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A DOUBLY ADAPTIVE PENALTY METHOD FOR THE NAVIER

STOKES EQUATIONS

KIERA KEAN, XIHUI XIE, AND SHUXIAN XU

Abstract. We develop, analyze and test adaptive penalty parameter methods. We prove uncon-
ditional stability for velocity when adapting the penalty parameter, ϵ, and stability of the velocity

time derivative under a condition on the change of the penalty parameter, ϵ(tn+1) − ϵ(tn). The
analysis and tests show that adapting ϵ(tn+1) in response to ∇ · u(tn) removes the problem of
picking ϵ and yields good approximations for the velocity. We provide error analysis and numerical
tests to support these results. We supplement the adaptive-ϵ method by also adapting the time-

step. The penalty parameter ϵ and time-step are adapted independently. We further compare
first, second and variable order time-step algorithms. Accurate recovery of pressure remains an
open problem.

Key words. Navier-Stokes equations, penalty, adaptive.

1. Introduction

The velocity and pressure of an incompressible, viscous fluid are given by the
Navier-Stokes equations. Let u denote the fluid velocity, p the pressure, ν the
kinematic viscosity and f an external force:

(1) ut − ν∆u+ u · ∇u+∇p = f, ∇ · u = 0, ∀(x, t) ∈ Ω× (0, T ].

The velocity and pressure are coupled together by the incompressibility constraint
∇ · u = 0. Coupled systems require more memory to store and are more expensive
to solve. Penalty methods and artificial compression methods relax the incom-
pressibility condition and result in a pseudo-compressible system. This allows us
to uncouple velocity and pressure, which will reduce storage space and computa-
tional complexity. Penalty methods that allow complete elimination of the pressure
variable are the simplest and fastest, and will be studied herein.

Penalty methods replace ∇ · u = 0 with ∇ · u+ ϵp = 0 where 0 < ϵ << 1. The
pressure can be eliminated using ∇p = −∇(1/ϵ∇ · u). As the pressure is entirely
eliminated from the system, we do not need to solve for it at every timestep, leading
to further increases in speed. This method is based on numerical approximation
to a single penalty velocity equation, which was introduced by Courant [4]. The
accuracy of penalty methods is known to be very sensitive to the choice of ϵ (see
Figure 1). This sensitivity suggests considering ϵ a control and picking ϵ through a
self-adaptive algorithm. This problem of determining ϵ self-adaptively is considered
herein.

When adapting the parameter ϵ, ∥∇ · u∥ is monitored and used to make adjust-
ment to ϵ. The stability of the standard penalty method with variable ϵ is examined
in Section 3. No condition on the rate of change of ϵ is required for the stability of
∥u∥. However, stability of ∥ut∥ is not unconditional. There is no restriction on the
increase of ϵ, however decreasing ϵ quickly will lead to growth in ∥u∥. In Section
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3.2, we derive condition (21)

(1− kα)ϵn ≤ ϵn+1 for some α > 0,

where k is the step-size. This condition is required for stability of ∥ut∥. Figure
9 confirms that violating this condition leads to spikes of catastrophic growth in
∥ut∥.

The utility of penalty methods lies in accurate velocity approximation at low cost
by simple methods. Consistent with this intent, we couple the adaptive ϵ algorithm
with simple, low cost time stepping methods based on the backward Euler method.
Simple time filters allow us to implement an effective variable order, variable time-
step adaptive scheme, developing further an algorithm of [9]. Graded time steps
can resolve the singularity of the solution at t = 0 caused by nonsmooth initial data
Buyang Li, Shu Ma, and Yuki Ueda [21], Buyang Li, Shu Ma, and Na Wang[20].
The self-adaptive ϵ penalty method can be easily implemented for both constant
time-step and variable time-step methods. We develop, analyze and test these new
algorithms that independently adapt the time-step k and the penalty parameter ϵ.

In addition to adapting the time-step, we adapt the order of the method between
first and second order. This variable time-step variable order (VSVO) method
performed better than both first and second-order methods in our tests (see Figure
8 and Figure 9).

The rest of the paper is organized as follows. In Section 2, we introduce important
notation and preliminary results. In Section 3, stabilities of ∥u∥ and ∥ut∥ for the
variable ϵ penalty method with constant timestep is presented. Section 4 presents
an error estimate of the semi-discrete, variable ϵ method. Using this we develop an
effective algorithm which adapts ϵ and k independently, presented in section 5. We
introduce four different algorithms, including the constant time-step and variable
time-step variable ϵ method. Numerical tests are shown in Section 6 and open
problems are presented in Section 7.

1.1. Review of a Common Penalty Method. Recall the incompressible Navier-
Stokes equations, (1). Perturbing the continuity equation by adding a penalty term
to the incompressibility condition and explicitly skew-symmetrizing the nonlinear
term in the momentum equation in (1) results in the penalty Navier-Stokes equa-
tions:

ut − ν∆u+ u · ∇u+
1

2
(∇ · u)u+∇p = f,(2)

∇ · u+ ϵp = 0.(3)

By (3), p = (−1/ϵ)∇·u. Inserting this into (2) results in a system of u only, which
is easier to solve than (1):

(4) uϵ,t − ν∆uϵ + uϵ · ∇uϵ +
1

2
(∇ · uϵ)uϵ −∇(

1

ϵ
∇ · uϵ) = f.

From Theorem 1.2 p.120 of Temam [25] we know limϵ→0(uϵ(t), pϵ(t)) = (u(t), p(t)).
Consider the first-order discretization of (2)-(3). kn is the nth time-step, ϵn is the

parameter ϵ at nth time-step, t0 = 0, tn = tn−1 + kn. Let u∗ denote the standard
(second order) linear extrapolation of u at tn+1:

u∗ =

(
1 +

kn+1

kn

)
un − kn+1

kn
un−1.
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The backward Euler time discretization gives us

un+1 − un

kn+1
+ u∗ · ∇un+1 +

1

2
(∇ · u∗)un+1 +∇pn+1 − ν∆un+1 = fn+1,(5)

∇ · un+1 + ϵn+1p
n+1 = 0.(6)

As before, we use pn+1 =
(
(−1/ϵn+1)∇ · un+1

)
, to uncouple (5)-(6) into the follow-

ing time discrete, velocity only equation

(7)
un+1 − un

kn+1
+u∗ ·∇un+1+

1

2
(∇·u∗)un+1−ν∆un+1−∇( 1

ϵn+1
∇·un+1) = fn+1.

For constant ϵn+1 = ϵ, kn+1 = k, (7) is unconditionally stable by Theorem 4.1 of
He and Li [11]. The analysis of the stability of the variable ϵ, constant k method is
found in Theorem 3.1. Analysis of stability of acceleration ut is found in Theorem
3.3.

1.2. Related work. Penalty methods were first introduced by Courant in 1943
[4]. They were first applied to the unsteady Navier-Stokes equations by Temam
[25]. Error estimates for continuous time, constant ϵ, (4) were proved by Shen in
Theorem 4.1 p.395 [24]. In Theorem 5.1 p.397, Shen further proved error estimates
for the backward Euler time discretization of the penalty Navier-Stokes equations.
This analysis suggests a choice of ϵ = k. Shen [23] studied higher-order projection
schemes in the semi-discrete form and propose a penalty-projection scheme with
improved error estimates. Prohl [22] suggested a new analytical approach to the
penalty method. He [10], He and Li [11] studied fully discrete penalty finite element
methods and proved optimal error estimates with conditions on ϵ,∆t and mesh size
h.

Bercovier and Engelman showed the velocity error of penalty methods is sensitive
to the choice of ϵ, see [1]. If ϵ is too large, it will poorly model incompressible flow.
Choosing ϵ too small will cause numerical conditioning problems, see Hughes, Liu
and Brooks [13]. The optimal choice of the penalty parameter also varies depending
on the time and space discretization schemes used, see Shen [24]. [13] introduced a
theory for determining the penalty parameter, which only depends on the Reynolds
number Re and viscosity µ.

The penalty method gives inaccurate pressure (see Table 1 and Table 4), and we
focus on the velocity accuracy in this paper. But pressure recovery is important
when calculating quantities based on stresses, e.g. lift and drag coefficients. The
easiest way is by using ∇ · u+ ϵp = 0 and solve for pressure. There are also other
possibilities to recover pressure, e.g. Pressure Poisson equations and momentum
equation, see Kean and Schneier [15].

1.3. Motivation For Choice of Estimator for ϵ. We choose an estimator to
control the residual in the continuity equation, ∥∇ · uϵ∥. The immediate choice is
to adapt ϵ based on the size of ∥∇ · uϵ∥. However, controlling the relative, not the
absolute error is a more logical choice. Taking L2 inner product of (4) with uϵ, we
get:

1

2

d

dt
∥uϵ∥2 + ν∥∇uϵ∥2 +

1

ϵ
∥∇ · uϵ∥2 = (f,uϵ).

We aim to ensure ν∥∇uϵ∥2 does not dominate 1
ϵ ∥∇ · uϵ∥2. This suggests an upper

bound for ϵ:
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1

ϵ
∥∇ · uϵ∥2 ≥ ν∥∇uϵ∥2 =⇒ ϵ ≤ 1

ν

(
∥∇ · uϵ∥
∥∇uϵ∥

)2

.

This motivates the choice of the estimator to be ∥∇ ·uϵ∥/∥∇uϵ∥, the relative resid-
ual. This has the additional benefits of being non-dimensional and independent
of the size of uϵ. Since ν is constant, scaling by 1/ν is just a change of adaptive
tolerance. The comparison of absolute and relative residual estimators is presented
in Section 6.3.

2. Notation and preliminaries

We denote by ∥ · ∥ and (·, ·) the L2(Ω) norm and inner product, respectively. We
denote by ∥ · ∥Lp the Lp(Ω) norm. The velocity space X and pressure space Q are:

X := (H1
0 (Ω))

d, where H1
0 (Ω) = {v ∈ L2(Ω) : ∇v ∈ L2(Ω) and v = 0 on ∂Ω},

Q := L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

q dx = 0}.

Let Xh ⊂ X be the finite element velocity space and Qh ⊂ Q be the finite element
pressure space. We assume that (Xh, Qh) are conforming and satisfy the following
approximation properties and Condition 2.1:

(8)

inf
v∈Xh

∥u− v∥ ≤ Chm+1|u|m+1, u ∈ Hm+1(Ω)d,

inf
v∈Xh

∥∇(u− v)∥ ≤ Chm|u|m+1, u ∈ Hm+1(Ω)d,

inf
q∈Qh

∥p− q∥ ≤ Chm|p|m, p ∈ Hm(Ω).

Condition 2.1. (The Ladyzhenskaya-Babuska-Brezzi Condition (LBBh) see p.62
[18]).
Suppose (Xh, Qh) satisfies:

(9) inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
∥∇vh∥∥qh∥

≥ βh > 0,

where βh is bounded away from zero uniformly in h.
The (LBBh) condition is equivalent to:

βh∥qh∥ ≤ sup
vh∈Xh

(qh,∇ · vh)
∥∇vh∥

.

The space H−1(Ω) denotes the dual space of bounded linear functional defined
on H1

0 (Ω). This space is equipped with the norm:

∥f∥−1 = sup
0̸=v∈X

(f, v)

∥∇v∥
.

Let Ih denote the interpolant in the space of C0 piecewise linears, suppose the
following interpolation estimate in H−1(Ω) holds (see p.160 of [18])

(10) ∥u− Ih(u)∥H−1(Ω) ≤ Ch∥u− Ih(u)∥.

Denote by b∗(u, v, w), the skew-symmetric trilinear form, is

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v) ∀u, v, w ∈ [H1(Ω)]d.
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A weak formulation of the penalty NSE is: find u : (0, T ]→ X such that

(ut, v) + b∗(u,u, v) + ν(∇u,∇v) + 1

ϵ
(∇ · u,∇ · v) = (f, v), ∀v ∈ X,

u(x, 0) = u0(x).

Lemma 2.2. (skew-symmetry see p.123 p.155 [18], upper bound for the product of
three functions see p.11 [18]) There exists C1 and C2 such that for all u, v, w ∈ X,
b∗(u, v, w) satisfies

b∗(u, v, w) = (u · ∇v, w) + 1

2
((∇ · u)v, w),

b∗(u, v, w) ≤ C1∥∇u∥∥∇v∥∥∇w∥,

b∗(u, v, w) ≤ C2

√
∥u∥∥∇u∥∥∇v∥∥∇w∥.

Moreover, if v ∈ H2(Ω), then there exists C3 such that

b∗(u, v, w) ≤ C3

(
∥u∥∥v∥2∥∇w∥+ ∥∇ · u∥∥∇v∥∥∇w∥

)
.

Further, if v ∈ H2(Ω) ∩ L∞(Ω), then

b∗(u, v, w) ≤
(
C3∥v∥2 + ∥v∥∞

)
∥u∥∥∇w∥.

Lemma 2.3. (The Poincaré-Friedrichs’ inequality see p.9 [18]) There is a positive
constant CPF = CPF (Ω) such that

(11) ∥u∥ ≤ CPF ∥∇u∥ ∀u ∈ X.

Lemma 2.4. (A Sobolev inequality see [18]) Let Ω be a bounded open set and
suppose ∇u ∈ Lp(Ω) with u = 0 on a subset of ∂Ω with positive measure. Then
there is a C = C(Ω, p) such that for 1 ≤ p <∞,

∥u∥Lp⋆
≤ C∥∇u∥Lp ,

where 1
p⋆ = 1

p −
1

dim(Ω) if p < dim(Ω). For example, with p = 2, for 1 ≤ p⋆ < ∞
in 2d and 1 ≤ p⋆ ≤ 6 in 3d,

(12) ∥u∥Lp⋆
≤ C∥∇u∥.

Lemma 2.5. (Useful inequalities see p.7 [18], polarization identity) The L2 inner
product satisfies the Hölder’s and Young’s inequalities: for any u, v ∈ L2(Ω), for
any δ, 0 < δ <∞ and 1

p + 1
q = 1, 1 ≤ p, q ≤ ∞,

(13) (u, v) ≤ ∥u∥Lp∥v∥Lq , and (u, v) ≤ δ

p
∥u∥pLp +

δ−q/p

q
∥v∥qLq .

Further, for any u, v, w ∈ X, for any p, q, r, 1 ≤ p, q, r ≤ ∞, with 1
p + 1

q + 1
r = 1,

(14)

∫
Ω

|u||v||w|dx ≤ ∥u∥Lp∥v∥Lq∥w∥Lr .

Polarization identity: for any u, v ∈ X

(u, v) =
1

2
∥u∥2 + 1

2
∥v∥2 − 1

2
∥u− v∥2, ∀ u, v ∈ L2(Ω).(15)

Proposition 2.6. (see p.173 of [2]) Let Wm,p(Ω) denote the Sobolev space, let
p ∈ [1,+∞] and q ∈ [p, p∗]. There is a C > 0 such that

(16) ∥u∥Lq ≤ C∥u∥1+d/q−d/p
Lp ∥u∥d/p−d/q

W 1,p , ∀u ∈W 1,p(Ω).
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Lemma 2.7. (A Lp−L2 type inverse inequality see Lemma 2.1 of Layton [17] also
similar result of p.112 Theorem of Brenner and Scott [3]) Let θ0 be the minimum
angle in the triangulation and Mk = {v(x) : v(x)|e ∈ Pk(e) ∀ e ∈ T h(Ω)}, Pk

being the polynomials of degree ≤ k. Then, for ∇h the elementwise defined gradient
operator, there is a C = C(θ0, p, k) such that for 2 ≤ p < ∞, d = 2, 3 and all
v ∈Mk,

(17) ∥∇hv∥Lp(Ω) ≤ Ch
d
2 (

2−p
p )∥∇hv∥.

Proposition 2.8. (The continuous inf-sup condition see p.58 [18]) There is a
constant β > 0 such that

(18) inf
q∈Q

sup
v∈X

(q,∇ · v)
∥∇v∥∥q∥

≥ β > 0.

Lemma 2.9. (A Discrete Gronwall lemma see Lemma 5.1 p.369 [12]) Let ∆t, B, an,
bn, cn, dn be non-negative numbers such that for l ≥ 1

al +∆t
l∑

n=0

bn ≤ ∆t
l−1∑
n=0

dnan +∆t
l∑

n=0

cn +B, for l ≥ 0,

then for all ∆t > 0,

al +∆t
l∑

n=0

bn ≤ exp(∆t
l−1∑
n=0

dn)
(
∆t

l∑
n=0

cn +B
)
, for l ≥ 0.

3. Stability of Backward Euler

This section establishes conditions for stability for the variable ϵ first-order
method with constant time-step:

(19)
un+1 − un

k
+u∗·∇un+1+

1

2
(∇·u∗)un+1−ν∆un+1−∇( 1

ϵn+1
∇·un+1) = fn+1.

We prove that the velocity is unconditionally stable, but ∥ut∥ is stable with restric-
tions on the change of ϵ.

3.1. Stability of the velocity.

Theorem 3.1. (Stability of variable ϵ penalty method). The variable ϵ first-order
method (7) is stable. For any M > 0, the energy equality holds:

1

2

∫
Ω

|uM |2dx+
M−1∑
n=0

∫
Ω

(
1

2
|un+1 − un|2 + kν|∇un+1|2 + k

ϵn+1
|∇ · un+1|2

)
dx

=
1

2

∫
Ω

|u0|2dx+
M−1∑
n=0

k

∫
Ω

un+1 · fn+1dx,

and the stability bound holds:

1

2

∫
Ω

|uM |2dx+

M−1∑
n=0

∫
Ω

(
1

2
|un+1 − un|2 + kν

2
|∇un+1|2 + k

ϵn+1
|∇ · un+1|2

)
dx

≤ 1

2

∫
Ω

|u0|2dx+

M−1∑
n=0

k

2ν
∥fn+1∥2−1.
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Proof. Consider the constant time-step of (19) kn+1 = k for all n, set M = T/k.
Take the L2 inner product of (19) with un+1. We obtain

1

k

(
||un+1||2 − (un,un+1)

)
+ ν||∇un+1||2 + 1

ϵn+1
||∇ · un+1||2 = (fn+1,un+1).

Apply the polarization identity (15) to the term (un,un+1)

1

2k
(||un+1||2 − ||un||2 + ||un+1 − un||2) + ν||∇un+1||2 + 1

ϵn+1
||∇ · un+1||2

=(fn+1,un+1).

By the definition of the dual norm and Young’s inequality,

1

2k
(||un+1||2 − ||un||2 + ||un+1 − un||2) + ν||∇un+1||2 + 1

ϵn+1
||∇ · un+1||2

≤ 1

2ν
||fn+1||2−1 +

ν

2
||∇un+1||2.

Sum from n = 0, ...,M − 1

1

2k
||uM ||2 +

M−1∑
n=0

(
1

2k
||un+1 − un||2 + ν

2
||∇un+1||2 + 1

ϵn+1
||∇ · un+1||2)

≤ 1

2k
||u0||2 +

M−1∑
n=0

1

2ν
||fn+1||2−1.

Multiply by 2k and drop positive terms on the left hand side

||uM ||2 ≤ ||u0||2 + 2k
M−1∑
n=0

1

2ν
||fn+1||2−1.

�

3.2. Stability of ∥ut∥ for the linear Stokes problem. In order to ensure ∇ ·
u → 0 as ϵ → 0, we need to bound ∥pϵ∥ following the idea in Fiordilino [7]. By
using the LBB inf-sup condition (18):

β∥p∥ ≤ sup
v∈X

(p,∇ · v)
∥∇v∥

= sup
v∈X

−(f, v) + (ut, v) + (u · ∇u, v) + ν(∇u,∇v)
∥∇v∥

≤ ∥f∥−1 + ∥ut∥−1 + C∥∇u∥2 + ν∥∇u∥,

this implies we must begin with a bound of ∥ut∥−1.

Remark 3.2. The stability conditions on ϵ that are derived from the linear Stokes
problem are necessary for the case of nonlinear NSE. The stability analysis of the
nonlinear term of NSE will be more involved but not alter the fundamental approach
of this proof. Hence, this case shall be omitted.

Consider the first-order method with penalty:

(20)
un+1 − un

k
− ν∆un+1 −∇

(
1

ϵn+1
∇ · un+1

)
= fn+1.

Theorem 3.3. (0-stability of linear Stokes) For any 0 ≤ n ≤ M − 1, if there is
some constant α such that 0 ≤ αk < 1 and (1 − kα)ϵn ≤ ϵn+1 holds , then the
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following stability bound holds

M−1∑
n=0

(
k

2
∥u

n+1 − un

k
∥2 + ν

2
∥∇(un+1 − un)∥2 + 1

2ϵn+1
∥∇ · (un+1 − un)∥2

)
+
ν

2
∥∇uM∥2 + 1

2ϵM
∥∇ · uM∥2

≤ exp(αT )

{
ν

2
∥∇u0∥2 + 1

2ϵ0
∥∇ · u0∥2 +

M−1∑
n=0

k

2
∥fn+1∥2

}
.

Remark 3.4. If α = 0 in (21), i.e., if ϵn+1 ≥ ϵn for all n, then we have uncondi-
tional stability.

Proof. Take the L2 inner product of (20) with un+1 − un,

1

k
∥un+1 − un∥2+ν

(
∇un+1,∇(un+1 − un)

)
+

1

ϵn+1

(
∇ · un+1,∇ · (un+1 − un)

)
=(fn+1,un+1 − un).

We will address terms successively. Denote γn+1 = 1/ϵn+1 and apply the polariza-
tion identity (15) to the second and the third terms on the left,

ν
(
∇un+1,∇(un+1 − un)

)
=
ν

2

(
∥∇un+1∥2 − ∥∇un∥2 + ∥∇(un+1 − un)∥2

)
,

1

ϵn+1

(
∇ · un+1,∇ · (un+1 − un)

)
=
γn+1

2

(
∥∇ · un+1∥2 − ∥∇ · un∥2

+ ∥∇ · (un+1 − un)∥2
)
.

By adding and subtracting γn∥∇ · un∥2/2, we have

γn+1

2

(
∥∇ · un+1∥2 − ∥∇ · un∥2 + ∥∇ · (un+1 − un)∥2

)
=
γn+1

2
∥∇ · un+1∥2 − γn

2
∥∇ · un∥2

+
γn+1

2
∥∇ · (un+1 − un)∥2 + γn − γn+1

2
∥∇ · un∥2.

By Cauchy-Schwarz and Young’s inequalities (13)

(fn+1,un+1 − un) ≤ k

2
∥fn+1∥2 + 1

2k
∥un+1 − un∥2.

By combining similar terms, we have

1

2k
∥un+1 − un∥2 +

[(ν
2
∥∇un+1∥2 + γn+1

2
∥∇ · un+1∥2

)
−
(ν
2
∥∇un∥2 + γn

2
∥∇ · un∥2

)]
+

ν

2
∥∇(un+1 − un)∥2

+
γn+1

2
∥∇ · (un+1 − un)∥2 + γn − γn+1

2
∥∇ · un∥2

≤k

2
∥fn+1∥2.
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Moving (γn − γn+1)/2∥∇ · un∥2 to the right. We obtain

1

2k
∥un+1 − un∥2 +

[(ν
2
∥∇un+1∥2 + γn+1

2
∥∇ · un+1∥2

)
−
(ν
2
∥∇un∥2 + γn

2
∥∇ · un∥2

)]
+

ν

2
∥∇(un+1 − un)∥2 + γn+1

2
∥∇ · (un+1 − un)∥2

≤k

2
∥fn+1∥2 + γn+1 − γn

2
∥∇ · un∥2,

=
k

2
∥fn+1∥2 + k

(
γn+1 − γn

kγn

)(γn
2
∥∇ · un∥2

)
.

For each fixed constant α ≥ 0, we need (γn+1 − γn)/kγn ≤ α to avoid catastrophic
growth. This leads to

γn+1 − γn ≤ kαγn,

(
1

ϵn+1
− 1

ϵn

)
ϵnϵn+1 ≤ kα

1

ϵn
ϵnϵn+1,

ϵn ≤ (1 + kα)ϵn+1,
1

1 + kα
ϵn ≤ ϵn+1.

If kα < 1, we approximate with the first two terms of the Taylor expansion

1

1 + kα
≥ 1− kα

Thus we have the stability condition on ϵ

(21) (1− kα)ϵn ≤ ϵn+1.

Under condition (21)

(22)

1

2k
∥un+1 − un∥2 + ν

2
∥∇(un+1 − un)∥2 + 1

2ϵn+1
∥∇ · (un+1 − un)∥2

+

[(
ν

2
∥∇un+1∥2 + 1

2ϵn+1
∥∇ · un+1∥2

)
−
(
ν

2
∥∇un∥2 + 1

2ϵn
∥∇ · un∥2

)]
≤k

2
∥fn+1∥2 + kα

(
1

2ϵn
∥∇ · un∥2

)
.

Sum from n = 0, 1, . . . ,M − 1

M−1∑
n=0

(
1

2k
∥un+1 − un∥2 + ν

2
∥∇(un+1 − un)∥2 + 1

2ϵn+1
∥∇ · (un+1 − un)∥2

)
+

ν

2
∥∇uM∥2 + 1

2ϵM
∥∇ · uM∥2

≤ν

2
∥∇u0∥2 + 1

2ϵ0
∥∇ · u0∥2 +

M−1∑
n=0

k

2
∥fn+1∥2 + k

M−1∑
n=0

α

(
1

2ϵn
∥∇ · un∥2

)
.
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Apply the Gronwall inequality (2.9)

M−1∑
n=0

(
1

2k
∥un+1 − un∥2 + ν

2
∥∇(un+1 − un)∥2 + 1

2ϵn+1
∥∇ · (un+1 − un)∥2

)
+

ν

2
∥∇uM∥2 + 1

2ϵM
∥∇ · uM∥2

≤ exp(k

M−1∑
n=0

α)

{
ν

2
∥∇u0∥2 + 1

2ϵ0
∥∇ · u0∥2 +

M−1∑
n=0

k

2
∥fn+1∥2

}
,

=exp(αT )

{
ν

2
∥∇u0∥2 + 1

2ϵ0
∥∇ · u0∥2 +

M−1∑
n=0

k

2
∥fn+1∥2

}
.

Thus we proved that, if (1− kα)ϵn ≤ ϵn+1 for some α ≥ 0 and αk < 1, stability of
discrete ut holds.

�

Remark 3.5. When ϵ decreases, (21) is needed to ensure the boundedness of dis-
crete ∥ut∥; If (21) does not hold, ∥ut∥ may have catastrophic growth see Figure
9.

Theorem 3.6. Let u be the solution to penalized NSE (2)-(3), then ut ∈ L4/3(0, T ;H−1),
equivalently ∫ T

0

∥ut∥4/3−1 dt < C(u0, f, k, ν, T, min
t∗∈[0,T ]

ϵ(t∗)).

Proof. Recall

∥ut∥−1 = sup
v∈X

(ut, v)

∥∇v∥
.

By skew-symmetry

(ut, v) =−
∫
Ω

b∗(u,u, v)dx− ν(∇u,∇v)− 1

ϵ(t)
(∇ · u,∇ · v) + (f, v),

≤C(∥u∥1/2∥∇u∥1/2)∥∇v∥∥∇u∥+ ν∥∇u∥∥∇v∥

+
1

ϵ(t)
∥∇ · u∥∥∇v∥+ ∥f∥−1∥∇v∥.

Thus,

(ut, v)

∥∇v∥
≤ C∥u∥1/2∥∇u∥3/2 + ν∥∇u∥+ 1

ϵ(t)
∥∇ · u∥+ ∥f∥−1.

∥u∥ is bounded by the problem data and initial condition from the stability of the
velocity Theorem 3.1.

∥ut∥−1 ≤ C(u0, f, k, ν)∥∇u∥3/2 + ν∥∇u∥+ 1

ϵ(t)
∥∇ · u∥+ ∥f∥−1.

Then ∫ T

0

∥ut∥4/3−1 dt ≤C(u0, f, k, ν)

∫ T

0

∥∇u∥2 dt+ C(ν)

∫ T

0

∥∇u∥4/3 dt

+ C

∫ T

0

(
1

ϵ(t)
∥∇ · u∥

)4/3

dt+ C

∫ T

0

∥f∥4/3−1 dt.
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From Theorem 3.1 the stability bound∫ T

0

∥∇u∥2 dt < C(u0, f, k, ν), and

∫ T

0

1

ϵ(t)
∥∇ · u∥2 dt < C(u0, f, k, ν).

By Hölder’s inequality (13)∫ T

0

∥∇u∥4/3 dt ≤

(∫ T

0

13 dt

)1/3(∫ T

0

(∥∇u∥4/3)3/2 dt

)2/3

= C(T )

(∫ T

0

∥∇u∥2 dt

)2/3

,

∫ T

0

(
1

ϵ(t)
∥∇ · u∥

)4/3

dt ≤ max
t∗∈[0,T ]

(
1

ϵ(t∗)

)2/3
(∫ T

0

13 dt

)1/3

·

(∫ T

0

(
1

ϵ(t)2/3
∥∇ · u∥4/3

)3/2

dt

)2/3

=C(T, min
t∗∈[0,T ]

ϵ(t∗))

(∫ T

0

1

ϵ(t)
∥∇ · u∥2 dt

)2/3

.

Then the result follows. �
4. Error Analysis

Next, we will prove an error estimate for the semi-discrete, variable-ϵ penalty
method. Find (uh

ϵ , p
h
ϵ ) ∈ (Xh, Qh) such that

(23)
(uh

ϵ,t, v
h) + b∗(uh

ϵ ,u
h
ϵ , v

h) + ν(∇uh
ϵ ,∇vh)− (phϵ ,∇ · vh) + (qh,∇ · uh

ϵ ) + ϵ(t)(phϵ , q
h)

= (f, vh),

for all (vh, qh) ∈ (Xh, Qh).
The error analysis for the fully discrete approximation follows the path in DeCari-

a, Layton, and Haiyun Zhao[6] with the penalty terms handled as in the Theorem
4.3.

Definition 4.1. (Stokes Projection [16]) The Stokes projection operator
PS : (X,Q)→ (Xh, Qh), PS(u, p) = (ũ, p̃), satisfies

(24)
ν(∇(u− ũ),∇vh)− (p− p̃,∇ · vh) = 0,

(∇ · (u− ũ), qh) = 0,

for any vh ∈ Xh, qh ∈ Qh.

Proposition 4.2. (Error estimate for the Stokes Projection) Suppose the discrete
inf-sup condition (9) holds. Let C1 be a constant independent of h and ν and
C2 = C(ν,Ω). If Ω is a convex polygonal/polyhedral domain, then the error in the
Stokes Projection (24) satisfies

∥p− p̃∥ ≤ ν

βh
∥∇(u− ũ)∥,

ν∥∇(u− ũ)∥2 ≤C1[ν inf
vh∈Xh

∥∇(u− vh)∥2 + ν−1 inf
qh∈Qh

∥p− qh∥2],

and ∥u− ũ∥ ≤C2h

(
inf

vh∈Xh
∥∇(u− vh)∥+ inf

qh∈Qh
∥p− qh∥

)
.
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Proof. From the first equation of (24),

(p− p̃,∇ · vh) = ν(∇(u− ũ),∇vh).

By the discrete inf-sup condition (9),

βh∥p− p̃∥ ≤ sup
vh∈Xh

(p− p̃,∇ · vh)
∥∇vh∥

= sup
vh∈Xh

ν(∇(u− ũ),∇vh)
∥∇vh∥

,

≤ sup
vh∈Xh

ν∥∇(u− ũ)∥∥∇vh∥
∥∇vh∥

= ν∥∇(u− ũ)∥.

For detailed proof of the last two inequalities, see Proposition 2.2 and Remark 2.2
of [16]. �

We also need an estimator for ∥∇(u − ũ)t∥. Take the partial derivative with
respect to time t of (24) to yield

ν(∇(u− ũ)t,∇vh)− ((p− p̃)t,∇ · vh) = 0,

(∇ · (u− ũ)t, q
h) = 0,

for all vh ∈ Xh, qh ∈ Qh.
Let vh = ϕh

t , q
h = (p̃ − I(p))t, by a similar argument as in Proposition 4.2, we

have

(25) ν∥∇(u− ũ)t∥2 ≤ C[ν inf
vh∈Xh

∥∇(u− vh)t∥2 + ν−1 inf
qh∈Qh

∥(p− qh)t∥2],

where C is a constant independent of h and ν.

Theorem 4.3. (Error Analysis of semi-discrete variable ϵ penalty method) Let
(Xh, Qh) be the finite element spaces satisfying (8) and (9). Let uϵ be a solution
of (2). Suppose the interpolation estimate (10) in H−1(Ω) holds and ∥∇uϵ∥ ∈
L4(0, T ), then we have the following error estimate:

sup
0≤t≤T

∥(uϵ − uh
ϵ )(t)∥2 +

∫ T

0

ν

4
∥∇(uϵ − uh

ϵ )∥2 dt

≤e
∫ T
0

a(t)dt
{
∥(uϵ − uh

ϵ )(0)∥2

+

∫ T

0

C(ν, βh)ϵ(t)h2m
(
∥uϵ∥2Hm+1(Ω) + ∥pϵ∥

2
Hm(Ω)

)
dt+ max

0≤t≤T
∥uϵ − vh∥2

}
+ C(ν,Ω)

[
(h− d

3 + h2− d
3 + h2− d

2 )h2m
(
∥uϵ∥2L2(0,T ;Hm+1(Ω)) + ∥pϵ∥

2
L2(0,T ;Hm(Ω))

)
+ h2m+2

(
∥uϵ,t∥2L2(0,T ;Hm+1(Ω)) + ∥pϵ,t∥

2
L2(0,T ;Hm(Ω))

) ]
,

where a(t) = C(ν)∥∇uϵ∥4 + 1
4 .

Proof. We denote (uϵ, pϵ) as penalty solutions to (2).
Multiplying first equation of (2) by vh ∈ Xh and second equation of (2) by qh ∈ Qh

gives

(uϵ,t, v
h) + b∗(uϵ,uϵ, v

h) + ν(∇uϵ,∇vh)− (pϵ,∇ · vh) + (qh,∇ · uϵ) + ϵ(t)(pϵ, q
h)

= (f, vh).(26)
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Subtract (23) from (26) and denote e = uϵ − uh
ϵ ,

(et, v
h) + b∗(uϵ,uϵ, v

h)− b∗(uh
ϵ ,u

h
ϵ , v

h) + ν(∇e,∇vh)

−(pϵ − phϵ ,∇ · vh) + (qh,∇ · e) + ϵ(t)(pϵ − phϵ , q
h) = 0.

Denote η = uϵ − ũ, ϕh = uh
ϵ − ũ, e = η − ϕh and ũ ∈ Xh, λh ∈ Qh,

(ϕh
t , v

h) + ν(∇ϕh,∇vh)− (phϵ − λh,∇ · vh) + (qh,∇ · ϕh) + ϵ(t)(phϵ − λh, qh)

=(ηt, v
h) + ν(∇η,∇vh)− (pϵ − λh,∇ · vh) + (qh,∇ · η) + ϵ(t)(pϵ − λh, qh)

+ b∗(uϵ,uϵ, v
h)− b∗(uh

ϵ ,u
h
ϵ , v

h).

Pick ũ ∈ Xh, λh ∈ Qh to be the Stokes Projection (24) of (uϵ, pϵ) such that

ν(∇(uϵ − ũ),∇vh)− (pϵ − λh,∇ · vh) = 0 for all vh ∈ Xh,

(∇ · (uϵ − ũ), qh) = 0 for all qh ∈ Qh.

Set vh = ϕh, qh = phϵ − λh. We obtain,

1

2

d

dt
∥ϕh∥2 + ν∥∇ϕh∥2 + ϵ(t)∥phϵ − λh∥2

=(ηt, ϕ
h) + b∗(uϵ,uϵ, ϕ

h)− b∗(uh
ϵ ,u

h
ϵ , ϕ

h) + ϵ(t)(pϵ − λh, phϵ − λh).

Consider the nonlinear terms

b∗(uϵ,uϵ, ϕ
h)− b∗(uh

ϵ ,u
h
ϵ , ϕ

h)

=b∗(uϵ,uϵ, ϕ
h)− b∗(uh

ϵ ,uϵ, ϕ
h) + b∗(uh

ϵ ,uϵ, ϕ
h)− b∗(uh

ϵ ,u
h
ϵ , ϕ

h)

=b∗(e,uϵ, ϕ
h) + b∗(uh

ϵ , e, ϕ
h)

=b∗(η,uϵ, ϕ
h)− b∗(ϕh,uϵ, ϕ

h) + b∗(uh
ϵ , η, ϕ

h).

Thus we have

1

2

d

dt
∥ϕh∥2 + ν∥∇ϕh∥2 + ϵ(t)∥phϵ − λh∥2

=(ηt, ϕ
h) + b∗(η,uϵ, ϕ

h)− b∗(ϕh,uϵ, ϕ
h) + b∗(uh

ϵ , η, ϕ
h)

+ ϵ(t)(pϵ − λh, phϵ − λh).

Consider the right hand side terms of the equation

|(ηt, ϕh)| ≤ 1

2ν
∥ηt∥2−1 +

ν

2
∥∇ϕh∥2,

|ϵ(t)(pϵ − λh, phϵ − λh)| ≤ϵ(t)

2
∥pϵ − λh∥2 + ϵ(t)

2
∥phϵ − λh∥.

Apply the trilinear inequality (14) to the first nonlinear term b∗(η,uϵ, ϕ
h) to obtain

|b∗(η,uϵ, ϕ
h)| = 1

2

∣∣(η · ∇uϵ, ϕ
h)− (η · ∇ϕh,uϵ)

∣∣
≤ 1

2
[∥η∥L4∥∇uϵ∥∥ϕh∥L4 + ∥η∥L4∥∇ϕh∥∥uϵ∥L4 ].

Using the Sobolev inequality (12), we have ∥ϕh∥L4 ≤ C∥∇ϕh∥ and ∥uϵ∥L4 ≤
C∥∇uϵ∥,

|b∗(η,uϵ, ϕ
h)| ≤ C∥η∥L4∥∇uϵ∥∥∇ϕh∥ ≤ ν

4
∥∇ϕh∥2 + C(ν)∥∇uϵ∥2∥η∥2L4

.

Apply Lemma (2.2) to the term |b∗(ϕh,uϵ, ϕ
h)|,

|b∗(ϕh,uϵ, ϕ
h)| ≤ C(Ω)∥ϕh∥1/2∥∇ϕh∥3/2∥∇uϵ∥.
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Using Hölder’s and Young’s inequality (13) with p = 4/3, q = 4,

|b∗(ϕh,uϵ, ϕ
h)| ≤ ν

16
∥∇ϕ∥2 + C(ν)∥ϕh∥2∥∇uϵ∥4.

Next, we bound the nonlinear term b∗(uh
ϵ , η, ϕ

h) and use the trilinear inequality
(14)

|b∗(uh
ϵ , η, ϕ

h)| = 1

2

∣∣(uh
ϵ · ∇η, ϕh)− (uh

ϵ · ∇ϕh, η)
∣∣

≤ 1

2
[∥uh

ϵ ∥L6∥∇η∥L3∥ϕh∥+ ∥uh
ϵ ∥L6∥∇ϕh∥∥η∥L3 ]

≤ 1

4
∥ϕh∥2 + 1

4
∥uh

ϵ ∥2L6
∥∇η∥2L3

+
ν

16
∥∇ϕh∥2 + C(ν)∥uh

ϵ ∥2L6
∥η∥2L3

.

Collect all the terms, combine similar terms and multiply through by 2, we have

d

dt
∥ϕh∥2 + ν

4
∥∇ϕh∥2 + ϵ(t)∥phϵ − λh∥2

≤(C(ν)∥∇uϵ∥4 +
1

2
)∥ϕh∥2 + C(ν)

[
∥ηt∥2−1 + ∥∇uϵ∥2∥η∥2L4

+ ∥uh
ϵ ∥2L6

∥η∥2L3

]
+

1

2
∥uh

ϵ ∥2L6
∥∇η∥2L3

+ ϵ(t)∥pϵ − λh∥2.

Denote a(t) = C(ν)∥∇uϵ∥4 + 1
2 and its antiderivative

A(T ) :=

∫ T

0

a(t)dt <∞ for ∥∇uϵ∥ ∈ L4(0, T ).

Multiply through by the integrating factor e−A(t)

d

dt
[e−A(T )∥ϕh∥2] + e−A(T )

[ν
4
∥∇ϕh∥2 + ϵ(t)∥ph − λh∥2

]
≤e−A(T )

{
C(ν)

[
∥ηt∥2−1 + ∥∇uϵ∥2∥η∥2L4

+ ∥uh
ϵ ∥2L6

∥η∥2L3

]
+

1

2
∥uh

ϵ ∥2L6
∥∇η∥2L3

+ ϵ(t)∥pϵ − λh∥2
}
.

Integrate over [0, T ] and multiply through by eA(T ) gives

∥ϕh(T )∥2 +
∫ T

0

ν

4
∥∇ϕh∥2 + ϵ(t)∥ph − λh∥2 dt

≤eA(T )
{
∥ϕh(0)∥2 +

∫ T

0

C(ν)
[
∥ηt∥2−1 + ∥∇uϵ∥2∥η∥2L4

+ ∥uh
ϵ ∥2L6

∥η∥2L3

]
+

1

2
∥uh

ϵ ∥2L6
∥∇η∥2L3

+ ϵ(t)∥pϵ − λh∥2 dt
}
.

Applying Hölder’s inequality (13) gives∫ T

0

∥uh
ϵ ∥2L6

∥η∥2L3
dt ≤ ∥uh

ϵ ∥2L6(0,T ;L6)∥η∥
2
L3(0,T ;L3),∫ T

0

∥∇uϵ∥2∥η∥2L4
dt ≤ ∥∇uϵ∥2L4(0,T ;L2)∥η∥

2
L4(0,T ;L4),∫ T

0

∥uh
ϵ ∥2L6

∥∇η∥2L3
dt ≤ ∥uh

ϵ ∥2L6(0,T ;L6)∥∇η∥
2
L3(0,T ;L3).
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∥uh
ϵ ∥L6(0,T ;L6) and ∥∇uϵ∥L4(0,T ;L2) are bounded by problem data by the stability

bound. Using the Sobolev inequality (16), Lp−L2 type inverse inequality (17), the
interpolation estimate (10) and the Poincaré-Friedrichs’ inequality (11)

∥η∥L3 ≤ C∥η∥1−d/6∥∇η∥d/6, ∥η∥L4 ≤ C∥η∥1−d/4∥∇η∥d/4,

∥∇η∥L3 ≤ Ch−d/6∥∇η∥, ∥ηt∥−1 ≤ Ch∥ηt∥ ≤ Ch∥∇ηt∥.

By Proposition 4.2 and (25)

∥∇(uϵ − ũ)∥2 ≤ C(ν)[ inf
vh∈Xh

∥∇(uϵ − vh)∥2 + inf
qh∈Qh

∥pϵ − qh∥2],

∥uϵ − ũ∥2 ≤ C(ν,Ω)h2[ inf
vh∈Xh

∥∇(uϵ − vh)∥2 + inf
qh∈Qh

∥pϵ − qh∥2],

∥∇(uϵ − ũ)t∥2 ≤ C(ν)[ inf
vh∈Xh

∥∇(uϵ − vh)t∥2 + inf
qh∈Qh

∥(pϵ − qh)t∥2],

∥pϵ − λh∥2 ≤ C(ν, βh)[ inf
vh∈Xh

∥∇(uϵ − vh)∥2 + inf
qh∈Qh

∥pϵ − qh∥2].

Thus,

∥ϕh(T )∥2 +
∫ T

0

ν

4
∥∇ϕh∥2 + ϵ(t)∥ph − λh∥2 dt

≤eA(T )
{
∥ϕh(0)∥2 +

∫ T

0

C(ν, βh)ϵ(t)

(
inf

vh∈Xh
∥∇(uϵ − vh)∥2 + inf

qh∈Qh
∥pϵ − qh∥2

)
dt

+ C(ν,Ω)
[
(h−d/3 + h2−d/3 + h2−d/2)

(
inf

vh∈Xh
∥∇(uϵ − vh)∥2L2(0,T ;L2)

+ inf
qh∈Qh

∥pϵ − qh∥2L2(0,T ;L2)

)
+ h2

(
inf

vh∈Xh
∥∇(uϵ − vh)t∥2L2(0,T ;L2)

+ inf
qh∈Qh

∥(pϵ − qh)t∥2L2(0,T ;L2)

)]}
.

Using the approximation properties (8) of the spaces (Xh, Qh)

∥ϕh(T )∥2 +
∫ T

0

ν

4
∥∇ϕh∥2 + ϵ(t)∥ph − λh∥2 dt ≤

eA(T )
{
∥ϕh(0)∥2 ++

∫ T

0

C(ν, βh)ϵ(t)h2m
(
∥uϵ∥2Hm+1(Ω) + ∥pϵ∥

2
Hm(Ω)

)
dt

+C(ν,Ω)
[
(h−d/3 + h2−d/3 + h2−d/2)h2m

(
∥uϵ∥2L2(0,T ;Hm+1(Ω)) + ∥pϵ∥

2
L2(0,T ;Hm(Ω))

)
+h2m+2

(
∥uϵ,t∥2L2(0,T ;Hm+1(Ω)) + ∥pϵ,t∥

2
L2(0,T ;Hm(Ω))

) ]}
.

Drop the pressure term on the left-hand side and apply triangle inequality, then we
have the error estimate. �

Remark 4.4. The L2 error estimate is not optimal. This is an open question for
variable ϵ.

5. Algorithms

The backward Euler method was chosen as our method of time discretization.
A time filter to increase the accuracy from first to second order was added [8], and
later used to implement time adaptivity easily.
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We use the time discretization in [8]: for y′ = f(t, y), select τ = kn+1/kn,
α = τ(1 + τ)/(1 + 2τ), then

(27)

y1n+1 − yn

kn+1
= f(tn+1, yn+1),

yn+1 = y1n+1 −
α

2

(
2kn

kn + kn+1
yn+1 − 2yn +

2kn+1

kn + kn+1
yn−1

)
,

EST = |yn+1 − y1n+1|.

This step uses the information of the previous two time-steps.
This above algorithm is second-order accurate for α = 2/3 with constant time-

step τ = 1. Apply this time filter to our adaptive penalty method; we get the
following variable ϵ, constant time-step Algorithm 1.

Algorithm 1: Variable ϵ, constant time-step, second-order penalty method

Given un,un−1, ϵn, ϵn+1, tolerance TOL, lower tolerance minTOL, ϵmin, ϵmax,
and α.
Set u⋆ = 2un − un−1 Solve for u1

n+1

u1
n+1 − un

k
+ u∗ · ∇u1

n+1 +
1

2
(∇ · u∗)u1

n+1

−∇
(

1

ϵn+1
∇ · u1

n+1

)
− ν∆u1

n+1 = fn+1.

Apply time filter, Compute estimator EST

un+1 = u1
n+1 −

1

3
{u1

n+1 − 2un + un−1},

ESTn+1 = ∥∇ · un+1∥/∥∇un+1∥.

Adapt ϵ using the standard decision tree:
if ESTn+1 ≥ TOL then

if ϵn+1 = ϵmin then
CONTINUE

else
ϵn+1 ← max{(1− αk)ϵn+1, 0.5ϵn+1, ϵmin} ;
REPEAT step

end

end

if ESTn+1 ≤ minTOL then
ϵn+2 ← min{2ϵn+1, ϵmax} ;
CONTINUE ;

end

Recover pressure pn+1 if needed by: pn+1 = − 1
ϵn+1
∇ · un+1.

Next, we extend the algorithm to variable time-step methods based on the previ-
ous work by Guzel and Layton [8] and Layton and McLaughlin [19]. We summarize
as follows. In the variable time-step, the first-order and second-order method, the
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next time-step is adapted based on the following:

first-order prediction knew = kold

(
tTOL

tEST1

)1/2

,

second-order prediction knew = kold

(
tTOL

tEST2

)1/3

.

Let D2 denote the difference

D2(n+ 1) =
2kn

kn + kn+1
u1
n+1 − 2un +

2kn+1

kn + kn+1
un−1.

A simple estimate of the local truncation error in the first-order estimation is taken
to be the difference between un+1 and u1

n+1

α1 =
τ(1 + τ)

1 + 2τ
,

tEST1 =∥un+1 − u1
n+1∥ =

α1

2
∥D2(n+ 1)∥.

And the local truncation error of the second-order method is given by

α2 =
τn(τn+1τn + τn + 1)(4τ3n+1 + 5τ2n+1 + τn+1)

3(τnτ2n+1 + 4τnτn+1 + 2τn+1 + τn + 1)
,

tEST2 =
α2

6

∥∥∥∥ 3kn−1

kn+1 + kn + kn−1
D2(n+ 1)− 3kn+1

kn+1 + kn + kn−1
D2(n)

∥∥∥∥ .
For both first-order and second-order variable time-step methods, ϵ is still adapted
independently using the same decision tree as in Algorithm 1.

Remark 5.1. The estimator ∥∇ ·un+1∥/∥∇un+1∥ is chosen over ∥∇ ·un+1∥ as it
is dimension free and removes dependence on the size of u.

Next, we consider the variable time-step variable order method. This algorithm
computes two velocity approximations. u1 is first-order, and u is second-order by
applying the time filter. The first-order variable time-step method, is uncondition-
ally stable, while the second-order variable time-step method is A-stable, which
would require a time-step condition for stability. Combining both first and second
order methods by adapting the method order increases accuracy and efficiency.

This following Algorithm 2 gives the variable ϵ, variable time-step variable order
(VSVO) penalty method. First (n=1) and second (n=2) order variable time-step
method can be also obtained from this following algorithm by using correspond-
ing time-step estimator tESTn and time-step STEPn. In order to use first-order
method, u1

n+1 is used and for second order method, un+1 is used instead. For
detailed variable ϵ, variable time-step, first and second order algorithms, see the
Appendix.

Remark 5.2. In this algorithm, 0.9 is used as a standard safety factor [19].

6. Numerical Experiments

6.1. Modified Tyler-Green. First we verify the adaptive ϵ penalty method does
better than normal constant ϵ penalty method by comparing the adaptive ϵ tests
(Algorithm 1) with two different constant ϵ options: 1) constant ϵ = 10−8ν and 2)
constant ϵ = k. Here option 1) is usually the approach using by engineering people
and option 2) is derived from previous penalty paper by Shen [24].
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Algorithm 2: Variable ϵ, variable time-step, variable order (VSVO) penalty
method

Given un,un−1, ϵn+1, ϵn, tolerance for ϵ: TOL=10−6 and lower tolerance
minTOL=TOL/10, lower and upper bound of
ϵ : ϵmin = 10−8, ϵmax = 10−5, α = 2, tolerance for ∆t: tTOL=10−5 and lower
tolerance mintTOL=tTOL/10

Compute τ = kn+1

kn
and α1 = τ(1+τ)

1+2τ , α2 =
τn(τn+1τn+τn+1)(4τ3

n+1+5τ2
n+1+τn+1)

3(τnτ2
n+1+4τnτn+1+2τn+1+τn+1)

Set u∗ = (1 + τ)un − τun−1

Solve for u1
n+1

u1
n+1 − un

kn+1
+ u∗ · ∇u1

n+1 +
1

2
(∇ · u∗)u1

n+1 −∇
(

1

ϵn+1
∇ · u1

n+1

)
− ν∆u1

n+1

= fn+1.

Compute estimators for ∆t and ϵ and difference D2 and apply time filter

D2(n+ 1) =
2kn

kn + kn+1
u1
n+1 − 2un +

2kn+1

kn + kn+1
un−1,

un+1 = u1
n+1 −

α1

2
D2(n+ 1),

ESTe(n+ 1) = ∥∇ · un+1∥/∥∇un+1∥,

tEST1(n+ 1) =
α1

2
∥D2(n+ 1)∥,

tEST2(n+ 1) =
α2

6

∥∥∥∥ 3kn−1

kn+1 + kn + kn−1
D2(n+ 1)− 3kn+1

kn+1 + kn + kn−1
D2(n)

∥∥∥∥ .
Adapt ϵ and k using the standard decision tree:
if ESTe(n+ 1) > TOL or min{tEST1(n+ 1), tEST2(n+ 1)} > tTOL then

ϵn+1 ← max{(1− αkn+1)ϵn+1, 0.5ϵn+1, ϵmin};

STEP1 = max

{
0.9kn

(
tTOL

tEST1(n+1)

)1/2
, 0.5kn+1

}
;

STEP2 = max

{
0.9kn

(
tTOL

tEST2(n+1)

)1/3
, 0.5kn+1

}
;

kn+1 ← max{STEP1, STEP2} ;
REPEAT step

else
if ESTn+1 < minTOL or min{tEST1(n+ 1), tEST2(n+ 1)} < mintTOL
then

ϵn+2 ← min{2ϵn+1, ϵmax} ;

STEP1← max

{
min

{
0.9kn+1

(
tTOL

tEST1(n+1)

)1/2
, 2kn+1

}
, 0.5kn+1

}
;

STEP2← max

{
min

{
0.9kn+1

(
tTOL

tEST2(n+1)

)1/3
, 2kn+1

}
, 0.5kn+1

}
;

kn+2 ← max{STEP1, STEP2};
CONTINUE ;

end

end
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Pick method with larger time-step for next step:
if STEP1>STEP2 then

un+1 = u1
n+1

Recover pressure pn+1 if needed by: pn+1 = − 1
ϵn+1
∇ · un+1.

Figure 1. Comparison of ∥∇·u∥ and discrete ∥ut∥ between adap-
tive penalty (Algorithm 1) and two constant penalty methods, tests
are done with 100 mesh points per side and ∆t = 0.005.

This test is a modified version of the historically used problem Tyler-Green
vortex [6] and the exact solution is given by

u(x, y, t) = e−2νt(cosx sin y,− sinx cos y),

p(x, y, t) = −1

4
e−4νt(cos 2x+ cos 2y) + x(sin 2t+ cos 3t) + y(sin 3t+ cos 2t).

This is inserted into the NSE and the body force f(x, y, t) calculated.
The test was done using uniform meshes with 100 nodes per side of the square

[0, 2π]× [0, 2π]. We solve using P2 elements and calculate up to time T = 25. Here
we still compare three different methods: 1) constant epsilon penalty method with
ϵ = 10−8ν, 2) constant epsilon penalty method with ϵ = k and 3) variable penalty
method (Algorithm 1). All three methods are calculated with ∆t = 0.005 with
time-filter. The results are shown in Figure 1, Figure 2, Figure 3 and Figure 4.

Figure 1 shows the evolution of ∥∇ · u∥ and discrete ∥ut∥. Constant penalty
ϵ = k has much more larger ∥∇·u∥ and ∥ut∥ than both constant penalty ϵ = 10−8ν
and adaptive penalty methods. The results of constant ϵ = k is inaccurate as
∥∇·u∥ = O(10−1). To further see the difference between constant penalty ϵ = 10−8ν
and adaptive penalty, we zoomed in and got Figure 2. Constant ϵ = 10−8ν and
adaptive penalty has comparable ∥ut∥ values, both of order O(10−2). But adaptive
penalty has more oscillating ∥∇·u∥ values than constant penalty ϵ = 10−8ν. ∥∇·u∥
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Figure 2. Zoomed in comparison of ∥∇ · u∥ and discrete ∥ut∥
between adaptive penalty (Algorithm 1) and two constant penalty
methods, tests are done with 100 mesh points per side and ∆t =
0.005.

of adaptive penalty isO(10−5) and ∥∇·u∥ of constant penalty ϵ = 10−8ν isO(10−9).

The second plot of Figure 3 is the velocity error ∥u− uh∥, adaptive ϵ has much
more smaller error compared to the other two constant penalty method. The first
plot of Figure 3 is the evolution of ϵ of 1) constant ϵ = 10−8ν and 3) adaptive
penalty. The evolution of ϵ of 2) constant ϵ = k is not shown in this plot due to
the limitation of y−axis. ϵ of 3) adaptive penalty changes with time and gradually
becomes stable over time. Because penalty method is very sensitive to the choice
of ϵ as we see in Figure 5. This shows that adaptive penalty method does pick
a good ϵ automatically. Furthermore, by using the adaptive penalty method, we
could eventually find that good ϵ with a little more calculation.

The behavior of pressure is not good as seen in Figure 4. Both pressure and
pressure error fluctuate. Accurate pressure recovery remains an open question.

As a conclusion, there are three main advantages of the adaptive penalty method
over the usual constant penalty method:

(1) The errors of adaptive ϵ and constant ϵ are comparable. Finding a good
constant ϵ can require an exhaustive search.

(2) Constant ϵ = 10−8ν behaviors better than constant ϵ = k in our tests.
But as in the test, ν = 0.01, ϵ = 10−8ν = 10−10 leads to an extremely ill
conditioned linear system. While adaptive ϵ levels out with ϵ ≈ 10−5 and
gives ∥∇ ·u∥ = O(10−5). Adaptive ϵ controls ∥∇ ·u∥ better than ϵ = k and
controls ∥∇ · u∥ almost as well as ϵ = 10−8ν but leads to a much better
conditioned system. Further, adaptive ϵ has smaller velocity error than
ϵ = 10−8ν. Overall, adaptive ϵ performed better.
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Figure 3. Evolution of ϵ and ∥u− uh∥ between adaptive penalty
(Algorithm 1) and two constant penalty methods, tests are done
with 100 mesh points per side and ∆t = 0.005.

Figure 4. Comparison of ∥p − ph∥ and discrete ∥ph∥ between
adaptive penalty (Algorithm 1) and two constant penalty methods,
tests are done with 100 mesh points per side and ∆t = 0.005.

(3) The only way to find the best ϵ is by exhaustive search for problems with
already known solution. This is not possible for new problems but is not
needed with the adaptive penalty.
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(a) ∆t = 0.05, ϵ = 10−6

(b) ∆t = 0.02, ϵ = 5 ∗ 10−9

Figure 5. ∥(u − uh)(10)∥ with constant time-step and different
values of penalty parameter ϵ.

6.2. A test with exact solution, taken from [5]. This exact solution experi-
ment tests the accuracy of the adaptive penalty algorithm. The following test has
exact solution for 2D Navier Stokes problem(ν = 1).
Let the domain Ω = (−1, 1)× (−1, 1). The exact solution is as follows:

u(x, y, t) = π sin t(sin 2πy sin2 πx,− sin 2πx sin2 πy),

p(x, y, t) = sin t cosπx sinπy.

This is inserted into the NSE and the body force f(x, t) calculated.
Uniform meshes were used with 270 nodes per side on the boundary. The mesh

is fine enough that the error resulting from the meshsize is relatively smaller than
that from the step-size. Taylor-Hood elements (P2-P1) were used in this test. We
ran the test up to T = 10.
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Table 1. Constant time-step variable ϵ error comparison.

dt # steps ∥(u− uh)(10)∥ rate ∥(u− uh)(10)∥L∞ rate
0.1 100 0.00965699 - 0.00869 -
0.05 200 0.00203366 2.2475 0.002075 2.0662
0.02 500 0.000332169 1.9775 0.0004969 1.5599
0.01 1000 0.000324625 0.0331 0.00043955 0.1769

dt # steps ∥(p− ph)(10)∥L∞ rate
0.1 100 0.268895 -
0.05 200 0.229891 0.2261
0.02 500 0.222597 0.0352
0.01 1000 0.196683 0.1786

Figure 5 indicates that velocity error is very sensitive to the choice of ϵ. This
sensitivity is a known effect, motivating the ϵ−adaptive algorithm of the penalized
NSE (4). It also suggests that ϵ too large is safer than ϵ too small.

6.2.1. Test 1: Constant time-step, variable ϵ test. First, we tested the con-
stant time-step, variable ϵ test based on Algorithm 1. The error at final time T=10
is at Table 1. We observe that the velocity error are good, but the pressure ap-
proximation is poor. ∥∇ · u∥ in Figure 6 is well controlled for all three different

Figure 6. Comparison of results with different ∆t of variable ϵ,
constant time-step method (Algorithm 1).

time-steps. ∥ut∥ in Figure 6 is very close to the true value of problem. Decreasing
the time-step improves accuracy of the pressure at origin (0, 0). The oscillations in
the errors of p(0, 0) and ∥∇·u∥ arise from the multiplier sin(t) in the exact solution.
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Table 2. ∥u− uh∥ for constant time-step dt = 0.001 variable ϵ.

m TOL = 1e− 2 rate TOL = 1e− 3 rate TOL = 1e− 4 rate
10 0.15 - 0.17 - 0.17 -
20 0.029 2.4 0.041 2.1 0.042 2.0
40 0.0024 3.6 0.0093 2.1 0.010 2.0
80 0.027 -3.5 0.0014 2.7 0.0025 2.1

This test has a smooth solution, ∥∇u∥ does not vary too much in the whole test.
And this result in the estimator EST = ∥∇ · u∥/∥∇u∥ is also very smooth. So ϵ
does not vary too much in this test . Both ∥ut∥ and ∥∇·u∥ are well controlled. The
values of ∥ut∥ are very close to the true value. The values of ∥∇ ·u∥ are very close
to 0 (up to 10−4) which is the incompressibility condition. One surprising effect
we see from the plot of ∥∇ · u∥ is that smaller ∆t leads to larger ∥∇ · u∥, which
contradicts expectations from theory. This is due to for smaller ∆t, this adaptive ϵ
algorithm suggests larger ϵ. ∇ · u and p need to satisfy the relation ∇ · u+ ϵp = 0
and this implies ∥∇ · u∥ = ϵ∥p∥.

Figure 7. log-log plot of velocity error at final step T=10 ∥(u−
uh)(10)∥ v.s. time-step using variable ϵ constant time-step method
(Algorithm 1). Slope of plot ∥(u− uh)(10)∥ is close to 2.

Figure 7 is the log-log plot of velocity error at final time T=10 versus the time-
step k. We see the curve of log(∥(u− uh)(10)∥)− log(k) has slope close to 2. This
constant time-step, variable ϵ, backward Euler algorithm with time filter (Algorithm
1) is second-order accurate. When the time-step gets too small, the error does not
change too much. This is due to the choice of tolerance, TOL, for algorithm here
is 10−6 and at this time-step reached the error plateau.

We check the convergence of algorithm in spatial direction. Set dt = 0.001 and
choose uniform meshes with m = 10, 20, 40, 80 nodes per side on the boundary. The
dt is small enough that the error resulting from the step-size is relatively smaller
than from meshsize. We also consider the effect in error from TOL and choose
TOL = 1e − 2, 1e − 3, 1e − 4, 1e − 5, 1e − 6, 1e − 7. The L2 error ∥u − uh∥ is
Table 2 and 3. Both tables show ∥u − uh∥ = O(h2) not O(h3). So there is a
loss of accuracy in L2, consistent with Theorem 4.3. The consistent O(h2) pattern
shows the adaptive algorithm control well the ϵ- dependency of the error (except
for m = 80, TOL = 1e− 2).

6.2.2. Test 2: Double Adaptive. Next, we test the same problem using the
variable time-step algorithm (Algorithm 2-4). The errors of variable time-step,
variable ϵ method are presented at Table 4. From the table, the variable order
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Table 3. ∥u− uh∥ for constant time-step dt = 0.001 variable ϵ.

m TOL = 1e− 5 rate TOL = 1e− 6 rate TOL = 1e− 7 rate
10 0.17 - 0.17 - 0.17 -
20 0.042 2.0 0.042 2.1 0.042 2.0
40 0.010 2.0 0.010 2.0 0.010 2.0
80 0.0025 2.1 0.0025 2.1 0.0025 2.1

Table 4. Variable time-step error comparison.

method # steps ∥(u− uh)(10)∥ ∥(u− uh)(10)∥L∞ ∥(p− ph)(10)∥L∞

first 3450 0.0609278 0.0512269 0.348461
second 447 0.0567343 0.0476828 0.344317
vsvo 566 0.00364638 0.00314834 0.190205

Figure 8. Comparison of variable time-step, variable ϵ method
(Algorithm 2,3,4).

method gives slightly better results than first-order and second-order methods. The
velocity error is of order 10−3 using VSVO and is of order 10−2 for both first and
second order algorithm. The pressure error of VSVO is approximately 50% smaller
than first and second order algorithms. For the variable time-step methods, in
Figure 8 we track the evolution of ϵ and ∆t, the pressure at the origin and ∥∇ · u∥.
The last plot of Figure 8 shows that the second-order method consistently chooses
a larger time-step than the first-order method. At the beginning, VSVO picks
the second-order method, and after some time VSVO picks the first-order method.
The VSVO algorithm takes larger time-steps than both the first and second order
method. From Figure 9, the plot of ∥ut∥, we see some spikes. The time where
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Figure 9. ∥ut∥ plot of variable time-step, variable ϵ method (Al-
gorithm 2,3,4) The spikes show at the time when ϵ decrease too
fast (violation of (21)).

we see spikes is exactly ϵ is decreased a lot (see Figure 8.) From the analysis of
stability of ∥ut∥, when we decrease ϵ, (21) must be satisfied to avoid catastrophic
growth of ∥ut∥. When adapting ϵ and k to ensure EST < TOL, we may reject due
to EST exceeding TOL and redo the step several times. This may result in the
sudden decrease of ϵ, as in Figure 8. This kind of sudden decrease of ϵ violates (21)
and results in the spikes as in Figure 9. This illustrates the necessity of controlling
the change in ϵ using the method we derived from stability analysis and decreasing
ϵ using (21): (1− kα)ϵn ≤ ϵn+1.

6.3. Flow Between Offset Circles, taken from [19]. The domain is a disk with
a smaller off center obstacle inside. Let r1 = 1, r2 = 0.1, c = (c1, c2) = (1/2, 0),
then the domain is given by

Ω = {(x, y) : x2 + y2 < r21 and (x− c1)
2 + (y − c2)

2 > r22}.
The flow is driven by a counterclockwise rotational body force

f(x, y, t) = min{t, 1}(−4y ∗ (1− x2 − y2), 4x ∗ (1− x2 − y2))T , for 0 ≤ t ≤ 10,

with no-slip boundary conditions on both circles. We discretize in space using
P 2−P 1 Taylor-Hood elements. There are 200 mesh points around the outer circle
and 50 mesh points around the inner circle. The finite element discretization has a
maximal mesh width of hmax = 0.048686. The flow is driven by a counterclockwise
force (f=0 on the outer circle). The flow rotates about the origin and interacts with
the immersed circle.

To better compare the results, tests is also done using the following algorithm:
Backward Euler with grad-div stabilization parameter γ = 1 see Jenkins, John,
Linke and Rebholz [14]

(28)

un+1 − un

k
+ un · ∇un+1 +

1

2
(∇ · un)un+1 +∇pn+1

−ν∆un+1 − γ∇∇ · un+1 = fn+1,

∇ · un+1 = 0.

For both estimators EST = ∥∇ · u∥ and EST = ∥∇ · u∥/∥∇u∥, we use constant
time-step variable ϵ (Algorithm 1) with the same tolerance TOL and lower tolerance
minTOL. We track the evolution of ϵ, the pressure at the origin, the evolution of
∥∇ · u∥, ∥ut∥ and the lift, drag coefficients. These are all shown in Figure 10.

The fourth plot in Figure 10 shows that with EST = ∥∇ · u∥/∥∇u∥ chooses
larger ϵ values than with estimator EST = ∥∇ · u∥. The evolution of pressure,
lift and drag coefficients behave similarly for both estimators. ∥∇ · u∥ is smaller
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Figure 10. Comparison between different estimators ∥∇ ·u∥ and
∥∇ · u∥/∥∇u∥, Re = 100,∆t = 0.005 with Algorithm 1 (constant
time-step, variable ϵ). No penalty uses Backward Euler with grad-
div stabilization (28) with ∆t = 0.001. Tests without penalty use
320 mesh points around the outer circle and 80 mesh points around
the inner circle. The finite element discretization has a maximal
mesh width of hmax = 0.0347224.

using adaptive ϵ penalty algorithm (Algorithm 1) than using Backward Euler with
grad-div stabilization (28). ∥∇ · u∥ from the penalty method is at least 5 times
smaller ∥∇ ·u∥ from coupled Backward Euler with grad-div stabilization (28). The
adaptive penalty method has better control of ∥∇ · u∥ than the coupled Backward
algorithm with grad-div stabilization term (28). Lift coefficient calculated from
adaptive ϵ penalty method looks good.

7. Conclusions and open problems

This paper presents a stability and error analysis for the adaptive ϵ penalty
method. This adaptive-ϵ algorithms was promising in our numerical tests. Since
results depend on solution structure, more tests would be useful. Also, four different
algorithms for both constant and variable time-step were introduced. There remain
open problems and algorithmic improvements possible in the future. In this paper,
we introduced the adaptive ϵ scheme with a condition from stability analysis which
could ensure the stability of the result. It is unclear how sharp this bound is, or if the
restriction (21) is necessary in all time-steps. Further, by rejecting and repeating
steps to guarantee EST<TOL result in violating the restriction (21). For different
time-step, the problem has a different optimal ϵ value. An algorithm that adapts ϵ
and k independently may be inferior to one that relates the step size to the penalty
parameter. However, it there is not an obvious relation between ϵ and k, so further
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research may be necessary to find a more efficient doubly adaptive algorithm. The
pressure recovered directly from the continuity equation, ∇ · u + ϵp = 0 (2) is not
good estimate to the pressure from coupled system. We can look into alternate
ways to recover the pressure, such as using the Pressure Poisson equation (PPE)
see Kean and Schneier [15].

Acknowledgement

The research was partially supported by NSF grant DMS1817542 and DM-
S2110379. We would like to thank Professor William Layton for suggesting the
problem and for his help throughout the research.

References

[1] M. Bercovier and M. Engelman. A finite element for the numerical solution of viscous incom-
pressible flows. Journal of Computational Physics, 30(2):181–201, 1979.

[2] F. Boyer and P. Fabrie. Mathematical Tools for the Study of the Incompressible Navier-Stokes
Equations and Related Models, volume 183. Springer Science & Business Media, 2012.

[3] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods, volume 3.
Springer, 2008.

[4] R. Courant. Variational methods for the solution of problems of equilibrium and vibrations.
Lecture notes in pure and applied mathematics, pages 1–23, 1943.

[5] V. DeCaria, W. J. Layton, and M. McLaughlin. A conservative, second order, uncondition-
ally stable artificial compression method. Computer Methods in Applied Mechanics and

Engineering, 325:733 – 747, 2017.
[6] V. DeCaria, W. J. Layton, and H. Zhao. A time-accurate, adaptive discretization for fluid

flow problems. arXiv preprint arXiv:1810.06705, 2018.

[7] J. A. Fiordilino. On pressure estimates for the Navier-Stokes equations. arXiv preprint arX-
iv:1803.04366, 2018.

[8] A. Guzel and W. J. Layton. Analysis of the effect of time filters on the implicit method:
increased accuracy and improved stability. arXiv preprint arXiv:1708.06306, 2017.

[9] A. Guzel and W. J. Layton. Time filters increase accuracy of the fully implicit method. BIT
Numerical Mathematics, 58(2):301–315, 2018.

[10] Y. He. Optimal error estimate of the penalty finite element method for the time-dependent
Navier-Stokes problem. Math. Comput., 74:1201–1216, 07 2005.

[11] Y. He and J. Li. A penalty finite element method based on the Euler implicit/explicit scheme
for the time-dependent NavierStokes equations. Journal of Computational and Applied Math-
ematics, 235(3):708 – 725, 2010.

[12] J. G. Heywood and R. Rannacher. Finite-element approximation of the nonstationary Navier-

Stokes problem. Part IV: Error analysis for second-order time discretization. SIAM Journal
on Numerical Analysis, 27(2):353–384, 1990.

[13] T. J. Hughes, W. K. Liu, and A. Brooks. Finite element analysis of incompressible viscous

flows by the penalty function formulation. Journal of computational physics, 30(1):1–60,
1979.

[14] E. W. Jenkins, V. John, A. Linke, and L. G. Rebholz. On the parameter choice in grad-div
stabilization for the Stokes equations. Advances in Computational Mathematics, 40(2):491–

516, 2014.
[15] K. Kean and M. Schneier. Error analysis of supremizer pressure recovery for POD based

reduced-order models of the time-dependent Navier–Stokes equations. SIAM Journal on
Numerical Analysis, 58(4):2235–2264, 2020.

[16] A. Labovsky, W. J. Layton, C. C. Manica, M. Neda, and L. G. Rebholz. The stabilized
extrapolated trapezoidal finite-element method for the Navier–Stokes equations. Computer
Methods in Applied Mechanics and Engineering, 198(9-12):958–974, 2009.

[17] W. J. Layton. A nonlinear, subgridscale model for incompressible viscous flow problems.

SIAM Journal on Scientific Computing, 17(2):347–357, 1996.
[18] W. J. Layton. Introduction to the Numerical Analysis of Incompressible Viscous Flows.

Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008.
[19] W. J. Layton and M. McLaughlin. Doubly-adaptive artificial compression methods for in-

compressible flow. Journal of Numerical Mathematics, 28(3):175–192, 2020.



DOUBLY ADAPTIVE PENALTY METHOD FOR THE NAVIER STOKES EQUATIONS 435

[20] B. Li, S. Ma, and Y. Ueda. Analysis of fully discrete finite element methods for 2d navier–
stokes equations with critical initial data. arXiv preprint arXiv:2101.02444, 2021.

[21] B. Li, S. Ma, and N. Wang. Second-order convergence of the linearly extrapolated crank–
nicolson method for the navier–stokes equations with h 1 initial data. Journal of Scientific
Computing, 88(3):70, 2021.

[22] A. Prohl. Projection and quasi-compressibility methods for solving the incompressible Navier-

Stokes equations. Springer, 1997.
[23] J. Shen. On error estimates of some higher order projection and penalty-projection methods

for Navier-Stokes equations. Numerische Mathematik, 62(1):49–73, 1992.
[24] J. Shen. On error estimates of the penalty method for unsteady NavierStokes equations.

SIAM Journal on Numerical Analysis, 32(2):386–403, 1995.
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Appendix A. Detailed Algorithms

Algorithm 3: Variable ϵ, variable time-step, first-order penalty method

Given un,un−1, ϵn+1, ϵn, tolerance for ϵ: TOL=10−6 and lower tolerance
minTOL=TOL/10, lower and upper bound of
ϵ : ϵmin = 10−8, ϵmax = 10−5, α = 2,tolerance for ∆t: tTOL=10−5 and lower
tolerance mintTOL=tTOL/10

Compute τ = kn+1

kn
and α1 = τ(1+τ)

1+2τ

Solve for u1
n+1

Set u⋆ = (1 + τ)un − τun−1

u1
n+1 − un

kn+1
+ u∗ · ∇u1

n+1 +
1

2
(∇ · u∗)u1

n+1

−∇
(

1

ϵn+1
∇ · u1

n+1

)
− ν∆u1

n+1 = fn+1.

Compute estimator EST and difference D2

D2(n+ 1) =
2kn

kn + kn+1
u1
n+1 − 2un +

2kk+1

kn + kn+1
un−1,

ESTe(n+ 1) = ∥∇ · un+1∥/∥∇un+1∥,

tEST1(n+ 1) =
α1

2
∥D2(n+ 1)∥.

Adapt ϵ and k using the standard decision tree:
if ESTe(n+ 1) > TOL or tEST1(n+ 1) > tTOL then

ϵn+1 ← max{(1− αkn+1)ϵn+1, 0.5ϵn+1, ϵmin};

kn+1 ← max

{
0.9kn

(
tTOL

tEST1(n+1)

)1/2
, 0.5kn+1

}
;

REPEAT step
else

if ESTn+1 < minTOL or tESTn+1 < mintTOL then
ϵn+2 ← min{2ϵn+1, ϵmax} ;

kn+2 ← max

{
min

{
0.9kn+1

(
tTOL

tEST1(n+1)

)1/2
, 2kn+1

}
, 0.5kn+1

}
;

CONTINUE ;

end

end

Recover pressure pn+1 if needed by: pn+1 = − 1
ϵn+1
∇ · un+1.
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Algorithm 4: Variable ϵ, variable time-step, second-order penalty method

Given un,un−1, ϵn+1, ϵn, tolerance for ϵ TOL=10−6 and lower tolerance
minTOL=TOL/10, lower and upper bound of
ϵ : ϵmin = 10−8, ϵmax = 10−5, α = 2,tolerance for ∆t: tTOL=10−5 and lower
tolerance mintTOL=tTOL/10

Compute τ = kn+1

kn
and α1 = τ(1+τ)

1+2τ , α2 =
τn(τn+1τn+τn+1)(4τ3

n+1+5τ2
n+1+τn+1)

3(τnτ2
n+1+4τnτn+1+2τn+1+τn+1)

Set u∗ = (1 + τ)un − τun−1

Solve for u1
n+1

u1
n+1 − un

kn+1
+ u∗ · ∇u1

n+1 +
1

2
(∇ · u∗)u1

n+1

−∇
(

1

ϵn+1
∇ · u1

n+1

)
− ν∆u1

n+1 = fn+1.

Compute estimator EST and difference D2 and apply time filter

D2(n+ 1) =
2kn

kn + kn+1
u1
n+1 − 2un +

2kk+1

kn + kn+1
un−1,

un+1 = u1
n+1 −

α1

2
D2(n+ 1),

ESTe(n+ 1) = ∥∇ · un+1∥/∥∇un+1∥,

tEST2(n+ 1) =
α2

6

∥∥∥∥ 3kn−1

kn+1 + kn + kn−1
D2(n+ 1)− 3kn+1

kn+1 + kn + kn−1
D2(n)

∥∥∥∥ .
if ESTe(n+ 1) > TOL or tEST2(n+ 1) > tTOL then

ϵn+1 ← max{(1− αkn+1)ϵn+1, 0.5ϵn+1, ϵmin};

kn+1 ← max

{
0.9kn

(
tTOL

tEST1(n+1)

)1/3
, 0.5kn+1

}
;

REPEAT step
else

if ESTn+1 < minTOL or tESTn+1 < mintTOL then
ϵn+2 ← min{2ϵn+1, ϵmax} ;

kn+2 ← max

{
min

{
0.9kn+1

(
tTOL

tEST1(n+1)

)1/3
, 2kn+1

}
, 0.5kn+1

}
;

CONTINUE ;

end

end

Recover pressure pn+1 by: pn+1 = − 1
ϵn+1
∇ · un+1.

Department of Mathematics, Univeristy of Pittsburgh, Pittsburgh, PA 15260

E-mail : kkh16@pitt.edu and xix55@pitt.edu and shx34@pitt.edu


