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THE DISCRETE RAVIART-THOMAS MIXED FINITE ELEMENT

METHOD FOR THE p-LAPLACE EQUATION

M.M. GUO AND D.J. LIU∗

Abstract. We consider the discrete Raviart-Thomas mixed finite element method (dRT-MFEM)
for the p-Laplace equation in the new sense of measurement. The new measurement of p-Laplace

equation for 2 ≤ p < ∞ was studied by D. J. Liu (APPL. NUMER. MATH., 152: 323-337,
2020), where the reliable error analysis for conforming and nonconforming FEM were obtained.
This paper provide the reliable and efficient error analysis of dRT-MFEM for p-Laplace equation
(1 < p < 2). The numerical investigation for benchmark problem demonstrates the accuracy and

robustness of the proposed dRT-MFEM.

Key words. Adaptive finite element methods, discrete Raviart-Thomas mixed finite element
method, p-Laplace equation.

1. Introduction

We discuss the following nonlinear p-Laplace equation (1 < p < 2) in the bound-
ed Lipschitz domain Ω ⊂ R2 with the given f ∈ Lq(Ω) (q conjugate of p),

(1)

{
−div(|∇u|p−2∇u) = f in Ω

u = 0 on ∂Ω.

The p-Laplace equation (1) admits a unique weak solution [4] satisfying

(2) u = arg minE(v) for v ∈ W 1,p
0 (Ω) := {v ∈ W 1,p(Ω) : v|∂Ω = 0}.

where

(3) E(v) :=

ˆ
Ω

W (∇v)dx− F̃ (v).

The energy density function W : R2 → R reads W (a) := |a|p/p with the derivative
σ(a) := DW (a) = |a|p−2a for all a ∈ R2 \ {0} which is recorded as σ for the

convenience of subsequent discussion and F̃ (v) :=
´
Ω
fv dx and the dual function

W ∗(a) :=
|a|q

q

(
1

p
+

1

q
= 1

)
.

The Euler-Lagrange equation of (2) consists in finding u ∈ W 1,p
0 (Ω) with

(4)

ˆ
Ω

σ · ∇vdx− F̃ (v) = 0 for all v ∈ W 1,p
0 (Ω).

The finite element analysis for (1) has been well done. We can find some previous
work in sense of traditional W 1,p(Ω)-norm in [12, 15, 23, 13]. Sharper error esti-
mates were derived in [18, 14, 3] by developing the so called quasi-norm techniques,
and these techniques were extended to establish improved a posteriori error estima-
tors of residual type for the adaptive finite element methods [11, 19]. Liu [17, 16]
generalized the quasi-norm techniques to a new measure framework for 2 ≤ p < ∞,
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and obtained the reliable error analysis for conforming FEM, nonconforming FEM,
and dRT-MFEM. Nevertheless, the research for 1 < p < 2, which including a sin-
gular operator, was not covered in the above references. In this paper, we mainly
focus on the dRT-MFEM of p-Laplace equation for 1 < p < 2.

Marini representation [2, 21] was proposed for the purpose of the cost-free ap-
proximation of Raviart-Thomas MFEM for linear problem. Arbogast [1] improved
the method for general variable coefficients elliptic PDEs. A one-point quadrature
rule in the dual Raviart-Thomas MFEM leads to the dRT-MFEM in [10], which
developed the Marini representation for nonlinear optimal design problem, the first
guaranteed energy bound and an optimal a posteriori error estimate were obtained.
Liu [17] generalized the dRT-MFEM for p-Laplace equation (2 ≤ p < ∞), and pro-
vided the reliable error analysis. This paper will study the dRT-MFEM of p-Laplace
problem for 1 < p < 2, and show the error estimators without a gap between the
upper bound and the lower bound.

The remaining parts of this paper are organized as follows. Section 2 introduces
the newly defined measure to quantify the quality of approximations, and proves
the convex control of energy density function W . Section 3 states the dRT-MFEM
for the p-Laplace problem. A priori and a posteriori error estimators based on
the newly defined measure are presented in Section 4. Some numerical experiments
conclude the paper in Section 5 with empirical evidence of the expected convergence.

Standard notation applies throughout this paper to Lebesgue and Sobolev spaces
Lq(Ω), Hs(Ω), and H(div,Ω), as well as to the associated norms ∥·∥q,Ω := ∥·∥Lq(Ω),
|||·|||q,Ω := ∥∇ · ∥Lq(Ω), and |||·|||

NC,q,Ω
:= ∥∇

NC
· ∥Lq(Ω) with the piecewise gradient

∇NC · |T := ∇(·|T ) for all T in a regular triangulation T of the polygonal domain
Ω. Here and throughout,the expression ”.” abbreviates an inequality up to some
multiplicative generic constant, i.e., A . B means A ≤ C B with some generic
constant 0 ≤ C < ∞, which depends on the interior angles of the triangles but not
their sizes.

2. The convexity control of W

We firstly recall the concept of distance. Define

F (a) := |a|p/2−1a ∀a ∈ L2(Ω;R2).

Let α := DW (a), β := DW (b) for a, b ∈ L2(Ω;R2), the distance of F (a) and F (b)
can be defined as follows [16]

(5) ∥F (a)− F (b)∥22,q,Ω :=

ˆ
Ω

|α− β|2

(|α|+ |β|)2−q
dx ∀a, b ∈ R2.

The remaining parts of this section are devoted to the convexity control of energy
density function W , which is formulated in the following lemma 2.2.

Lemma 2.1. Given 1 < p < 2 and the conjugate q, there exist positive constants
s1(p), s2(p), m1(p), m2(p), l1(p), l2(p) such that for any a, b ∈ L2(Ω;R2), α :=
DW (a), β := DW (b) satisfy

(6)
s1(p) (DW (b)−DW (a)) · (b− a) ≤ |DW (b)−DW (a)|2 (|α|+ |β|)q−2

≤ s2(p) (DW (b)−DW (a)) · (b− a) .

(7)
m1(p) (|b|+ |a|)p−2 |b− a|2 ≤ (DW (b)−DW (a)) · (b− a)

≤ m2(p) (|b|+ |a|)p−2 |b− a|2.
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(8)
l1(p) (W (b)−W (a)− α · (b− a)) ≤ (DW (b)−DW (a)) · (b− a)

≤ l2(p) (W (b)−W (a)− α · (b− a)) .

where s1(p) = min{(p− 1) 2q−2, 1}, s2(p) = 2q−2, m1(p) = (p− 1) 22−p, m2(p) =

22−p, l1(p) =
p+1
2 , and l2(p) =

3p−p2

p−1 .

Proof. We firstly consider the case when |b| > |a| > 0. Set t := |b|/|a|(t > 1),
r1 := a/|a|, r2 := b/|b|, and r = r1 · r2 (−1 ≤ r ≤ 1). It is not difficult to deduce
that
(9)

|DW (b)−DW (a)|2 (|α|+ |β|)q−2

(DW (b)−DW (a)) · (b− a)
=

(
t2p−2 − 2rtp−1 + 1

) (
1 + tp−1

)q−2

tp − tp−1r − tr + 1
:= g(t, r).

A direct calculation verifies that ∂g/∂r as a function of r has one sign (which
depends on t and p), hence it is monotone increasing or decreasing for all t > 1,

min{g(t, 1), g(t,−1)} ≤ g(t, r) ≤ max{g(t, 1), g(t,−1)} < ∞.

g(t, 1) =

(
tp−1 − 1

) (
1 + tp−1

)q−2

t− 1
.

g′(t, 1) =

(
1 + tp−1

)q−3 [
(2p− 3) tp−1 + (3− 2p) tp−2 − t2p−3 + 1

]
(t− 1)

2 .

Let
Q := (2p− 3) tp−1 + (3− 2p) tp−2 − t2p−3 + 1.

If p ∈ (1, 3
2 ), dQ = (2p− 3) tp−3[(p− 1) t−tp−1−(p−2)] < 0 implies that g′(t, 1) < 0

and thus

gmax(t, 1) = lim
t→1

g(t, 1) = (p− 1) 2q−2, gmin(t, 1) = lim
t→+∞

g(t, 1) = 1.

If p ∈ ( 32 , 2), dQ > 0 implies that g′(t, 1) > 0 and

gmax(t, 1) = lim
t→+∞

g(t, 1) = 1, gmin(t, 1) = lim
t→1

g(t, 1) = (p− 1) 2q−2.

Due to the bound of g(t,−1), we have

g(t,−1) =

(
1 + tp−1

)q−1

(1 + t)
.

g′(t,−1) =

(
1 + tp−1

)q−2 (
tp−2 − 1

)
(1 + t)

2 .

The fact g′(t,−1) < 0 implies that g(t,−1) is monotone decreasing, and

gmax(t,−1) = lim
t→1

g(t,−1) = 2q−2, gmin(t,−1) = lim
t→+∞

g(t,−1) = 1.

Denote
s1(p) := min{g(t, 1), g(t,−1)} = min{(p− 1)2q−2, 1},

s2(p) := max{g(t, 1), g(t,−1)} = 2q−2,

then (6) is obtained. In the case of |a| > |b| > 0, the symmetry of a and b leads to
the same conclusion, inequality (6) is proved.

We can obtain (7) with similar technique, we write it here for complement.

(10)
(DW (b)−DW (a)) · (b− a)

(|b|+ |a|)p−2 |b− a|2
=

tp − tp−1r − tr + 1

(1 + t)
p−2

(t2 − 2rt+ 1)
:= h(t, r).

min{h(t, 1), h(t,−1)} ≤ h(t, r) ≤ max{h(t, 1), h(t,−1)} < ∞.
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h(t, 1) =
tp−1 − 1

(1 + t)
p−2

(t− 1)
.

hmax(t, 1) = lim
t→+∞

h(t, 1) = 1, hmin(t, 1) = lim
t→1

h(t, 1) = (p− 1) 22−p.

h(t,−1) =
(
tp−1 + 1

)
(1 + t)

1−p
.

hmax(t,−1) = lim
t→1

h(t,−1) = 22−p, hmin(t,−1) = lim
t→+∞

h(t,−1) = 1.

Denote

m1(p) := min{h(t, 1), h(t,−1)} = (p− 1)22−p,

m2(p) := max{h(t, 1), h(t,−1)} = 22−p,

then (7) is proved.
Now it comes to the proof of (8). For any t > 0,

(11)
(DW (b)−DW (a)) · (b− a)

(W (b)−W (a)−DW (a) · (b− a))
:=

tp − tp−1r − tr + 1

tp/p+ 1/q − tr
= f(t, r).

min{f(t, 1), f(t,−1)} ≤ f(t, r) ≤ max{f(t, 1), f(t,−1)} < ∞.

f(t, 1) =
tp − tp−1 − t+ 1

tp/p+ 1/q − t
.

f ′(t, 1) =

(
ptp−1 − (p− 1) tp−2 − 1

)
(tp/p+ 1/q − t)−

(
tp − tp−1 − t+ 1

) (
tp−1 − 1

)
(tp/p+ 1/q − t)

2 .

The derivative of numerator of f ′(t, 1) can be written as

(p− 1) tp−3

[
2

p
tp − (p− 1) t2 + (2p− 4) t− (p− 1) (p− 2)

p

]
.

Let

L :=
2

p
tp − (p− 1) t2 + (2p− 4) t− (p− 1) (p− 2)

p
,

d2L = 2 (p− 1)
(
tp−2 − 1

)
> 0 on (0, 1) implies that f ′(t, 1) < 0, and

fmax(t, 1) = lim
t→0

f(t, 1) = q, fmin(t, 1) = lim
t→1

f(t, 1) = 2.

d2L = 2 (p− 1)
(
tp−2 − 1

)
< 0 on (1,+∞) implies that f ′(t, 1) < 0, and

fmax(t, 1) = lim
t→1

f(t, 1) = 2, fmin(t, 1) = lim
t→+∞

f(t, 1) = p.

Hence, fmax(t, 1) = q, fmin(t, 1) = p.

f(t,−1) =
tp + tp−1 + t+ 1

tp/p+ 1/q + t
= p+ p

tp−1 + (1− p)t+ 2− p

tp + pt+ p− 1
.

If t ∈ (0, 1),

f(t,−1) < p+ p · 4− 2p

tp + pt+ p− 1
< p+ p

4− 2p

p− 1
=

3p− p2

p− 1
,

f(t,−1) > p+ p · 2− p

tp + pt+ p− 1
> p+ p

2− p

2p
=

p+ 2

2
.

If t ∈ (1,+∞),

f(t,−1) < p+
p(4− 2p)

2p
= 2,

f(t,−1) > p+
p− p2

2p
=

1 + p

2
.
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That is, p+1
2 < f(t,−1) < 3p−p2

p−1 , and therefore, p+1
2 < f(t, r) < 3p−p2

p−1 . This leads

to (8) with l1(p) =
p+1
2 and l2(p) =

3p−p2

p−1 , which concludes the proof. �

Lemma 2.2. Given 1 < p < 2 and the conjugate q, there exist positive constants
c1(p), c2(p), such that for any a, b ∈ L2(Ω;R2), α := DW (a), β := DW (b) satisfy
(12)

c1(p)

ˆ
Ω

(W (b)−W (a)− α · (b− a)) dx ≤ ∥F (a)− F (b)∥22,q,Ω

≤ c2(p)

ˆ
Ω

(W (b)−W (a)− α · (b− a)) dx.

Any α, β ∈ L2(Ω;R2) \ {0} and any b ∈ ∂W ∗(β) satisfy

c1(p)

ˆ
Ω

(W ∗(α)−W ∗(β)− b · (α− β)) dx(13)

≤∥F (a)− F (b)∥22,q,Ω

≤c2(p)

ˆ
Ω

(W ∗(α)−W ∗(β)− b · (α− β)) dx.

Here, c1(p) = min{p2−1
2 · 2q−2, p+1

2 } and c2(p) =
3p−p2

p−1 · 2q−2.

Proof. Given a, b ∈ R2 \ {0} with a ̸= b, set t := |b|/|a| and z := a · b/ (|a| · |b|)
(−1 ≤ z ≤ 1), it is obvious that

|α− β|2

(|α|+ |β|)2−q
(W (b)−W (a)− α · (b− a))

=
1 + t2(p−1) − 2ztp−1

(1 + tp−1)
2−q

(tp/p+ 1/q − zt)
:= f1(t, z).

For all 0 < t < ∞, there exists constants c1(p), c2(p) satisfy that

min{f1(t, 1), f1(t,−1)} := c1(p) ≤ f1(t, z) ≤ c2(p) := max{f1(t, 1), f1(t,−1)} < ∞.

The combination of (6) and (8) in Lemma 2.1 leads to c1(p) = min{p2−1
2 ·2q−2, p+1

2 }
and c2(p) =

3p−p2

p−1 · 2q−2.

The duality relationship

W ∗(α) +W (a) = a · α,W ∗(β) +W (b) = b · β

and (12) lead to (13), which proves the Lemma. �

3. DRT MFEM for p-Laplace equation

3.1. Finite element discretization. Let T be a shape-regular triangulation of
the simply-connected bounded Lipschitz domain Ω ⊆ R2 with polygonal boundary
∂Ω into closed triangles. Let E denote the set of all edges, N denote the set of
vertices and hT := diam(T ) for T ∈ T . Let

Pk(T ) = {vk : Ω → R| ∀T ∈ T , vk|T is a polynomial of total degree ≤ k}

denote the set of piecewise polynomials and hT |T = hT for all T ∈ T .
Let Π0 : Lq(Ω) → P0(T ) denote the Lq projection onto T piecewise constant,

i.e., (Π0f)|T =
ffl
T
fdx for all T ∈ T and osc(f, T ) := ∥hT (f −Π0f)∥q,Ω.
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3.2. Discrete Raviart-Thomas mixed FEM. The dual energy E∗ is defined
as

E∗(τ) := −
ˆ
Ω

W ∗(τ)dx for τ ∈ Lq(Ω;R2).

with W ∗(A) := supB∈R2(A · B −W (B)) [22]. The dual problem of (2) maximizes
the energy E∗ in Q(f) := {τ ∈ H(div,Ω) | f + div(τ) = 0 a.e. in Ω}, written

σ = argmaxE∗(Q(f)).

The maximizer σ := DW (∇u) is unique [15] for minimizer u of E in W 1,p
0 (Ω).

Define the Raviart-Thomas finite element space

RT0(T ) :=
{
p ∈ H(div,Ω) | ∀T ∈ T ,∃a ∈ R2, b ∈ R, ∀x ∈ T, p = a+ bx

}
and Q(f, T ) := {τ

RT
∈ RT0(T ) | Π0f + div(τ

RT
) = 0 a.e. in Ω}.

The discrete Raviart-Thomas mixed finite element approximation σ
dRT

to the
dual solution σ maximizes the energy E∗

d in Q(f, T ), written

(14) σ
dRT

= argmaxE∗
d(Q(f, T )).

Here,

E∗
d(τRT ) = −

ˆ
Ω

W ∗(Π0τRT )dx for τRT ∈ Q(f, T ).

The strict convexity of W ∗ in lemma 2.2 shows that the maximizer σ
dRT

is unique
in Q(f, T ). An a priori and a posteriori error analysis follows in Section 4.

3.3. The equivalence of dRT-MFEM with CR-NCFEM. The Crouzeix-
Raviart finite element space is defined as

CR1
0(T ) := {vh ∈ P1(T ) | vh is continuous at midpoints of interior

edges and vanishes at midpoints of boundary edges}.

The Crouzeix-Raviart finite element approximation uCR to (2) minimizes the
energy E

NC
in CR1

0(T ), written

(15) u
CR

∈ argminE
NC

(CR1
0(T )).

Here,

(16) ENC (vCR) :=

ˆ
Ω

W (∇NCvCR)dx− F̃h(vCR) for vCR ∈ CR1
0(T )

and F̃h(·) := F̃ ◦ Π0(·) =
´
Ω
(Π0f) · dx. The discrete stress σ

CR
:= DW (∇

NC
u

CR
)

is unique [17]. The Euler-Lagrange equations of (15) consists in finding u
CR

∈
CR1

0(T ) with

(17)

ˆ
Ω

σ
CR

· ∇
NC

v
CR

dx− F̃h(vCR
) = 0 for all v

CR
∈ CR1

0(T ).

Recall the Crouzeix-Raviart interpolation operator INC : W 1,p
0 (Ω) → CR1

0(T ) (1 <
p < 2),

(I
NC

v)(mid(E)) :=

 
E

vds for all E ∈ E .

Lemma 3.1. (Property of the Crouzeix-Raviart interpolant)[12, 8, 7] Any v ∈
W 1,p(Ω) with its interpolation I

NC
v and the constant κ satisfy Π0∇v = ∇

NC
(I

NC
v)

and

∥v − INCv∥p,Ω ≤ κ∥hT (I −Π0)∇v∥p,Ω ≤ κ∥hT ∇v∥p,Ω.
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Recall the Friedrichs inequality

∥v∥p,Ω ≤ CF |||v|||p,Ω for any v ∈ W 1,p
0 (Ω)

with CF ≤ width(Ω)/π and the discrete Friedrichs inequality (see [4]) with some
constant C

dF
≈ 1

∥v
CR

∥p,Ω ≤ C
dF
|||v

CR
|||

NC,p,Ω
for any v

CR
∈ CR1

0(T ).

Lemma 3.2. (Conforming P3 companion)[10] Given any v
CR

∈ CR1
0(T ), there

exists some v3 ∈ P3(T ) ∩W 1,p
0 (Ω) with v

CR
= I

NC
v3, Π0vCR

= Π0v3, and

∥h−1
T (vCR − v3)∥p,Ω + |||vCR − v3|||

NC,p,Ω
. min

v∈W 1,p
0 (Ω)

|||v − vCR |||NC,p,Ω
.

Remark 3.1. The construction process can be described as follows: Given v
CR

∈
CR1

0(T ), define some conforming approximation v1 ∈ P1(T ) ∩ C0(Ω) by the aver-
aging of the v

CR
at node z ∈ N

v1(z) :=

∑
T∈T (z) vCR(z)

|T (z)|
Adding edge-bubble functions to v1 defines v2 ∈ P2(T ) ∩ C0(Ω) which equals v1 at
all nodes N and satisfies

´
E
vCR ds =

´
E
v2 ds for all E ∈ E. The last step adds

the cubic bubble functions to v2 such that the resulting function v3 ∈ P3(T )∩C0(Ω)
equals v2 along the edges and satisfiesˆ

T

v
CR

dx =

ˆ
T

v3 dx for all T ∈ T .

integration by parts showsˆ
T

∇vCR dx =

ˆ
T

∇v3 dx for all T ∈ T .

Denote the postprocessing of σCR by σ∗
CR

σ∗
CR

:= σ
CR

− Π0f

2
(· −mid(T )) ∈ P1(T ;R2).

Here, the piecewise affine function ·−mid(T ) ∈ P1(T ) equals x−mid(T ) at x ∈ T ∈
T with barycenter mid(T ). It is proved in [10] that σ∗

CR
∈ Q(f, T ) ⊆ H(div,Ω).

The following conclusion was obtained in [17] for 2 ≤ p < ∞, here we focus
on the case when 1 < p < 2. we need to emphasize that the measurement (5) is
different with that of [17].

Lemma 3.3. It holds σ∗
CR

= σ
dRT

and maxE∗
d(Q(f, T )) = minE

NC
(CR1

0(T )).

Proof. The choice of α := Π0σdRT
|T = σ

dRT
(mid(T )), β := Π0σ

∗
CR

= σ
CR

, and
b := ∇NCuCR in Lemma 2.2 leads to

∥F (∂W ∗(Π0σdRT
))− F (∂W ∗(Π0σ

∗
CR

))∥22,q,Ω

≤ c2(p)

(
E∗(Π0σ

∗
CR

)− E∗(Π0σdRT
)−

ˆ
Ω

∇NCuCR · (σ
dRT

− σCR)dx

)
.

σ
dRT

∈ Q(f, T ) show that the last term vanishes, that is,

∥F (∂W ∗(Π0σdRT
))− F (∂W ∗(Π0σ

∗
CR

))∥22,q,Ω ≤ c2(p)(E
∗
d(σ

∗
CR

)− E∗
d(σdRT

)).

Hence, σ∗
CR

= σ
dRT

.
The relation W ∗(σCR) +W (∇NCuCR) = σCR · ∇NCuCR implies thatˆ

Ω

W (∇NCuCR)dx−
ˆ
Ω

σCR · ∇NCuCRdx = −
ˆ
Ω

W ∗(σCR)dx = E∗
d(σdRT

).
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We have E∗
d(σdRT

) = E
NC

(u
CR

). This concludes the proof. �

4. Main results

4.1. Upper Bound.

Theorem 4.1. (A priori error estimate). The discrete stress σ
dRT

satisfies

(18)

∥F (∇u)− F (∂W ∗(σ
dRT

))∥22,q,Ω + ∥F (∇u)− F (∇
NC

u
CR

)∥22,q,Ω
≤ c2(p)|E∗

d(σdRT
)− E∗(σ

dRT
)|

+ c2(p)

(
|
ˆ
Ω

(σ − σ
dRT

) · (I −Π0)∇u3dx+

ˆ
Ω

(u− u3) (I −Π0) fdx|
)
.

Proof. The choice α := σ
dRT

, β := σ, and b := ∇u in Lemma 2.2 leads to

(19)

∥F (∇u)− F (∂W ∗(σ
dRT

))∥22,q,Ω

≤ c2(p) (E
∗(σ)− E∗(σ

dRT
))− c2(p)

ˆ
Ω

∇u · (σ
dRT

− σ) dx

= c2(p) (E
∗(σ)− E∗(σ

dRT
)) + c2(p)

ˆ
Ω

u(I −Π0)fdx.

The choice α := σ, β := Π0σdRT
= σ

CR
, and b := ∇

NC
u

CR
in Lemma 2.2 leads to

∥F (∇u)− F (∇NCuCR)∥22,q,Ω + c2(p) (E
∗(σ)− E∗

d(σdRT
))

≤ −c2(p)

ˆ
Ω

∇NCuCR · (σ −Π0σdRT
) dx.

The conforming P3 companion u3 ∈ P3(T )∩V with u
CR

= I
NC

u3 from Lemma 3.2
shows

−
ˆ
Ω

∇NCuCR · (σ −Π0σdRT
) dx

=

ˆ
Ω

(σ − σ
dRT

) · (I −Π0)∇u3dx+

ˆ
Ω

u3div (σ − σ
dRT

) dx.

We can obtain

(20)

∥F (∇u)− F (∇NCuCR)∥22,q,Ω + c2(p)(E
∗(σ)− E∗

d(σdRT
))

≤ c2(p)

(ˆ
Ω

(σ − σ
dRT

) · (I −Π0)∇u3dx−
ˆ
Ω

(u3 −Π0u3) (I −Π0) fdx

)
.

The sum of (19) and (20) implies

(21)

∥F (∇u)− F (∂W ∗(σ
dRT

))∥22,q,Ω + ∥F (∇u)− F (∇NCuCR)∥22,q,Ω
≤ c2(p)|E∗

d(σdRT
)− E∗(σ

dRT
)|

+ c2(p)

(
|
ˆ
Ω

(σ − σ
dRT

) · (I −Π0)∇u3dx−
ˆ
Ω

(u− u3) (I −Π0) fdx|
)
.

Therefore, we obtain the proof of the theorem. �

Theorem 4.2. (A posteriori error estimate).The discrete stress σ
dRT

satisfies

(22)

1

p
∥F (∇u)− F (∂W ∗(σ

dRT
))∥22,q,Ω + ∥F (∇u)− F (∇

NC
u

CR
)∥22,q,Ω

≤ c2(p)|E∗
d(σdRT

)− E∗(σ
dRT

)|+ c2(p)
(pCF ∥f∥q,Ω)

1
p−1 + |||u3|||p,Ω
j1,1

osc(f, T )

+
cp2(p)

p
|||I

NC
u3 − u3|||p

NC,p,Ω
,
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where CF ≤ width(Ω)/π.

Proof. Using the Friedrichs inequality in (3) and the fact E(u) ≤ E(0) = 0 imply
that

(23) |||u|||p,Ω ≤ (pCF ∥f∥q,Ω)
1

p−1 .

The piecewise Poincaré inequality applies in the following term with the constant
hT /j1,1 from [20] shows,

ˆ
Ω

(u− u3) (f −Π0f) dx ≤
|||u− u3|||p,Ω

j1,1
osc(f, T )

≤
(pCF ∥f∥q,Ω)

1
p−1 + |||u3|||p,Ω
j1,1

osc(f, T ).

The Young inequality, Π0∇u3 = ∇
NC

I
NC

u3 and |σ − σ
dRT

|q−2 ≤ (|σ|+ |σ
dRT

|)q−2

for q > 2 show that

c2(p)

ˆ
Ω

(σ − σ
dRT

) · (I −Π0)∇u3dx

≤ 1

q

ˆ
Ω

|σ − σ
dRT

|qdx+
cp2(p)

p

ˆ
Ω

|(I −Π0)∇u3|pdx

≤ 1

q

ˆ
Ω

|σ − σ
dRT

|2(|σ|+ |σ
dRT

|)q−2dx+
cp2(p)

p
|||INCu3 − u3|||p

NC,p,Ω

=
1

q
∥F (∇u)− F (∂W ∗(σ

dRT
))∥22,q,Ω +

cp2(p)

p
|||INCu3 − u3|||p

NC,p,Ω
.

The combination of the preceding displayed inequalities concludes the proof. �

4.2. Lower Bound.

Theorem 4.3. (A priori error estimate). The discrete stress σ
dRT

satisfies

∥F (∇u)− F (∂W ∗(σ
dRT

))∥22,q,Ω + ∥F (∇u)− F (∇
NC

u
CR

)∥22,q,Ω

≥ c1(p)(E
∗
d(σdRT

)− E∗(σ
dRT

)) + c1(p)
(
F̃h(INCu)− F̃ (u)

)
+ c1(p)

ˆ
Ω

u(I −Π0)fdx.

Proof. The choice α := σ
dRT

, β := σ, and b := ∇u in Lemma 2.2 leads to

(24)

∥F (∇u)− F (∂W ∗(σ
dRT

))∥22,q,Ω

≥ c1(p) (E
∗(σ)− E∗(σ

dRT
))− c1(p)

ˆ
Ω

∇u · (σ
dRT

− σ) dx

= c1(p) (E
∗(σ)− E∗(σ

dRT
)) + c1(p)

ˆ
Ω

u(I −Π0)fdx.

The choice α := σ, β := σ
CR

, and b := ∇
NC

u
CR

in Lemma 2.2 leads to

(25)

∥F (∇u)− F (∇NCuCR)∥22,q,Ω + c1(p) (E
∗(σ)− E∗(σCR))

≥ −c1(p)

ˆ
Ω

(σ − σCR) · ∇NCuCRdx.
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Where,

− c1(p)

ˆ
Ω

(σ − σCR) · ∇NCuCRdx

= c1(p)

ˆ
Ω

(σ
CR

− σ) (∇
NC

u
CR

−∇u) dx+ c1(p)

ˆ
Ω

(σ
CR

− σ) · ∇udx

= LowerA + LowerB.

By (7) of Lemma 2.1, we have

(26)
LowerA ≥ (p− 1)22−pc1(p)

ˆ
Ω

(|∇u|+ |∇
NC

u
CR

|)p−2 |∇u−∇
NC

u
CR

|2dx

≥ 0.

(27) LowerB = c1(p)

ˆ
Ω

(σ
CR

− σ) · ∇udx = c1(p)
(
F̃h(INC

u)− F̃ (u)
)
.

The combination of (26) and (27) implies that
(28)

∥F (∇u)− F (∇NCuCR)∥22,q,Ω + c1(p)(E
∗(σCR)− E∗(σ)) ≥ c1(p)

(
F̃h(INCu)− F̃ (u)

)
.

Combining the previous results leads to

(29)

∥F (∇u)− F (∂W ∗(σ
dRT

))∥22,q,Ω + ∥F (∇u)− F (∇NCuCR)∥22,q,Ω

≥ c1(p)(E
∗
d(σdRT

)− E∗(σ
dRT

)) + c1(p)
(
F̃h(INC

u)− F̃ (u)
)

+ c1(p)

ˆ
Ω

u(I −Π0)fdx.

which concludes the proof. �

Theorem 4.4. (A posteriori error estimate). The discrete stress σ
dRT

satisfies

(30)

1

C

∑
T∈T

∥hTΠ0f∥qq,T

≤ ∥F (∇u)− F (∂W ∗(σ
dRT

))∥22,q,Ω + ∥F (∇u)− F (∇NCuCR)∥22,q,Ω + ε1,

Where,

ε1 :=
∑
T∈T

∥hT (Π0f − f) ∥qq,T + c1(p) (pCF ∥f∥q,Ω)
1

p−1 osc(f, T )

+ c1(p)|E∗(σ)− E∗(σ
dRT

)|.

Proof. We have known that for each T ∈ T there exists a bubble function wT ∈
W 1,p

0 (T ) with wT ≥ 0 and

(31)

ˆ
T

wT dx = |T |, ∥wT ∥∞ ≤ C, ∥∇wT ∥∞ ≤ C

hT
,

where C > 0 depends only on the shape regularity of T . Then for s ∈ R

(32)

ˆ
T

(σ − σCR) · ∇(swT )dx =

ˆ
T

fswT dx.

For Π0f ∈ R there exists sT ∈ R such that

(33) sT (hTΠ0f) =
|hT (Π0f)|q

q
+

|sT |p

p
.
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Taking s = hT sT in (32) leads to

(34)

|T |
(
|hT (Π0f)|q

q
+

|sT |p

p

)
= |T |Π0fhT sT

=

ˆ
T

(σ − σ
CR

) · ∇(hT sTwT )dx+

ˆ
T

(Π0f − f) · hT sTwT dx.

The Young’s inequality, (31) and |σ − σ
CR

|q−2 ≤ (|σ|+ |σ
CR

|)q−2 for q > 2 imply

(35)

ˆ
T

(σ − σ
CR

) · ∇(hT sTwT )dx ≤ C

ˆ
T

|σ − σ
CR

||sT |dx

≤ Cδ

q

ˆ
T

|σ − σ
CR

|qdx+
δC

p
|T ||sT |p

≤ Cδ

q

ˆ
T

|σ − σ
CR

|2(|σ|+ |σ
CR

|)q−2dx+
δC

p
|T ||sT |p

=
Cδ

q
∥F (∇u)− F (∇NCuCR)∥22,q,T +

δC

p
|T ||sT |p.

and

(36)

ˆ
T

(Π0f − f) · hT sTwT dx ≤ C

ˆ
T

(Π0f − f) · hT sT dx

≤ Cδ

ˆ
T

|hT (Π0f − f)|q

q
dx+ δ|T | |sT |

p

p
.

Now, taking δ > 0 small enough, (34)-(36) imply that
(37)ˆ

T

|hT (Π0f)|q

q
dx ≤ Cδ

q
∥F (∇u)− F (∇NCuCR)∥22,q,T + Cδ

ˆ
T

|hT (Π0f − f)|q

q
dx.

Hence,

(38) ∥F (∇u)−F (∇
NC

u
CR

)∥22,q,Ω ≥ 1

Cδ

∑
T∈T

∥hTΠ0f∥qq,T−
∑
T∈T

∥hT (Π0f − f) ∥qq,T .

The combination of (38) and (24) gives
(39)

∥F (∇u)− F (∂W ∗(σ
dRT

))∥22,q,Ω + ∥F (∇u)− F (∇
NC

u
CR

)∥22,q,Ω

≥ c1(p)(E
∗(σ)− E∗(σ

dRT
)) +

1

Cδ

∑
T∈T

∥hTΠ0f∥qq,T −
∑
T∈T

∥hT (Π0f − f) ∥qq,T

+ c1(p)

ˆ
Ω

u(I −Π0)fdx

≥ c1(p)(E
∗(σ)− E∗(σ

dRT
)) +

1

Cδ

∑
T∈T

∥hTΠ0f∥qq,T −
∑
T∈T

∥hT (Π0f − f) ∥qq,T

− c1(p) (pCF ∥f∥q,Ω)
1

p−1 osc(f, T ).

The assertion is proved. �

5. Numerical experiments

5.1. Regularity. The data structure and the discrete Euler-Lagrange equation
are realized as in [5] and then minimized with the Matlab standard function fmin-
unc and the input of W , DW , and D2W at x. When 1 < p < 2, the Euler-Lagrange
equation gives rise to a singular differential operator which requires a careful nu-
merical treatment. Hence, we perturb the p-Laplace by using ρ(t) = (µ+ t)

p−2
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with µ = 10−6 replacing ρ(t) = tp−2 to avoid singular second derivatives D2W .
The first and second derivatives can be written in the following form,

DW (∇u) = |µ+∇u|p−2∇u

D2W (∇u) = |µ+∇u|p−2I2 + (p− 2) |µ+∇u|p−4∇uT∇u

with I2 is identity matrix of order two.

5.2. A posteriori error control. The numerical experiments concern the prac-
tical application of the a posteriori error estimates(22), (30) and their efficiency.
Denote the left-hand side (LHS) of the estimate by LHS(22). The global upper
bounds (GUB) read

GUB(22) =c2(p)|E∗
d(σdRT

)− E∗(σ
dRT

)|+ c2(p)
(pCF ∥f∥q,Ω)

1
p−1 + |||u3|||p,Ω
j1,1

osc(f, T )

+
cp2(p)

p
|||I

NC
u3 − u3|||p

NC,p,Ω
.

Denote the right-hand side (RHS) of the estimate by RHS(30). The global lower
bounds (GLB) read

GLB(30) =
1

C

∑
T∈T

∥hTΠ0f∥qq,T .

The triangulations are either uniform with successive red-refinement or with an
adaptive mesh-refinement algorithm with initial mesh T0 and then, for any triangle
T of a triangulation Tℓ at level ℓ = 0, 1, 2, 3, · · · , set

η2(T ) = |||I
NC

u3 − u3|||2
NC,2,T

+ oscq(f, T ).

Given all those contributions, mark some set Mℓ of triangles in Tℓ of minimal
cardinality with the bulk criterion

1/2
∑
T∈Tℓ

η2ℓ (T ) ≤
∑

T∈Mℓ

η2ℓ (T ).

The refinement of all triangles in Mℓ plus minimal further refinements to avoid
hanging nodes lead to the triangulation Tℓ+1 within the newest-vertex bisection
[6, 9]. The convergence history plots display the left-hand side LHS(22), the upper
bound GUB(22), the right-hand side RHS(30), and the lower bound GLB(30) as
function of the number of degrees of freedom (ndof) in a log-log scale.

5.3. Example 1. Consider the p-Laplace equation on the square domain Ω :=
[−1, 1]2 with the exact solution

u(r) =

{ (
1
4 − r2

)2
e−

r2

s for r ≤ 1
2

0 for r > 1
2

and right-hand side

f(r) = −2p−1dp−2

(
2 +

1

s
d

)p−2

e−(p−1) r2

s rp−2 × [2 (p− 1)

(
2 +

1

s
d

)
r2

+ 2 (p− 1) d

(
3 +

1

s
d

)
r2

s
− pd

(
2 +

1

s
d

)
]

where, d = 1
4 − r2, we test this example for p = 3

2 , s = 0.02. The reference value
for the minimal energy E = −0.00759423 was computed by Aitken extrapolation.
FIGURE 1. displays the global upper bounds(GUB) and the corresponding error
terms(LHS) of the estimate from (22) for uniform and adaptive mesh-refinement.



DISCRETE RAVIART-THOMAS MFEM FOR THE p-LAPLACE EQUATION 325

101 102 103 104
10-4

10-3

10-2

10-1

100

101

102

103

0.41 

1

GUB(22)(uniform)
LHS(22)(uniform)
GUB(22)(adaptive)
LHS(22)(adaptive)

Figure 1. Convergence history of upper bound for dRT method
on square domain.
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Figure 2. Convergence history of lower bound for dRT method
on square domain.
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Figure 3. Adaptively generated triangulation Tl for
l = 4, 6, 8, 10 on square domain.

FIGURE 2. displays the global lower bound(GLB) and the corresponding error
terms(RHS) of the estimates from (30) for uniform and adaptive mesh-refinement.
FIGURE 3. shows the corresponding sequences of triangulations generated by
adaptive FEM for (22).
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5.4. Example 2. Consider the p-Laplace equation on the square domain Ω :=
(0, 1)2 with the exact solution

u(r) =

{
0 for r ≤ b

(r − b)
4

for r > b

and right-hand side

f(r) =

{
0 for r ≤ b

4p−1 (r − b)
3p−4 (

2 + b
r − 3p

)
for r > b

for p = 4
3 , b = 1.3. The extrapolated energy reads E = 0.00000097. FIGURE

4. displays GUB and LHS of the estimate from (22) for uniform and adaptive
mesh-refinement. FIGURE 5. displays GLB and RHS of the estimates from (30)
for uniform and adaptive mesh-refinement. FIGURE 6. presents the corresponding
sequences of triangulations generated by adaptive FEM for (22).
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Figure 4. Convergence history of upper bounds for dRT
method on square domain.
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Figure 5. Convergence history of lower bound for dRT method
on square domain.

5.5. Conclusions. The proposed the dRT-MFEM for p-Laplace equation (1 <
p < 2) under the new measure is equivalent to CR-NCFEM, the a posteriori error
estimates provide reliable upper bound and efficient lower bound, and the error of
the energy can be presented at the same time. The numerical examples show that
the convergence results are consistent with the theoretical analysis. However, our
case has good smoothness and the selected rectangular domain has no singularity,
error estimate is not so sharp. In the follow-up study, we will make up for this
deficiency.
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Figure 6. Adaptively generated triangulation Tl for
l = 4, 6, 8, 10 on square domain.
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