E-03 3.02 2.96E-03 2.49
32 1.86E-04 2.94 2.77E-04 3.01 5.25E-04 2.50
64 2.41E-05 2.95 3.44E-05 3.01 9.28E-05 2.50
128 3.12E-06 2.95 4.28E-06 3.01 1.64E-05 2.50

k = 2,α = 4
1/h |||eh||| Rate ∥e0∥ Rate ∥eb∥Eh

Rate

16 2.27E-01 0.54 6.60E-02 1.49 1.81E-02 1.29
32 1.60E-01 0.51 2.36E-02 1.48 7.65E-03 1.24
64 1.13E-01 0.50 8.50E-03 1.47 3.30E-03 1.21
128 7.98E-02 0.50 3.09E-03 1.46 1.44E-03 1.20
1/h ∥eb∥∂Ω Rate ∥eb∥L1(∂Ω) Rate ∥eb∥∞,∂Ω Rate

16 8.94E-05 3.94 1.40E-04 4.02 1.86E-04 3.50
32 5.81E-06 3.94 8.66E-06 4.01 1.64E-05 3.50
64 3.77E-07 3.95 5.37E-07 4.01 1.45E-06 3.50
128 2.43E-08 3.95 3.34E-08 4.01 1.28E-07 3.50

We denote by arbitrary edge eij on ∂Ω forming by the starting point Ai = (xi, yi)
and ending point Aj = (xj , yj). Here three types of discrete points are given
by {Ai, Aj}, { 1

8 (Ai + Aj),
3
4 (Ai + Aj)} and the two Gaussian quadrature points,

respectively. These numerical results suggest that the optimal orders of convergence
for the numerical errors |||eh|||, ∥e0∥ and ∥eb∥Eh

are perfectly confirmed. Once again,
the convergence rates for the numerical errors ∥eb∥∂Ω, ∥eb∥L1(∂Ω) and ∥eb∥∞,∂Ω

reach our expectation.

8.2. Low Regularity Solutions. To numerically explore the performance of the
WG scheme (7) for the equation (1) with low regularity solutions, some numerical
results are presented on the general polygonal partitions. The diffusion tensor a is
identity matrix.

Table 6 presents some numerical results for the linear and quadratic WG elements
with different values of α on the uniform triangular partitions. The exact solution
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Table 7. Errors and convergence rates for the linear element; ex-

act solution u = −x(1− x)y(1− y)(x2 + y2)
2/5−2

2 on the polygonal
partitions in Ω1.

h Dof |||eh||| ∥e0∥ ∥eb∥Eh
∥eb∥∂Ω ∥eb∥L1(∂Ω) ∥eb∥∞,∂Ω

Uniform triangular partitions
1/32 3136 1.54E-01 3.87E-02 3.29E-03 1.74E-04 1.15E-04 6.39E-04
1/64 12416 1.14E-01 1.47E-02 1.25E-03 2.39E-05 1.45E-05 1.22E-04
1/128 49408 8.63E-02 5.56E-03 4.73E-04 3.28E-06 1.81E-06 2.31E-05
1/256 197120 6.53E-02 2.11E-03 1.79E-04 4.48E-07 2.27E-07 4.39E-06
Rate 0.41 1.40 1.40 2.87 2.99 2.40

Uniform rectangular partitions
1/32 3152 1.10E-01 5.08E-03 1.98E-03 1.45E-04 9.48E-05 5.79E-04
1/64 12448 8.22E-02 1.93E-03 7.62E-04 2.00E-05 1.19E-05 1.10E-04
1/128 49472 6.21E-02 7.31E-04 2.90E-04 2.74E-06 1.50E-06 2.09E-05
1/256 197248 4.71E-02 2.77E-04 1.10E-04 3.75E-07 1.77E-07 3.96E-06
Rate 0.41 1.40 1.39 2.87 3.02 2.40

Randomised quadrilateral partitions
0.114 544 1.55E-01 1.55E-02 4.17E-03 3.48E-03 2.83E-03 8.95E-03
0.0594 2112 8.95E-02 5.84E-03 1.63E-03 5.28E-04 3.91E-04 1.86E-03
0.0302 8320 6.01E-02 2.25E-03 6.18E-04 7.57E-05 5.17E-05 3.62E-04
0.0152 33024 4.60E-02 7.88E-04 2.46E-04 1.06E-05 6.62E-06 7.07E-05
Rate 0.60 1.47 1.40 2.87 3.00 2.40

Hexagonal partitions
0.0777 1200 1.50E-01 1.89E-02 5.67E-03 1.42E-03 1.17E-03 3.75E-03
0.0388 4786 1.01E-01 7.26E-03 2.07E-03 2.00E-04 1.49E-04 7.26E-04
0.0194 19160 5.50E-02 2.61E-03 5.19E-04 2.59E-05 1.78E-05 1.33E-04
0.0095 76661 4.66E-02 1.01E-03 2.28E-04 3.50E-06 2.14E-06 2.48E-05
Rate 0.59 1.40 1.57 2.86 3.00 2.39

Non-octagonal partitions
0.182 288 2.10E-01 4.13E-02 8.68E-03 7.73E-03 6.95E-03 1.56E-02
0.0911 1088 1.30E-01 1.55E-02 3.62E-03 1.11E-03 9.01E-04 3.01E-03
0.0456 4224 9.61E-02 5.89E-03 1.47E-03 1.56E-04 1.16E-04 5.75E-04
0.0228 16640 7.47E-02 2.25E-03 5.77E-04 2.17E-05 1.47E-05 1.09E-04
Rate 0.49 1.40 1.30 2.83 2.96 2.39

is u = (x2 + y2)
1
4 sin(2 arctan( yx )) on the L-shaped domain Ω2. It is easy to check

u ∈ H1.5−ε for arbitrary small ε > 0. For |||eh|||, ∥e0∥ and ∥eb∥Eh
, the numerical

results for the linear element with α = 3 is more stable than that for linear element
with α = 2. For the quadratic WG element with α = 2 or α = 3, the rates of
convergence for |||eh|||, ∥e0∥ and ∥eb∥Eh

seem to be around O(h0.5), O(h1.5) and
O(h1.2), respectively. Moreover, ∥eb∥∂Ω, ∥eb∥L1(∂Ω) and ∥eb∥∞,∂Ω converge to zero

at the rates of O(hα), O(hα) and O(hα−0.5), respectively.
Tables 7-8 illustrate the numerical performance of the linear WG element with

α = 3 on different types of polygonal partitions shown in Figure 1. The right-hand

side function f is chosen for exact solution u = −x(1 − x)y(1 − y)(x2 + y2)
2/5−2

2 .
It is obvious that f ≤ 0 in Ω1 and the exact solution u has the regularity of u ∈
H1+ 2

5−ε(Ω) for arbitrary small ε > 0. We observe from Table 7 that on the uniform
triangular partitions and uniform rectangular partitions, the rates of convergence
for |||eh|||, ∥e0∥, ∥eb∥Eh

, ∥eb∥∂Ω, ∥eb∥L1(∂Ω) and ∥eb∥∞,∂Ω are of orders O(h0.4),

O(h1.4), O(h1.4), O(h2.87), O(h3), O(h2.4), respectively. Moreover, the performance
of numerical approximation on the polygonal partitions is presented in Table 7.
Table 8 reports the maximum values of the numerical approximation ub on different
polygonal partitions. We observe that maxx∈Ω\∂Ω ub(x, y) < maxx∈∂Ω ub(x, y).
This indicates the maximum principle holds true for the numerical solution ub on
the polygonal partitions, for which the mathematical theory has not been developed
yet.
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Table 8. The discrete maximum values of the WG solution ub;

exact solution u = −x(1−x)y(1−y)(x2+y2)
2/5−2

2 on the polygonal
partitions in Ω1.

h

Uniform triangular partitions

1/64 1/128 1/256

maxΩ\∂Ω ub(x, y) -3.499E-05 -8.755E-06 -2.19E-06
max∂Ω ub(x, y) -1.709E-08 -1.069E-09 -6.68E-011

h

Uniform rectangular partitions

1/64 1/128 1/256

maxΩ\∂Ω ub(x, y) -4.665E-05 -1.168E-05 -2.920E-06
max∂Ω ub(x, y) -7.620E-09 -4.760E-010 -2.973E-011

h

Randomised quadrilateral partitions

0.0594 0.0302 0.0152

maxΩ\∂Ω ub(x, y) -2.679E-04 -6.261E-05 -1.523E-05
max∂Ω ub(x, y) -1.052E-06 -6.211E-08 -3.977E-09

h

Hexagonal partitions

0.0388 0.0194 0.00946

maxΩ\∂Ω ub(x, y) -1.072E-04 -3.410E-05 -9.240E-06
max∂Ω ub(x, y) -1.487E-07 -1.422E-08 -7.615E-010

h

Non-octagonal partitions

0.0911 0.0456 0.0228

maxΩ\∂Ω ub(x, y) -4.335E-05 -8.250E-06 -2.072E-06
max∂Ω ub(x, y) -3.165E-06 -1.982E-07 -1.239E-08

9. Conclusions

In this paper, we have developed a new WGmethod with weakly enforced Dirich-
let boundary condition for the second order elliptic equation. Two additional bilin-
ear forms are incorporated into the weak Galerkin framework to weakly enforce the
Dirichlet boundary condition. Optimal order error estimates for the numerical ap-
proximation are rigorously established. Some numerical experiments are reported
to validate the developed theory. The last numerical experiment also reveals that
the maximum principle holds true for the WG scheme (7) on general polytopal
meshes. To examine the numerical method proposed in this paper, more realis-
tic problems like the wall-bounded turbulent flows will be numerical solved and
analyzed theoretically in the future work.
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[6] I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math., vol. 20,
pp. 179-192, 1973.

[7] Y. Bazilevs, C. Michler, V. M. Calo and T. J. R. Hughes, Isogeometric variational multi-
scale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on

unstretched meshes, Comput. Methods Appl. Mech. Engrg., vol. 199, pp. 780-790, 2010.
[8] Y. Bazilevs, C. Michler, V. M. Calo and T. J. R. Hughes, Weak Dirichlet boundary conditions

for wall-bounded turbulent flows, Comput. Methods Appl. Mech. Engrg., vol. 196, pp. 4853-
4862, 2007.

[9] B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous
Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM
J. Numer. Anal., vol. 47(2), pp. 1319-1365, 2009.

[10] S. Cao, C. Wang and J. Wang, A new numerical method for div-curl systems with low

regularity assumptions, Comput. Math. Appl., vol. 114, pp. 47-59, 2022.
[11] W. Cao, C. Wang and J. Wang, An Lp-weak Galerkin method for second order elliptic

equations in non-divergence, https://arxiv.org/pdf/2106.03191v1.pdf.

[12] K. L. Cascavita, F. Chouly and A. Ern, Hybrid high-order discretizations combined with
Nitsche’s method for Dirichlet and Signorini boundary conditions, IMA. J. Numer. Anal.,
vol. 40, pp. 2189-2226, 2020.

[13] V. Ginting, G. Lin and J. Liu, On application of the weak Galerkin finite element method

to a two-phase model for subsurface flow, J. Sci. Comput., vol. 66, pp. 225-239, 2016.
[14] F. Gao, S. Zhang and P. Zhu, Modified weak Galerkin method with weakly imposed boundary

condition for convection-dominated diffusion equations, Appl. Numer. Math., vol. 157, pp.
490-504, 2020.

[15] Y. Huang, J. Li and D. Li, Developing weak Galerkin finite element methods for the wave
equation, Numer. Methods Partial Differ. Equ., vol. 33(3), pp. 868-884, 2017.

[16] X. Hu, L. Mu and X. Ye, A weak Galerkin finite element method for the Navier-Stokes
equations, J. Comput. Appl. Math., vol. 362, pp. 614-625, 2019.

[17] M. C. Hsu, I. Akkerman and Y. Bazilevs, Wind turbine aerodynamics using ALECVMS:
validation and the role of weakly enforced boundary conditions, Comput. Mech., vol. 50, pp.
499-511, 2012.

[18] R. Lin, X. Ye, S. Zhang and P. Zhu, A weak Galerkin finite element method for singular

perturbed convection-diffusion reaction problems, SIAM J. Numer. Anal., vol. 56(3), pp.
1482-1497, 2018.

[19] Y. Liu and J. Wang, A primal-dual weak Galerkin method for div-curl systems with low-

regularity solutions, https://arxiv.org/pdf/2003.11795v2.pdf.
[20] Y. Liu and J. Wang, A locking-free P0 finite element method for linear elasticity equations

on polytopal partitions, IMA. J. Numer. Anal., vol. 0, pp. 1-35, 2021.
[21] A. J. Lew and G. C. Buscaglia, A discontinuous-Galerkin-based immersed boundary method,

Int. J. Numer. Methods Engrg., vol. 76(4), pp. 427-454, 2008.
[22] L. Mu, J. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduc-

tion, J. Comput. Appl. Math., vol. 285, pp. 45-58, 2015.
[23] L. Mu, J. Wang, Y. Wang and X. Ye, A stable numerical algorithm for the Brinkman

equations by weak Galerkin finite element methods, J. Comput. Phys., vol. 273, pp. 327-342,
2014.

[24] L. Mu, J. Wang, X. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic
interface problems, J. Comput. Phys., vol. 325, pp. 157-173, 2016.

[25] L. Mu, J. Wang, X. Ye and S. Zhang, A weak Galerkin finite element mthod for the Maxwell
equations, J. Sci. Comput., vol. 65, pp. 363-386, 2015.

[26] L. Mu, X. Ye and S. Zhang, A stabilizer-free, pressure-robust, and superconvergence weak

Galerkin finite element method for the Stokes equations on polytopal mesh, SIAM J. Sci.
Comput., vol. 43(4), pp. A2614-A2637, 2021.
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