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FULL DISCRETISATION OF THE TIME DEPENDENT
NAVIER-STOKES EQUATIONS WITH ANISOTROPIC SLIP

BOUNDARY CONDITION

RIM ALDBAISSY, NANCY CHALHOUB, J. K. DJOKO, AND TONI SAYAH∗

Abstract. In this work, we study theoretically and numerically the non-stationary Navier-
Stokes’s equations under power law slip boundary condition. We establish existence of a unique
solution by using a semi-discretization in time combined with the weak convergence approach.
Next, we formulate and analyze the discretzation in time and the finite element approximation
in space associated to the continuous problem. We derive optimal convergence in time and space
provided that the solution is regular enough on the slip zone. Iterative schemes for solving the
nonlinear problems is formulated and convergence is studied. Numerical experiments presented
confirm the theoretical findings.

Key words. Power law slip boundary condition, Navier-Stokes equations, space-time discretiza-
tion, monotonicity, error estimates.

1. Introduction

We are concerned with the dicretization of the non-stationary incompressible
Navier-Stokes equations

(1)


∂u

∂t
− 2ν divDu+ [u · ∇]u+∇p = f in Ω× (0, T ),

div u = 0 in Ω× (0, T )
u(x,0) = u0 in Ω× {0},

where Ω is a open and bounded domain in IRd, with a Lipschitz-continuous bound-
ary ∂Ω. It is assumed that d = 2, 3, and T > 0 is the final time of observation of the
fluid. The unknowns are the velocity u and the pressure p. f is the external force
acting on the fluid and ν is the kinematic viscosity of the fluid, assume non-negative.
u0 is the initial velocity and we assume for the moment that div u0 = 0. We recall
that the Cauchy stress tensor is T = −pI + 2νDu, with I, the identity matrix in
IRd×d, while the symmetric part of the velocity gradient is 2Du = ∇u + (∇u)T .
We are interested in (1) when the position and the direction of the slip boundary
condition are taken into account (see [14, 15]). We then assume that the boundary
∂Ω is made of two components S and Γ, such that ∂Ω = S ∪ Γ, with S ∩ Γ = ∅.
We assume the homogeneous Dirichlet condition on Γ, that is

(2) u = 0 on Γ .

Thus Γ is the porous or artificial boundary where the fluid is prescribed. On S, we
assume the impermeability condition

(3) u · n = 0 on S ,
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where n : S −→ IRd is the normal outward unit vector to S. S is an impermeable
solid surface along which the fluid may slip. Taking the scalar product of u and
the balance of linear momentum in (1), we obtain
(4)
1

2

d

dt

∫
Ω

|u|2 dx+ 2ν

∫
Ω

|Du|2 dx+

∫
S

(−Tn)τ · uτ dσ =

∫
Ω

f · udx , for all t ≥ 0 ,

with dσ being the surface measure associated to S. Also, for any vector v defined on
S, we set vτ = v−(v ·n)n. Thus (Tn)τ denotes the projection of the normal stress
into the corresponding tangent plane. We note that the first term in (4) stands for
the change of the kinetic energy, the second and third expressions represent the
energy that is dissipated and transformed to other form forms of energy. We are
more interested in the energy on the boundary S that can only be fully expressed if
(Tn)τ is given. For that purpose, the most general relation between uτ and (Tn)τ
is the implicit constitutive relation [19]

(5) ψ(uτ , (Tn)τ ) = 0

where ψ is function. The simplest form of (5) that ensure the non-negativity of∫
S

(−Tn)τ · uτ dσ is the choice

(−Tn)τ = αuτ dσ , α > 0 .

This is the Navier’s slip boundary conditions. If (Tn)τ = 0, then one gets a perfect
slip boundary condition, while if uτ = 0, then there is no slip. We are interested
in the power law slip boundary condition given as follows [7]

(6) (Tn)τ + |Kuτ |s−2K2uτ = 0 on S × (0, T ) ,

where |v|2 = v · v is the Euclidean norm. K is an anisotropic tensor, assumed
to be uniformly positive definite, symmetric, and bounded. s is a real, strictly
positive number representing the flow behavior index. The tangential shear is a
power law function of the tangential velocity. Such a boundary condition arises
when the contact surface is lubricated with a thin layer of a non-Newtonian fluid.
It is manifest that for s = 2 and K = I, one obtains the classical Navier’s slip
condition. The anisotropic slip law (6) defines from the slip relation introduce in
[14, 15]; that is

(7) (Tn)τ + ψ(uτ )uτ = 0 on S × (0, T ) ,

where the function ψ is real valued and satisfies;
(i) ψ is bounded and there exist two positive constants α1, α2 such that for

any vector v ∈ IRd

(8) α1 ≤ ψ(v) ≤ α2 .

(ii) ψ is Lipschitz-continuous with Lipschitz constant λ, that is

(9) ∀ v,w ∈ IRd , |ψ(v)− ψ(w)| ≤ λ |v −w| .

It is manifest by taking ψ(uτ ) = |Kuτ |s−2
K2, the conditions (8) and (9) are

not verified. Hence (6) does not belongs to the class of anisotropic slip boundary
conditions defined by C. Le Roux in [14, 15]. We intend to study the finite element
solution of the Navier-Stokes equations with (7), (8) and (9). A similar model but
for the stationary case has been analysed in [7] using conforming finite element
approach.
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We analyse problem (1),(2), (3) and (6) in three steps. First, we discretize in
time the weak formulation associated with (1),(2), (3) and (6). Next, since the
discrete in time problem is a Navier-Stokes’s like problem with an extra nonlinear
monotone term, we used the Galerkin’s approximation together with monotone
operator’s theory to claim existence at this juncture. The last step in the procedure
is to derive some boundeness of the solution and used some compactness results to
recover the solution of the continuous in time formulation. This approach is not
new and the interested reader may consult the celebrated book of J.L. Lions (see
[16]). Global uniqueness is readily obtained in 2d, but in 3d we are well aware
that the uniqueness for 3d Navier-Stokes problems remains an open question. We
discretize the weak formulation associated to (1),(2), (3) and (6) in time by Euler’s
implicit scheme and in space with the conforming finite element in polygonal or
polyhedral domain. We prefer this scheme for its simplicity and also because we
are able to obtain an analogue of (4) in the discrete setting. We derive existence, and
conditional uniqueness, and optimal a priori error estimates. Thirdly, the space-
time approximation problem is linearized and convergence of the iterative scheme is
established. Finally, some representatives numerical simulations that validate the
theoretical findings are exhibited.

For the physical motivations, interpretations and derivation of (6), we refer the
interested reader to the works [14, 15, 17, 3, 13, 12, 6], where basic continuum
mechanics are revisited. We also mentioned that this boundary condition is present
in the context of laminar flows of Newtonian liquids (e.g. water) over complex
surfaces, also when a rough or structured boundary surface is anisotropic, e.g.
when it has rows of riblets, pillars or periodic patterns, the effective slip condition
is anisotropic, i.e., direction-dependent. When the surface is heterogeneous, the
effective slip is also position-dependent. This can occur, for example, when the
boundary has a varying degree of roughness or when the boundary is a smooth
surface with a varying hydrophobic/hydrophilic composition.

The outline of the paper is as follows:
• Section 2 is devoted to the introduction of classical notations and functional

setting for a mathematical understanding of the boundary value problem
(1),(2), (3) and (6). Section 3 desalts with the construction of the weak
solution of (1),(2), (3) and (6).

• In Section 4, we introduce the discrete problem, recall their main properties,
and study their a priori errors and derive convergence. We also formulate
the iterative scheme for the practical implementation of the nonlinear dis-
crete problem.

• Numerical results and some concluding remarks are reported in Section 5.

2. Preliminaries

In this section, we recall the main notations and results which we will use later
on.

We denote by [Lp(Ω)]d the space of measurable functions v such that |v|p is
integrable. For v ∈ [Lp(Ω)]d, the norm is defined by

∥ v ∥[Lp(Ω)]d=

(∫
Ω

|v(x)|pdx
)1/p

.

We introduce the Sobolev space

Wm,r(Ω)d =
{
v ∈ [Lr(Ω)]d; ∂kv ∈ [Lr(Ω)]d, ∀|k| ≤ m

}
,
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where k = (k1, · · · , kd) is a vector of non negative integers, such that |k| = k1 +
· · ·+ kd and

∂kv =
∂|k|v

∂xk1
1 · · · ∂xkd

d

.

This space is equipped with the semi-norm

|v|m,r,Ω =

 ∑
|k|=m

∫
Ω

|∂kv|rdx

1/r

,

and is a Banach space for the norm

∥ v ∥m,r,Ω=

(
m∑
ℓ=0

|v|rℓ,r,Ωdx

)1/r

.

When r = 2, this space is the Hilbert space Hm(Ω)d. In particular, we consider
the following spaces

H1
0 (Ω)

d = {v ∈ H1(Ω)d,v|∂Ω
= 0},

equipped with the norm

|v|H1
0 (Ω)d = |v|1,Ω =

(∫
Ω

|∇v|2dx
)1/2

.

The dual of H1
0 (Ω)

d is denoted by H−1(Ω)d.
We also introduce

L2
0(Ω) = {q ∈ L2(Ω);

∫
Ω

q(x)dx = 0}

and we define the following scalar product in L2(Ω)d

(v,w) =

∫
Ω

v(x) ·w(x)dx, ∀v,w ∈ L2(Ω)d.

As usual, for handling time-dependent problems, it is convenient to consider func-
tions defined on a time interval [a, b] with values in a separable functional space W
equipped with a norm ∥ . ∥W . For all r ≥ 1 we introduce the space

Lr(a, b;W ) =

{
f is measurable on ]a, b[ and

∫ b

a

∥ f(t) ∥rW dt <∞
}
,

equipped with the norm

∥ f ∥Lr(a,b;W )=

(∫ b

a

∥ f(t) ∥rW dt

)1/r

.

If r = ∞, then

L∞(a, b;W ) =

{
f is measurable on (a, b) and sup

t∈[a,b]

∥ f(t) ∥W<∞
}
,

equipped with the norm

∥ f ∥L∞(a,b;W )= sup
t∈[a,b]

∥ f(t) ∥W .
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Remark 2.1. Lr(a, b;W ) is Banach space if W is a Banach space.
In addition, we define Cj(0, T ;W ) as the space of functions Cj in time with

values in W . We consider the following spaces:

X = {v ∈ H1(Ω)d; with vΓ = 0 and (v · n)S = 0},
M = L2

0(Ω),

V = {v ∈ X; div v = 0 in Ω}
and

V ⊥ = {v ∈ X; ∀w ∈ V, (∇v,∇w) = 0}.

Lemma 2.2. For any p ≥ 1, when d = 1 or 2, or 1 ≤ p ≤ 2d

d− 2
when d ≥ 3, there

exist two positive constants Sp and S0
p such that (see [2])

∀v ∈ X, ∥ v ∥Lp(Ω)d≤ S0
p |v|1,Ω,

and
∀v ∈ H1(Ω)d, ∥ v ∥Lp(Ω)d≤ Sp ∥ v ∥1,Ω .

Lemma 2.3. For d = 2, Ladyzhenskaya’s inequality states that (see [22]);

(10) ∥u∥L4(Ω)2 ≤ c(Ω)∥∇u∥1/2∥u∥1/2 .
For d = 3, then Gagliardo-Nirenberg’s inequality reads

(11) ∥u∥L4(Ω) ≤ c(Ω)∥u∥1/4∥∇u∥3/4 .

Lemma 2.4. (Korn’s inequality (see [5])) There exists a constant c such that

∀v ∈ X,

∫
Ω

|D(u)|2dx ≥ c

∫
Ω

|∇u|2dx.

Henceforth, we suppose that:

Assumption 2.5. We assume that the data f ,u0 verify:
i) f ∈ C0(0, T ;L2(Ω)d).
ii) u0 ∈ L2(Ω)d, div u0 = 0, u0 · n|∂Ω = 0 and u0|Γ = 0.

In the next lemma, we introduce the discrete Gronwall’s lemma.

Lemma 2.6. (Discrete Gronwall Lemma) [23, p. 294]. Let (yn)n, (f̃n)n and (g̃n)n
three positive sequences that verifies:

∀n ≥ 0, yn ≤ f̃n +
n−1∑
k=0

g̃kyk.

Then we have:

∀n ≥ 0, yn ≤ f̃n +
n−1∑
k=0

f̃kg̃k exp
( n−1∑

j=k

g̃j

)
.

In the following, we shall use, if necessary , the notation ψ(t) for the function
x −→ ψ(x, t).

3. Analysis of the continuous problem

The goal in the section is twofold. First, we formulate the weak problem associ-
ated to (1),(2), (3) and (6), and secondly, we construction of the weak solution.
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3.1. Variational formulation. This is the first subsection of the second section.
The weak formulation associated to (1),(2), (3) and (6) is standard and reads;



Find t 7→ (u(t), p(t)) ∈ X ×M such that
d

dt
(u(t),v) + a(u(t),v) + cu(u(t),u(t),v) +

∫
S

|Kuτ (t)|s−2Kuτ (t) ·Kvτ dσ

−(p(t), div v) = (f(t),v), ∀v ∈ X,

(div u(t), q) = 0, ∀q ∈M,
u(0) = 0 in Ω,

(12)

with

a(u,v) = 2ν

∫
Ω

Du : Dv dx and cu(u,u,v) = ((u · ∇)u,v),

and

A : B =
∑

1≤i,j≤d

AijBij .

It is worth mentioning that by deriving (12), we make use of the identity∑
1≤i,j≤d

Diju
∂vi
∂xj

=
∑

1≤i,j≤d

DijuDijv .

To study (12) it is convenient to recall the following monotonicity and continuity
properties (see [10, 21]): there exists a constant c independent of x,y elements of
IRd such that for 1 ≤ s < 2;

(13) (|y|+ |x|)2−s (|y|s−2y − |x|s−2x,y − x
)
≥ c|x− y|2 ,

and

(14)
∣∣ |x|s−2x− |y|s−2y

∣∣ ≤ c|x− y|s−1 .

Now we introduce the mapping v −→ A(v) defined as follows

∀ w ∈ V , ⟨A(v),w⟩ = a(v,w) +

∫
S

|Kvτ |s−2Kvτ ·Kwτ dσ .

From (13) and (14) we have the following Lemma (see [7]):

Lemma 3.1. We have that for 1 < s < 2, then

(a) A maps V into its dual V ′, and is bounded on all bounded subsets of V .
(b) For all v,u elements of V

∥A(v)−A(u)∥V ′ ≤2ν∥v − u∥1 + c∥K∥sL∞(S) ∥u− v∥s−1
1 .

(c) The mapping v → Av is strictly monotone from V into V ′:

For all v,w ∈ V, ⟨A(v)−A(w),v −w⟩ ≥ 0.

(d) A is hemi-continuous in V , i.e. for all u,v in V , the mapping t → A(u+
tv) is continuous from IR into IR.
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3.2. Existence of the solutions. In this paragraph, we will show the existence of
a solution (u, p) of the problem (12) by using a semi-discretization in time (following
[16, 22]). In this objective, we introduce the following space:

H = {v ∈ L2(Ω)d; div v = 0 in Ω, (v · n)∂Ω = 0}.
We have that V ⊂ H and the injection is compact.

Let N > 1 be an integer, define the time step k by k =
T

N
and the subdivision

points tn = nk. For each n ≥ 1, we approximate f(tn) by the average defined
almost everywhere in Ω by

fn(x) =
1

k

∫ tn

tn−1

f(t,x)dt.

We set u0 = 0 and we introduce the following semi-discrete problem (i.e. exact in
space and discrete in time): Find sequences (un)n and (pn)n such that un ∈ X and
pn ∈M ,


(
un − un−1

k
,v) + a(un,v) + cu(u

n,un,v)

+

∫
S

|Kun
τ |s−2Kun

τ ·Kvτ dσ − (pn,div v) = (fn,v), ∀v ∈ X,

(div un, q) = 0, ∀q ∈M.

(15)

Given un−1, (15) is essentially a steady Navier-Stokes, and we have

Theorem 3.2. [7] At each time step n and for a given un−1 ∈ X, Problem (15)
admits at least one solution (un, pn) ∈ X ×M .

We next derive some bounds for the expression un. The following proposition
gives basic uniform a priori estimates for each solution of (15).

Proposition 3.3. Each solution (un, pn) of Problem (15) satisfies the following
uniform a priori estimates: For each n ≥ 1,

∥ un ∥2L2(Ω)d +

n∑
i=1

∥ un − un−1 ∥2L2(Ω)d +

n∑
i=1

k|un|2X +

n∑
i=1

k

∫
S

|un
τ |sdσ

≤c1
n∑

i=1

k ∥ fn ∥2L2(Ω)d ,(16)

where c1 is a positive constant independent of the time and k.

Proof. We consider the first equation of System (15) multiplied by the time step

k, take v = un, use the relation (a− b, a) =
1

2
|a|2 − 1

2
|b|2 + 1

2
|a− b|2 and the fact

that the tensor K is bounded, and use the relation ab ≤ 1

2ε
a2 +

ε

2
b2 for the right

hand side (fn,v) with a suitable choice of the parameter ε. Hence we get the bound
(16). �

Here, it is convenient to transform the sequence (un)n into function. Since it
need to be "differentiated", we define the piecewise linear function in time:

∀t ∈ [tn−1, tn], uk(t) = un−1 +
t− tn−1

k
(un − un−1), 0 < n ≤ N.
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We define also the step functions

∀t ∈]tn−1, tn], fk(t) = fn, 0 < n ≤ N

and
∀t ∈]tn−1, tn], wk(t) = un, 0 < n ≤ N.

We have the following convergence theorem:

Proposition 3.4. There exist functions u ∈ L2(0, T ;V )∩L∞(0, T,H) such that a
subsequence of k, still denoted by k, satisfies:

lim
k→0

uk = lim
k→0

wk = u weakly * in L∞(0, T ;H)

and
lim
k→0

uk = lim
k→0

wk = u weakly in L2(0, T ;V ).

Proof. Relation (16) allows us to deduce that (uk)k is also uniformly bounded in
L∞(0, T ;H) ∩ L2(0, T ;V ). Since we get:

lim
k→0

uk = u weakly * in L∞(0, T ;H),

lim
k→0

uk = u weakly in L2(0, T ;V )

lim
k→0

wk = w weakly * in L∞(0, T ;H)

lim
k→0

wk = w weakly in L2(0, T ;V ).

As far as the functions w is concerned, observe that

∀t ∈]tn−1, tn], wk(t)− uk(t) =
tn − t

k
(un − un−1), 0 < n ≤ N.

Therefore

∥ wk − uk ∥2L2(0,T ;L2(Ω)d)=
k

3

N∑
n=1

∥ un − un−1 ∥L2(Ω)d .

Then, Relation (16) gives that the term
∑N

n=1 ∥ un − un−1 ∥L2(Ω)d is uniformly
bounded and we obtain

(17) lim
k→0

∥ wk − uk ∥2L2(0,T ;L2(Ω)d)= 0.

The uniqueness of the limit allows us to get u = w. Since we deduce the convergence
results. �

In order to pass to the limit with System (15), we still need to prove the strong
convergence of (uk) and (wk).

Theorem 3.5. Under the assumptions of Proposition 3.4, there exists ξ ∈ L2(0, T ;V ′)
and a subsequence still denoted by k such that

(18) lim
k→0

duk

dt
=
du

dt
weakly in L2(0, T ;V ′),

(19) lim
k→0

uk = u strongly in L2(0, T ;H)

(20) lim
k→0

wk = u strongly in L2(0, T ;H).

and

(21) lim
k→0

A(wk) = ξ weakly in L2(0, T ;V ′)
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Proof. System (15) can be written as following: ∀v ∈ V ,

(
duk

dt
,v) = (fk,v)− a(wk,v)− cu(wk,wk,v)−

∫
S

|Kwk,τ |s−2Kwk,τ ·Kvτ dσ.

We use the fact that A maps V into its dual V ′ (see Lemma 3.1) and the Lemma
4.6 of [22] (page 327) to get the following result:( N∑

k=1

k ∥ uk − uk−1

k
∥2V ′

)
is bounded independently of k.

Then we deduce that
duk

dt
is bounded in L2(0, T ;V ′) and there exists a subsequence

of k, still denoted by k such that

lim
k→0

duk

dt
=
du1

dt
weakly in L2(0, T ;V ′).

Relation (17) gives that u1 = u and then (18). To prove (19), we apply the
theorem 2.1, page 271 in [22]. Furthermore, Relation (20) is a simple consequence
of (17). Finally, Lemma 3.1 allows us to deduce that there exists a subsequence
of k, still denoted by k such that A(wk) satisfies 21 and converge weakly to ξ in
L2(0, T ;V ′). �

Theorem 3.6. Under assumption 12, Problem (12) admits at list one solution in
X ×M .

Proof. To show the existence of a solution of Problem (12), we use all the above
results to pass to the limit with the system (15) wich can be written as: ∀v ∈ V ,

(22) (
duk

dt
,v) + ⟨A(wk),v⟩+ cu(wk,wk,v) = (fk,v),

where

⟨A(wk),v⟩ = a(wk,v) +

∫
S

|Kwk,τ |s−2Kwk,τ ·Kvτ dσ.

We will proceed as [22] (page 320) and [16] (page 158). To show the convergence of
the term cu(wk,wk,v) by using the strong convergence (20), we need to take the
test function v in a space more regular than V . We take v ∈ Vs = V ∩H3/2(Ω)d

and we pass to the limit in Equation (22) where all the terms except ⟨A(wk),v⟩
are treated in [22] (page 320). Thus, Relation (21) allows us to get in L2(0, T ;V

′

s ),

(23)
du

dt
+ ξ + (u · ∇)u = f .

Proposition 3.4 and Theorem 3.5 allows us to deduce that Equation (23) is valid in
L2(0, T ;V ′). Furthermore, as we have

u′ ∈ L2(0, T ;V ′) and u′ = f − du

dt
− ξ − (u · ∇)u,

We get by using [22] (Lemma 1.1, page 250) that u is almost everywhere equal to
a continuous function from [0, T ] into V ′ and we get u(0) = 0.
To get the existence of the solution, we still have to show that ξ = A(u) by following
[16]. This will be done by using the properties of A (see Lemma 3.1). First, we
have:

Xk =

∫ T

0

⟨A(wk(t))−A(v(t)),wk(t)− v(t)⟩ dt ≥ 0
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Or, Equation (22), wk(0) = 0 and the relation cu(wk(t),wk(t),wk(t)) = 0 give us
the following relation:∫ T

0

⟨A(wk(t)),wk(t)⟩ =
∫ T

0

(f(t),wk(t))dt−
1

2
||wk(T )||2L2(Ω)d .

Then we obtain

Xk =

∫ T

0

(f(t),wk(t))dt−
1

2
||wk(T )||2L2(Ω)d −

∫ T

0

⟨A(wk(t)),v(t)⟩dt

−
∫ T

0

⟨A(v(t))),wk(t)− v(t)⟩dt.

As we have
lim inf ||wk(T )||2L2(Ω)d ≥ ||u(T )||2L2(Ω)d ,

then we obtain

lim infXk ≤
∫ T

0

(f(t),u(t))dt− 1

2
||u(T )||2L2(Ω)d

−
∫ T

0

⟨A(u(t)),v(t)⟩dt−
∫ T

0

⟨A(v(t))),u(t)− v(t)⟩dt.

By taking into account (23) multiplied by u and integrated in Ω and between 0
and T we get,

0 ≤
∫ T

0

⟨ξ(t)−A(v(t)),u(t)− v(t)⟩dt.

Now, by taking v = u− λw where λ > 0 and w ∈ L2(0, T ;V ), it holds that:∫ T

0

⟨ξ(t)−A(u(t)− λw(t)),w(t)⟩dt ≥ 0, ∀w ∈ L2(0, T ;V ).

By taking λ→ 0 and by using the hemi-continuity of A we get∫ T

0

⟨ξ(t)−A(u(t)),w(t)⟩dt ≥ 0, ∀w ∈ L2(0, T ;V )

which get that ξ = A(u).
Thus, Relation 23 allows us to get the following equation satisfied by the velocity
in L2(0, T ;V ′):

(24)
du

dt
+A(u) + (u · ∇)u = f .

To prove the existence of the pressure, we define the function Lt ∈ X ′ for all v ∈ X:

Lt(v) =

∫ t

0

(
(f(t),v)− d

dt
(u(t),v)− ⟨A(u(t)),v⟩ − ⟨(u(t) · ∇)u(t),v⟩ dt.

Relation 24 allows us to deduce that for all v ∈ V , Lt(v) = 0. Hence, see [8] (Chap.
I, Lemme 2.1), for each t ∈ [0, T ], there exists a function P (t) ∈M such that:

(25) Lt(v) = −(div v, P (t)), ∀v ∈ X,

and

∥ P (t) ∥L2(Ω)≤ sup
v∈X

|Lt(v)|
∥ v ∥X

.

Now, differentiating (25) with respect to t, and setting p = ∂tP (t), we obtain the
first equation of System (1). Hence the existence of the pressure p. �
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Theorem 3.7. If the Assumption 12 holds, every solution of (12) verifies the bound

(26) ∥ u ∥L∞(0,T ;L2(Ω)d) + ∥ u ∥L2(0,T ;X) ≤ C ∥ f ∥L2(0,T ;L2(Ω)d),

where C is a positive constant independent of u.

Proof. Let (u, p) be a solution of (12). To prove the bound (26), we take v = u in

the first to equation of problem (12), use lemma 2.2 and the relation ab ≤ ε

2
a2+

1

2ε
b2

to get
1

2

d

dt
∥ u(t) ∥2L2(Ω)d +2νc|u(t)|2X ≤ S0

2 ∥ f(t) ∥L2(Ω)d |u(t)|X

≤ (S0
2)

2ε

2
∥ f(t) ∥2L2(Ω)d +

1

2ε
|u(t)|2X .

For ε =
1

2νc
, we obtain:

1

2

d

dt
∥ u(t) ∥2L2(Ω)d +νc|u(t)|2X ≤ (S0

2)
2

4νc
∥ f(t) ∥2L2(Ω)d .

First, we integrate with respect to t, between 0 and T , to derive the following
bound:

∥ u ∥2L2(0,T ;X) ≤ (S0
2)

2

4ν2c2
∥ f ∥2L2(0,T ;L2(Ω)d) .

Second, we integrate with respect to t, between 0 and t, and then take the maximum
on t to obtain,

1

ν
∥ u ∥2L∞(0,T ;L2(Ω)d) ≤ (S0

2)
2

4ν2c2
∥ f ∥2L2(0,T ;L2(Ω)d) .

We deduce,
1

ν
∥ u ∥2L∞(0,T ;L2(Ω)d) + ∥ u ∥2L2(0,T ;X) ≤ (S0

2)
2

2ν2c2
∥ f ∥2L2(0,T ;L2(Ω)d) .

Hence the desired result. �
Remark 3.8. It is important to mention that uniqueness rely on Ladyzhenskaya’s
inequality (10) when d=2. In 3 d, this argument does not hold anymore, and we
are well aware that the uniqueness for 3d Navier-Stokes problems remains an open
question. Only limited results on uniqueness for local in time (see [4]), or for special
domains (see [20]) are available. For general 3 d domains, uniqueness can only be
obtained for a restricted class of solutions (see [22]). In particular, within the class
of solutions (u, p) of (12) such that u ∈ Lq(0, T ;L4(Ω)d) for some q ≥ 8. In this
case, we use Gagliardo-Nirenberg’s inequality (11).

4. Space-Time discretization and a priori errors

In this section, we propose a time and space discretizations of the problem (12)
and we prove a corresponding a priori error estimation. We use the semi-implicit
Euler method for the time discretization and the finite element method for the
space discretization. For the time discretization, we introduce a partition of the
interval [0, T ] intoN subintervals [tn−1, tn] of length k (the time step). For the space
discretization, we suppose that the domain Ω is a polygon (respectively polyhedron)
for d = 2 (respectively d = 3). Let h > 0 be a discretization parameter in space and
for each h, let Th be a corresponding regular (or non-degenerate) family of triangles
(respectively tetrahedra) for d = 2 (respectively for d = 3), in the usual sense that:

• Ω is the union of all elements of Th;
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• the intersection of two different elements of Th, if not empty, is a vertex or
a whole edge (or a whole face of both of them for d = 3);

• the ratio of the diameter of an element κ in Th to the diameter of its
inscribed sphere is bounded by a constant independent of h.

Let Xh ⊂ X and Mh ⊂M be a "stable" pair of finite-element spaces for discretizing
the velocity u and the pressure p, stable in the sense that it satisfies a uniform
discrete inf-sup condition: there exists a constant β⋆ ≥ 0, independent of h, such
that,

∀qh ∈Mh, sup
vh∈Xh

1

|vh|H1(Ω)d

∫
Ω

qhdiv vhdx ≥ β⋆ ∥ qh ∥L2(Ω),

where h denotes the maximal diameter of the elements of Th.
Let IPκ denote the space of polynomials with total degree less than or equal to
κ. We choose the “mini-element" (see D. Arnold, F. Brezzi and M. Fortin in [1])
discretization, where in each element κ, the pressure p is a polynomial of IP1 and
each component of the velocity u is the sum of a polynomial of IP1 and a “bubble"
function bκ (for each element κ, the bubble function is equal to the product of the
barycentric coordinates associated with the vertices of κ).

Therefore, the finite-element spaces for the velocity and the pressure are :

Xh =
{
vh ∈ C0(Ω)d ∩X; ∀κ ∈ Th, vh|κ ∈ P(κ)

}
,

and
Mh =

{
qh ∈ C0(Ω) ∩M ; ∀κ ∈ Th, vh|κ ∈ IP1(κ)

}
,

where
P(κ) = [P1 ⊕ Span(bκ)]

d.

We introduce the following discrete spaces:

Vh =

{
vh ∈ Xh; ∀qh ∈Mh,

∫
Ω

qh(x) div vh(x)dx = 0

}
.

There exists an approximation operator Ph ∈ L(H1
0 (Ω)

d;Xh) such that (see V.
Girault and P.-A. Raviart in [8]):

∀v ∈ H1
0 (Ω)

d, ∀qh ∈Mh,

∫
Ω

qhdiv (Ph(v)− v)dx = 0,

and for k = 0 or 1,

∀v ∈ [H1+k(Ω) ∩H1
0 (Ω)]

d, ∥ Ph(v)− v ∥L2(Ω)d ≤ C1h
1+k|v|H1+k(Ω)d ,

and for all r ≥ 2, k = 0 or 1,

∀v ∈ [W 1+k,r(Ω) ∩H1
0 (Ω)]

d, |Ph(v)− v|W 1,r(Ω)d ≤ C2h
k|v|W 1+k,r(Ω)d .

In order to introduce the discrete scheme, we define the following form: for all
uh,vh,wh ∈ Xh,

du(uh,vh,wh) = cu(uh,vh,wh) +
1

2
(div (uh) vh,wh).

Remark 4.1. For all uh, vh in Xh, the form du verifies the following stability
relation

du(uh,vh,vh) = 0
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4.1. Non linear discrete scheme. In this section, we introduce the following
space time discretization of (12), analyse its well-posedness and the convergence by
means of estimating the expressions u(tn)− un

h and p(tn)− pnh.
For every n ∈ {1, ..., N}, knowing un−1

h ∈ Xh, we compute (un
h, p

n
h) ∈ (Xh,Mh)

such that for all (vh, qh) ∈ (Xh,Mh)

(27)


1

k
(un

h − un−1
h ,vh) + a(un

h,vh) + du(u
n
h,u

n
h,vh)− (pnh, div vh)

+

∫
S

|Kun
hτ |s−2Kun

hτ ·Kvτ dσ = (fn,vh) ,

(qh,div un
h) = 0,

where u0
h = 0 and fn = f(tn)

Theorem 4.2 (Existence of a discrete solution).
At each time step n and for a given un−1

h ∈ Xh, Problem (27) admits at least one
solution (un

h, p
n
h) ∈ Xh ×Mh which verifies, for m = 1, ..., N , the following bound

||um
h ||L2(Ω)d + 2νc

m∑
n=1

k|un
h|21,Ω +

m∑
n=1

k

∫
S

|Kun
hτ |sdσ ≤ C1

N∑
n=1

k||fn||2L2(Ω)d .

where C1 is a positive constant independent of h and k.

Proof. For the prove of the existence of at least one solution of System (27), we
refer to [7] where the prove is based on the Brouwer’s fixed point Theorem.
In addition, by taking vh = un

h in the first equation of Problem (27) and by using
the relations (a − b)a = 1

2a
2 − 1

2b
2 + 1

2 |a − b|2 and ab ≤ 1
2εa

2 + ε
2b

2 (for the right
hand side and for ε = 2νc), we obtain

1

2k
||un

h||2L2(Ω)d − 1

2k
||un−1

h ||2L2(Ω)d +
1

2k
||un

h − un−1
h ||2L2(Ω)d

+ νc|un
h|21,Ω +

∫
S

|Kun
hτ |sdσ ≤ (S0

2)
2

4νc
||fn||2L2(Ω)d .

We multiply the last inequality by 2k and we sum over n = 1, . . . ,m to obtain the
desired results. �

We refer to [7] for the following uniqueness result:

Proposition 4.3. Let (un
h, p

n
h) ∈ Vh ×Mh be the solution of (27). There exists a

positive constant c depending only on Ω such that if for ν and f , the relation

ν2 ≥ c∥fn∥L2(Ω)d ,

is satisfied, then the solution of (27) is unique.

Remark 4.4. For every u0
h ∈ Vh, the sequence (un

h, p
n
h) ∈ Vh ×Mh generated by

(27) satisfies the energy law (4) . In particular, we easily established that the kinetic
energy

E(u) =
∫
Ω

|u|2 dx

decreases with n.

Next, we will establish an a priori error estimate between the exact and the
numerical solutions.
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Theorem 4.5. Let (u, p) be the solution of Problem (12) and (un
h, p

n
h) be the

solution of problem (27). If u ∈ L∞ (0, T ;H2(Ω)d
)
, uτ ∈ L∞ (0, T ;H2(S)d

)
,

u′ ∈ L2
(
0, T ;H1(Ω)d

)
, u′′ ∈ L∞ (0, T ;L2(Ω)d

)
and p ∈ L∞ (0, T ;H1(Ω)

)
, there

exists a positive constant C independent of h and k such that for all m ∈ {1, . . . , N}
we have,

(28)
1

2
∥ um

h − Phu(tm) ∥2L2(Ω)d +
ν

2

m∑
n=1

k|un
h − Phu(tn)|2H1(Ω)d ≤ C(h2 + k2).

Proof. We choose the test function v = vn
h = un

h − Phu(tn) in the first equations
of (12) and (27) multiplied by k. We take t = tn in the first equation of (27) and
replace

ku′(tn) = u(tn+1)− u(tn)− k2u′′(ξ), for ξ ∈ [tn.tn+1].

Then we subtract the obtained continuous and discrete equations, and insert ±Phu(tn−1)
and ±Phu(tn) to obtain :
(29)

1

2
∥ vn

h ∥2L2(Ω)2 −1

2
∥ vn

h ∥2L2(Ω)2 +
1

2
∥ vn

h − vn−1
h ∥2L2(Ω)2 +2νk(D(vn

h), D(vn
h))

+k

∫
S

(
|Kun

hτ |
s−2

kun
hτ − |Kuτ (tn)|s−2

Kuτ (tn)
)
Kvn

hτ dσ

= k(pnh − p(tn), div (vn
h))− k2(

d2u

dt2
(ξ),vn

h)

−2νk(D(Phu(tn)− u(tn)), Dvn
h)−

∫ tn

tn−1

(Phu
′(t)− u′(t),vn

h)dt

−k(un
h∇) · un

h − (u(tn)∇) · u(tn),vn
h)−

1

2
k (div (un

h)u
n
h,v

n
h) .

The last term on the left hand side of (29) can be written as follows
(30)

k

∫
S

(
|Kun

hτ |
s−2

kun
hτ − |Kuτ (tn)|s−2

Kuτ (tn)
)
(Kun

hτ −KPhuτ (tn)) dσ

= k

∫
S

(
|Kun

hτ |
s−2

Kun
hτ − |Kuτ (tn)|s−2

Kuτ (tn)
)
(Kun

hτ −Kuτ (tn)) dσ

+k

∫
S

(
|Kun

hτ |
s−2

Kun
hτ − |Kuτ (tn)|s−2

Kuτ (tn)
)
(Kuτ (tn)−KPhuτ (tn)) dσ.

We replace (30) in (29) to obtain
(31)
1

2
∥ vn

h ∥2L2(Ω)2 −1

2
∥ vn−1

h ∥2L2(Ω)2 +
1

2
∥ vn

h − vn−1
h ∥2L2(Ω)2 +2νk(D(vn

h), D(vn
h))

+k

∫
S

(
|Kun

hτ |
s−2

Kun
hτ − |Kuτ (tn)|s−2

Kuτ (tn)
)
(Kun

hτ −Kuτ (tn)) dσ

= k(pnh − p(tn), div (vn
h))− k2(

d2u

dt2
(ξ),vn

h)

−2νk(D(Phu(tn)− u(tn)), Dvn
h)−

∫ tn

tn−1

(Phu
′(t)− u′(t),vn

h)dt

−k(un
h∇) · un

h − (u(tn)∇) · u(tn),vn
h)−

1

2
k (div (un

h)u
n
h,v

n
h)

−k
∫
S

(
|Kun

hτ |
s−2

Kun
hτ − |Kuτ (tn)|s−2

Kuτ (tn)
)
(Kuτ (tn)−KPhuτ (tn)) dσ.
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From (13), we deduce that the third term of the left hand side satisfies the following
inequality:

k

∫
S

(
|Kun

hτ |
s−2

Kun
hτ − |Kuτ (tn)|s−2

Kuτ (tn)
)
(Kun

hτ −Kuτ (tn)) dσ ≥ 0 .

Let us now bound each term of the right hand side of Equation (31).
The first one can be bounded as follows:

k
∣∣(pnh − p(tn), div (vn

h))
∣∣ = k

∣∣(rhp(tn)− p(tn), div (vn
h))
∣∣

≤ c21
2ε1

h2k ∥ p ∥2L∞(0,T ;H1(Ω)) +
ε1
2
k|vn

h |2H1(Ω)d .

We can treat the second term of the right hand side of Equation (31) as following:

k2
∣∣(d2u
dt2

(ξ),vn
h)
∣∣ ≤ c22

2ε2
k3||u′′||2L∞(0,T ;L2(Ω)d) +

ε2
2
k|vn

h |2H1(Ω)d .

The third term can be treated as following:

2νk
∣∣(D(Phu(tn)− u(tn)), Dvn

h)
∣∣ ≤ c23

2ε3
h2k ∥ u ∥2L∞(0,T ;H2(Ω)d) +

ε3
2
k|vn

h |2H1(Ω)d .

It is easy to check that the fourth term satisfies the following inequality:∣∣ ∫ tn

tn−1

(Phu
′(t)− u′(t),vn

h)dt
∣∣ ≤ c4

2ε4
h2||u′||2L2(tn−1,tn;H1(Ω)d) +

ε4
2
k|vn

h |2H1(Ω)d

We will treat now the last term of the right hand side of Equation (31) denoted
by T7. It can be bounded by using Lemma 3.1, the relation ||uτ − Phuτ ||L2(S)d ≤
ch2||uτ ||H2(S)d and Theorem 4.2 as following :

|T7|

=
∣∣∣k ∫

S

(
|Kun

hτ |
s−2

Kun
hτ − |Kuτ (tn)|s−2

Kuτ (tn)
)
(Kuτ (tn)−KPhuτ (tn)) dσ

∣∣∣
≤c5h2k||un

h − u(tn)||s−1
1,Ω ||uτ (tn)||H2(S)d

We use the fact that u ∈ L∞(0, T ;H1(Ω)d) and the Young inequality ab ≤ ap

p
+
bq

q

for p =
2

s− 1
and q =

p

p− 1
to deduce the following:

|T7| ≤ c6h
2
(
k||un

h − u(tn)||21,Ω + k||uτ ||qL∞(0,T ;H2(S)d)

)
.

Let us now treat the fifth and sixth terms of the right hand side of Equation (31)
denoted by Ln. By using Remark 4.1, by inserting ±Phu(tn), ±u(tn), ±Phu(tn−1),
we get by using the Green formula:

Ln = −k(un
h∇) · un

h − (u(tn)∇) · u(tn),vn
h)−

1

2
k (div (un

h)u
n
h,v

n
h)

= −k
[
(un

h∇) · (Phu(tn)− u(tn)),v
n
h)−

1

2
k (div (un

h)(Phu(tn)− u(tn)),v
n
h)
]

−k
[
((un

h − u(tn))∇) · u(tn),vn
h)−

k

2
(div (un

h − u(tn))u(tn),v
n
h)
]

= −k
[
(un

h∇) · Phu(tn)− u(tn)),v
n
h)−

k

2
(div (un

h)(Phu(tn)− u(tn)),v
n
h)
]

−k
2

[
((un

h − u(tn))∇) · u(tn),vn
h) +

k

2

[
((un

h − u(tn))∇) · vn
h ,u(tn))

]
.
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Thus, as u ∈ L∞(0, T ;H2(Ω)d) , Ln can be bounded as following:

|Ln| ≤ c7h
2
( 1

2ε5
k||un

h||21,Ω +
ε5
2
k||vn

h ||21,Ω
)

+c8
( 1

2ε6
k||un

h − u(tn)||2L2(Ω)d +
ε6
2
k||vn

h ||21,Ω
)
.

Finally, by collecting all the above inequalities, summing over n = 1, . . . ,m (for
all integer m ≤ N) and using Lemma 4.2, we get after a suitable choice of εi the
following inequality:

1

2
∥ vm

h ∥2L2(Ω)2 +2νc|vn
h |21,Ω ≤ C1

(
k2 + h2

)
+ C2

n∑
n=1

k||vn
h ||2L2(Ω)d .

Relation (28) can be deduced by a simple application of the discrete Gronwall’s
Lemma (Lemma 2.6). �

By using a triangle inequality, we get immediately the following a priori error
estimation:

Corollary 4.6. Under the assumption of Theorem 4.5, the exact solution (u, p) of
Problem (12) and the discrete solution (un

h, p
n
h) of problem (27) satisfy the following

a priori error estimate:

1

2
∥ um

h − u(tm) ∥2L2(Ω)2 +
ν

2

m∑
n=1

k|un
h − u(tn)|2H1(Ω)2 ≤ C(h2 + k2),

where C is a positive constant independent of h and k.

4.2. Iterative scheme. To compute the solution of the non-linear problem (27),
we introduce the following iterative problem:
For every n ∈ {1, ..., N}, knowing un−1

h ∈ Xh, we compute (wi
h, p

i
h) ∈ (Xh,Mh)

such that for all (vh, qh) ∈ (Xh,Mh)

(32)


1

k
(wi

h − un−1
h ,vh) + a(wi

h,vh) + cu(w
i−1
h ,wi

h,vh)− (pih, div vh)

+

∫
S

|Kwi−1
hτ |s−2Kwi

hτ ·Kvτ dσ = (fn,vh) ,

(qh, div wi
h) = 0,

where w0
h = un−1

h .
After the convergence of the scheme (32), we get the numerical solution un

h of the
discrete system (27).
For the study of the existence and uniqueness of the solution, and the convergence
of the iterative scheme (32) we refer to [7]. So, we state that

Theorem 4.7. For each un−1
h ∈ Xh, Problem (32) admits a unique solution

(wi
h, p

i
h) ∈ Xh ×Mh which satisfies the following bound:

∥wi
h∥1,Ω + ∥pih∥L2(Ω)d ≤ C,

where C is a positive constant independent of h and k.

The formulation of the iterative scheme (32) is validated by the following con-
vergence result



NAVIER-STOKES EQUATIONS WITH ANISOTROPIC SLIP BOUNDARY CONDITION 513

Theorem 4.8. [7] Let (wi
h, p

i
h) ∈ Vh × Mh the solution of (32). Let (un

h, p
n
h)

solution of (27). Assume that there exists C positive constant independent of h

and k such that ∥f∥L2(Ω)d ≤ ν2

C
. Then

lim
i→∞

wi
h = un

h inV.

Remark 4.9. We note that for each time step n ∈ 1, . . . N , we solve the iterative
scheme (32) until we get the convergence.

Remark 4.10. We also note that a simple idea is to consider the linear scheme
: for every n ∈ {1, ..., N}, knowing un−1

h ∈ Xh, we compute (un
h, p

n
h) ∈ (Xh,Mh)

such that for (vn
h , q

n
h) ∈ (Xh,Mh)

(33)


1

k
(un

h − un−1
h ,vh) + a(un

h,vh) + cu(u
n−1
h ,un

h,vh)− (pnh, div vh)

+

∫
S

|Kun−1
hτ |s−2Kun

hτ ·Kvτ dσ = (fn,vh) ,

(qh,div un
h) = 0,

where u0
h = 0 and fn = f(tn). Among the reasons we did not give priority to the

above approach let us mention:
(i) the derivation of a priori bounds using 33 is nontrivial.
(ii) The implementation of (32) is easy and fast.
Having said that, we intend to investigate the formulation (33) in a near future.

5. Numerical simulations and concluding remarks

To validate the theoretical results, we perform several numerical simulations
using the FreeFem++ code (see [11]) in two-dimensions. We begin with a simple
test case where we show the numerical results associated to the scheme (27). Note
that the solution of the non-linear discrete scheme (27) is approximated by the
iterative scheme (32). Next we consider a more complex case, the "Driven cavity
flow" and show the corresponding numerical results.
All the numerical simulations showed in this section are performed by considering
for a given mesh step h and for a given time step n, the iterative problem (32) with
w0

h = un−1
h . The stopping criterion is one of the two cases:

(1) Classical one:

(34)
||wi

h −wi−1
h ||1

||wi
h||1

≤ 10−5.

(2) New one:

(35)
||wi

h −wi−1
h ||1

||wi
h||1

≤ C min(h, k),

where C is a positive constant (but in this work, we take C = 1).

5.1. Navier-Stokes in a square domain. We consider the square Ω = (0, 1)2

and the time interval [0, T ] where T = 1. Each edge of ∂Ω is divided into M equal
segments so that Ω is divided into 2M2 triangles, so the mesh step is given by

h =
1

M
. The time step is taken equal to the mesh step k = h, so the a priori error
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Log10(h)

Log10(Er)

Figure 1. The a priori error estimate with respect to the mesh
step h in logarithmic scale for s = 1.2, 1.5, 1.8.

given in Theorem 4.5 can be bounded by h (as k = h).
We set K = I, ν = 1 and

f = (1 + (x2 + y2) sin(t(x2 + y2)), txy cos(txy))T .

We take the anisotropic slip boundary condition (6), on right and top boundaries
of Ω, that is on S =

{
(x, y)| x = 1 or y = 1

}
= Γ2 ∪ Γ3, and the homogeneous

Dirichlet boundary condition u = 0 on the bottom and left boundaries Γ = Γ1 ∪ Γ4.
First we will compare the stopping criteria (34) and (35) for s = 1.2, 1.5, 1.8 and for
M = 10, 20, . . . , 100. We remark that for each n ∈ {1, 2, . . . ,M}, Algorithm (32) is
stopped for i ≤ 15 with the classical stopping criteria (34) and for i ≤ 2 with the
new stopping criteria (35) (with c = 1).

We will see next the impact of this new stopping criteria (35) (for i = 2) on the
rate of the a priori error estimates.

We have s ∈ (1, 2), and we are interested in computing the rate of convergence
of the finite element solution (un

h, p
n
h) given by Theorem 4.5. As we do not have the

exact solution u corresponding to this case, we will approximate it by computing
the numerical solution of the iterative system (32) for M = 200 which will be
designated as the reference solution say, (ur, pr) and which depends on s ∈ (1, 2).
Next, we compute the numerical solution given by (32) for M = 5, 8, 10, 20, 25.
Figures 1 show the graphs of the relative error

(36) Er =

∑M
n=1 k|un

h − ur(tn)|2H1(Ω)2∑M
n=1 k|ur(tn)|2H1(Ω)2

+

∑M
n=1 k|pnh − pr(tn)|2L2(Ω)∑M

n=1 k|pr(tn)|2L2(Ω)

with respect to h in logarithmic scale for s = 1.2, 1.5, 1.8 and with the new stopping
criteria (35). These lines have slopes 1.1, 1.04, 1.05 respectively. We can deduce for
this particular case that the numerical slope is around one and is independent of s.
In all these cases, the numerical slopes satisfy the Theorem 4.5 (as k = h).

Next we take M = 40 and s = 1.5. Figure 2 shows for T = 1 the values of uτ in
the tow borders x = 1 and y = 1 where we have the slip boundary condition (6).

5.2. Driven Cavity. In this paragraph, we consider the numerical results for the
Lid Driven cavity with the Navier-Stokes flows under the power law slip boundary
condition. This is very popular example that can be seen in [9, 18]. The fluid
is confined in the domain Ω = (0, 1)2 with the velocity u satisfying u = 0 on
Γ =

{
(x, y) : x = 0 or y = 0

}
, the relation (6) on the right (part S of ∂Ω), and
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y

u2

u2 for x=1

x

u1

u1 for y=1

Figure 2. The curve of uτ (M = 40 and s = 1.5): uτ = u2 for
x = 1 with respect to y (on the left) and uτ = u1 for y = 1 with
respect to x (on the right).
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Figure 3. The numerical velocity for s = 1.2 (left) and s = 1.5 (right).

the following Dirichlet condition on the top:

(37) uτ =
(
(1 + tanh(t))x2(x− 1)2, 0

)T on y = 1 , 0 < x < 1 .

One observes that when t is big enough, uτ attains its maximum (1/8, 0)T at the
center x = 1/2. This boundary condition has the effect of avoiding local singu-
larities at the top-right and top-left corners as it ensures both the velocity and
velocity gradient vanish at the corners. In all the numerical results considered in
this section, we set K = I, f = 0 and ν = 1.

Here also, each edge is divided into M = 100 segments of equal length. Thus the
corresponding mesh contains 2M2 elements.

Figure 3 and Figure 4 show the numerical velocity for s = 1.2, 1.5 and 1.8 respec-
tively. One notes the formation of a vortex which is typical for this problem.

Furthermore, we show in Figure 5 the first and second components of the velocity
on the line y = 1/2 for s = 1.2, 1.5 and 1.8. Again, one observes the dependence
on s of the velocity on the line y = 1/2.

5.3. Concluding remarks. The objective of this work it to propose a novel for-
mulation for the non stationary Navier-Stokes equations when the tangential shear
is a nonlinear function of the tangential velocity. The variational problem is shown
to be well-posed in the same functional framework as for the standard boundary
conditions. Next, we consider the space-time discretizations, that we analyze thor-
oughly and proving that optimal convergence rates can be attained if the weak
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Figure 4. The numerical velocity for s = 1.8.

u1

x

u2

x

Figure 5. The numerical velocity (u1, u2) for s = 1.2, 1.5 and 1.8,
on the line y = 0.5.

solution has enough regularity on the slip zone. Iterative method is proposed for
the numerical realization of the nonlinear discrete problem. Finally, two dimension-
al experiments are performed: the first one illustrates the convergence properties
of the method, while the second one captures the properties of the driven cavity.
This work should further be extended, in particular by (i) considering complicat-
ed domains and application to computational hemodynamics, (ii) improving linear
solvers by considering ADMM, (iii) extending the present work to take into account
non-Newtonian models.
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